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Abstract

In this paper we study, via variational methods, a boundary value problem for
the Helmholtz equation modelling scattering of time harmonic waves by a layer of
spatially-varying refractive index above an unbounded rough surface on which the
field vanishes. In particular, in the 2D case with TE polarization, the boundary
value problem models the scattering of time harmonic electromagnetic waves by
an inhomogeneous conducting or dielectric layer above a perfectly conducting un-
bounded rough surface, with the magnetic permeability a fixed positive constant in
the medium. Via analysis of an equivalent variational formulation, we show that this
problem is well-posed in two important cases: when the frequency is small enough;
and when the medium in the layer has some energy absorption. In this latter case we
also establish exponential decay of the solution with depth in the layer. An attrac-
tive feature is that all constants in our estimates are bounded by explicit functions
of the index of refraction and the geometry of the scatterer.
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1 Introduction

This paper is concerned with the rigorous study of a class of rough surface
scattering problems. We use the phrase rough surface to denote a surface which
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is a perturbation of an infinite plane surface such that the whole surface lies
within a finite distance of the original plane.

Rough surface scattering problems arise frequently in applications, for exam-
ple in modelling acoustic and electromagnetic wave propagation over outdoor
ground and sea surfaces, and are widely studied in the engineering literature,
with a view to developing both rigorous methods of computation and ap-
proximate, asymptotic, or statistical methods (see Voronovich [1], Saillard &
Sentenac [2], Warnick & Chew [3], DeSanto [4], Reitich and Turc [5], and the
references therein).

This paper is concerned with the rigorous derivation of variational formula-
tions for problems of this type, and with establishing the well-posedness of
these variational formulations, under appropriate constraints on the geom-
etry and the medium of propagation. We consider a specific two- or three-
dimensional rough surface scattering problem which models time harmonic
acoustic scattering (e−iωt time dependence) by a layer of inhomogeneous wave
speed above a sound soft rough surface. The same mathematics, in the 2D
case, models time harmonic electromagnetic scattering by an inhomogeneous
conducting or dielectric layer above a perfectly conducting surface in the case
of TE (transverse electric) polarization. Thus, we will seek to solve the inho-
mogeneous Helmholtz equation with space-dependent wave number k, i.e.

∆u + k2u = g,

in the perturbed half-plane or half-space D ⊂ Rn, n = 2, 3. In the acoustics
case, k = ω/c with c the spatially varying wave speed. In the electromagnetic
case of TE polarization u denotes the component of the electric field that is
perpendicular to the plane and

k2 = ω2µε[1 + iσ/(ωε)], (1)

where ε > 0 is the electric permittivity, σ ≥ 0 is the conductivity, both of which
we suppose may be spatially varying, and µ > 0 is the magnetic permeability,
which we suppose to be constant. We assume, moreover, that the variation in
k is confined to a neighbourhood of ∂D. Choosing a coordinate system so that
∂D ⊂ {x = (x1, . . . , xn) : f− < xn < f+}, for some f− < f+, with the upper
half-plane or half-space {x : xn > f+} a part of D, we assume that k(x) = k+

whenever xn > H, for some constants k+ > 0 and H > f+. We suppose that
the homogeneous Dirichlet boundary condition u = 0 holds on ∂D, which
corresponds in the electromagnetic case to ∂D being perfectly conducting.
We will impose a suitable radiation condition to ensure that the field u is
outgoing in an appropriate sense. We give in the next section complete details
about our assumptions on D and k and about the radiation condition we
impose.
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The main results of the paper are the following. In the next section we formu-
late the boundary value problem precisely, in the case when g ∈ L2(D) with
support lying within a finite distance of ∂D. We also establish the equivalent
variational formulation that we use and study in this paper. As part of the
boundary value problem formulation we require the radiation condition often
used in a formal manner in the rough surface scattering literature (e.g. [4]),
that, above the rough surface and the support of g, the solution can be repre-
sented in integral form as a superposition of upward traveling and evanescent
plane waves. This radiation condition is equivalent to the upward propagat-
ing radiation condition proposed for two-dimensional rough surface scattering
problems in [6], and has recently been analyzed carefully in the 2D case by
Arens and Hohage [7].

In Section 3 we analyze the variational formulation in two cases in which
it emerges that the sesquilinear form is elliptic, so that unique existence of
solution and explicit bounds on the solution in terms of the data g follow
from the Lax-Milgram lemma. These cases are: (i) the case of low frequency
(ω small); (ii) the case when the medium is energy-absorbing in xn < H,
satisfying that the argument of k2(x) is bounded away from zero.

In the final section we show that the sesquilinear form remains elliptic when
considered as a sesquilinear form on certain weighted spaces. This observa-
tion leads to explicit bounds on the exponential decay of the solution as xn

decreases in the case that the imaginary part of k is bounded away from zero.

This paper is closest to a recent study by Chandler-Wilde and Monk [8] who
consider the same mathematical and physical problem, but restricted to the
case in which k(x) ≡ k+ is a positive constant in the whole domain D. In
this current paper we make a partial extension, as outlined above, to the cases
when k is variable and/or complex-valued in D. Both of these extensions are of
significant practical importance (for example, the 2D electromagnetic situation
modelled, of diffraction by a dielectric/conducting layer, is extensively studied
in diffractive optics, e.g. [9]).

2 The boundary value problem and variational formulation

In this section we introduce the boundary value problem and its equiva-
lent variational formulation that will be analyzed in later sections. For x =
(x1, . . . , xn) ∈ Rn (n = 2, 3) let x̃ = (x1, . . . , xn−1) so that x = (x̃, xn). For
H ∈ R let UH = {x : xn > H} and ΓH := {x : xn = H}. Let D ⊂ Rn be a
connected open set such that for some constants f− < f+ it holds that

Uf+ ⊂ D ⊂ Uf− , (2)
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and let Γ = ∂D denote the boundary of ∂D (the rough surface). The varia-
tional problem will be posed on the open set SH := D \UH , for some H ≥ f+.

Given a source g ∈ L2(D) whose support lies within a finite distance of the
boundary, and given k ∈ L∞(D), such that k(x) = k+, x ∈ UH , for some
k+ > 0 and H ≥ f+, the problem we wish to analyze is to find the field u such
that

∆u + k2u = g in D, (3)

u = 0 on Γ, (4)

and such that u satisfies an appropriate radiation condition.

This problem has recently been studied in a rigorous manner using variational
methods by Chandler-Wilde & Monk [8] in the special case in which k is a
positive constant in the whole domain D; indeed this paper will be a main
starting point for the methods and arguments we make, the contribution of the
present paper being to extend the results of [8] to the case where k varies as a
function of position. This extension is non-trivial. Indeed, the case when k is
variable has been extensively studied, but to date only for the 2D case and, for
the most part, for the simpler case of a diffraction grating, where the problem is
to compute the scattered field when a plane wave is incident and the geometry
is periodic, so that k(x + Le1) = k(x), x ∈ D, for some constant L > 0, where
e1 is the unit vector in the x1-direction. This is the subject, in particular, of the
mathematical studies of Bonnet-Bendhia & Starling [10], Strycharz-Szemberg
[11], and Elschner & Schmidt [12], who consider this problem as a model of
electromagnetic scattering in TE polarization (the electric field perpendicular
to the 2D plane) when the diffraction grating is penetrable, with variable
permittivity and conductivity.

The diffraction grating problem is simpler since the variational formulation
is on a single periodic cell, a compact set, as a consequence of which the
sesquilinear form satisfies a G̊arding inequality, so that the associated linear
operator is Fredholm of index zero and well-posedness follows from uniqueness.

The 2D version of our problem, without an assumption of periodicity of k,
has been considered by integral equation methods, but only in two cases. The
first is the case that k is constant and Γ is the graph of a sufficiently smooth
bounded function f , when boundary integral equation methods are applicable
[13,14]. The second case studied is that in which Γ = ∂D is a straight line,
so that D is a half-plane; this case is reduced to a Lippmann-Schwinger-
type integral equation in [15]. These papers establish existence of solution
is certain cases by a partial generalization of the Riesz-Fredholm theory of
compact operators to the case where the operator is only locally compact [16],
so that existence can be deduced from uniqueness of solution. In this paper
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we will establish existence of solution in certain cases via application of the
Lax Milgram lemma to a carefully chosen sesquilinear form.

To complete the formulation of our boundary value problem we need a radi-
ation condition, and we make use of the radiation condition employed in [8].
For φ ∈ L2(ΓH), which we identify with L2(Rn−1), we denote by φ̂ = Fφ the
Fourier transform of φ which we define by

Fφ(ξ) = (2π)−(n−1)/2
∫

Rn−1

exp(−ix̃ · ξ)φ(x̃) dx̃, ξ ∈ Rn−1. (5)

Our radiation condition is to require that

u(x) =
1

(2π)(n−1)/2

∫

Rn−1

exp(i[(xn −H)
√

k2
+ − ξ2 + x̃ · ξ])F̂H(ξ) dξ, x ∈ UH , (6)

where FH := u|ΓH
∈ L2(ΓH). In this equation

√
k2

+ − ξ2 = i
√

ξ2 − k2
+, when

|ξ| > k+.

Equation (6) is a representation for u, in the upper half-plane UH , as a super-
position of upward propagating homogeneous and inhomogeneous plane waves.
A requirement that (6) holds is commonly used (e.g. [4]) as a formal radiation
condition in the physics and engineering literature on rough surface scatter-
ing. The meaning of (6) is clear when FH ∈ L2(Rn−1) so that F̂H ∈ L2(Rn−1);
indeed the integral (6) exists in the Lebesgue sense for all x ∈ UH . Recently
Arens and Hohage [7] have explained, in the case n = 2, in what precise sense
(6) can be understood when FH ∈ BC(ΓH), the space of bounded continuous
functions on ΓH , so that F̂H must be interpreted as a tempered distribution.

We now precisely state our boundary value problem. Let H1
0 (D) denote the

standard Sobolev space, the completion of C∞
0 (D) in the norm ‖ · ‖H1(D)

defined by ‖u‖H1(D) = {∫D(|∇u|2 + |u|2)dx}1/2. The main function space in
which we set our problem will be the Hilbert space VH , defined, for H ≥ f+,
by VH := {φ|SH

: φ ∈ H1
0 (D)}, on which we will impose a wave num-

ber dependent scalar product (u, v)VH
:=

∫
SH

(∇u · ∇v + k2
+uv̄) dx and norm,

‖u‖VH
= {∫SH

(|∇u|2 + k2
+|u|2)dx}1/2.

The boundary value problem. Given g ∈ L2(D), and k ∈ L∞(D) such
that for some H ≥ f+ it holds that the support of g lies in SH and that
k(x) = k+, x ∈ UH , for some k+ > 0, find u : D → C such that u|Sa ∈ Va for
every a > f+, ∆u + k2u = g in D in a distributional sense, and the radiation
condition (6) holds, with FH = u|ΓH

.

Remark 1 We note that, as one would hope (see [8, Remark 2.1]), the solu-
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tions of the above problem do not depend on the choice of H. Precisely, if u is a
solution to the above problem for one value of H ≥ f+ for which supp g ⊂ SH

and k = k+ in UH , then u is a solution for all H ≥ f+ with this property.

We now derive a variational formulation of the boundary value problem above,
in which trace operators and a Dirichlet-to-Neumann operator play a role. To
describe the mapping properties of these operators we will use standard frac-
tional Sobolev space notation, except that we adopt a wave number dependent
norm, equivalent to the usual norm, and reducing to the usual norm if the unit
of length measurement is chosen so that k+ = 1. Thus, identifying ΓH with
Rn−1, Hs(ΓH), for s ∈ R, denotes the completion of C∞

0 (ΓH) in the norm
‖ · ‖Hs(ΓH) defined by

‖φ‖Hs(ΓH) =




∫

Rn−1

(k2
+ + ξ2)s|Fφ(ξ)|2 dξ




1/2

.

We recall [17] that, for all a > H ≥ f+, there exist continuous embeddings
γ+ : H1(UH \Ua) → H1/2(ΓH) and γ− : VH → H1/2(ΓH) (the trace operators)
such that γ±φ coincides with the restriction of φ to ΓH when φ is C∞. In the
case when H = f+, when ΓH may not be a subset of the boundary of SH

(if part of ∂D coincides with ΓH) we understand this trace by first extending
φ ∈ VH by zero to Uf− \ Uf+ . We recall also that, if u+ ∈ H1(UH \ Ua),
u− ∈ VH , and γ+u+ = γ−u−, then v ∈ Va, where v(x) := u+(x), x ∈ UH \ Ua,
:= u−(x), x ∈ SH . Conversely, if v ∈ Va and u+ := v|UH\Ua , u− := v|SH

, then
γ+v+ = γ−v−.

It is easy to see that, if FH ∈ C∞
0 (ΓH) and u is given by (6), then

Tγ+u = − ∂u

∂xn

∣∣∣∣∣
ΓH

, (7)

where the Dirichlet to Neumann map T is defined by

T := F−1MzF , (8)

with Mz the operation of multiplying by z(ξ) :=
√

ξ2 − k2
+, ξ ∈ R, where we

take the square root with negative imaginary part, z(ξ) = −i
√

k2
+ − ξ2, for

|ξ| ≤ k+. It is shown in [8, Lemma 2.5] that T : H1/2(ΓH) → H−1/2(ΓH) and
is bounded, with norm

‖T‖ = 1. (9)
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We recall the following lemma from [8], which describes properties of u, defined
by (6).

Lemma 2 If (6) holds, with FH ∈ H1/2(ΓH), then u ∈ H1(UH \Ua)∩C2(UH),
for every a > H,

∆u + k2
+u = 0 in UH ,

γ+u = FH , and

∫

ΓH

v̄Tγ+u ds + k2
+

∫

UH

uv̄ dx−
∫

UH

∇u · ∇v̄ dx = 0, v ∈ C∞
0 (D). (10)

Now suppose that u satisfies the boundary value problem. Then u|Sa ∈ Va for
every a > f+ and, by definition, since ∆u + k2u = g in a distributional sense,

∫

D

[gv̄ +∇u · ∇v̄ − k2uv̄]dx = 0, v ∈ C∞
0 (D). (11)

Applying Lemma 2, and defining w := u|SH
, it follows that

∫

SH

[gv̄ +∇w · ∇v̄ − k2wv̄] dx +
∫

ΓH

v̄Tγ−w ds = 0, v ∈ C∞
0 (D).

From the denseness of {φ|SH
: φ ∈ C∞

0 (D)} in VH and the continuity of γ−, it
follows that this equation holds for all v ∈ VH .

Let ‖ · ‖2 and (·, ·) denote the norm and scalar product on L2(SH), so that

‖v‖2 =
√∫

SH
|v|2 dx and (u, v) =

∫
SH

uv dx, and define the sesquilinear form

b : VH × VH → C by

b(u, v) = (∇u,∇v)− (k2u, v) +
∫

ΓH

γ−v̄Tγ−u ds. (12)

Then we have shown that if u satisfies the boundary value problem then
w := u|SH

is a solution of the following variational problem: find u ∈ VH such
that

b(u, v) = −(g, v), v ∈ VH . (13)

Conversely, suppose that w is a solution to the variational problem and define
u(x) to be w(x) in SH and to be the right hand side of (6), with FH := γ−w,
in UH . Then, by Lemma 2, u ∈ H1(UH \ Ua) for every a > H, with γ+u =
FH = γ−w. Thus u|Sa ∈ Va, a ≥ f+. Further, from (10) and (13) it follows
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that (11) holds, so that ∆u + k2u = g in D in a distributional sense. Thus u
satisfies the boundary value problem.

We have thus proved the following theorem.

Theorem 3 If u is a solution of the boundary value problem then u|SH
satis-

fies the variational problem. Conversely, if u satisfies the variational problem,
FH := γ−u, and the definition of u is extended to D by setting u(x) equal to
the right hand side of (6), for x ∈ UH , then the extended function satisfies the
boundary value problem, with g extended by zero from SH to D and k extended
from SH to D by taking the value k+ in UH .

3 VH-Ellipticity of the sesquilinear form

In this section we shall investigate under what conditions b is VH-elliptic.
From the point of view of numerical solution by e.g. finite element methods,
the ellipticity we establish is of course highly desirable, guaranteeing, by Céa’s
lemma, unique existence and stability of the numerical solution method.

Let V ∗
H denote the dual space of VH , i.e. the space of continuous anti-linear

functionals on VH . Then our analysis will also apply to the following slightly
more general problem: given G ∈ V ∗

H find u ∈ VH such that

b(u, v) = G(v), v ∈ VH . (14)

It will be assumed in the remainder of the paper that k ∈ L∞(D) satisfies
that <(k2) ≥ 0,=(k2) ≥ 0, which is certainly the case in the electromagnetic
case where k2 is given by (1). Then there exist constants k∞ ≥ k− ≥ 0 and
θ ∈ [0, π/2] such that

k− ≤ |k(x)| ≤ k∞, arg(k2(x)) ≥ θ, (15)

for almost all x ∈ SH . It is convenient to introduce the dimensionless param-
eters

κ∞ := k∞(H − f−), κ− := k−(H − f−), and κ+ := k+(H − f−).

We shall prove the following theorem.

Theorem 4 Suppose that either κ∞ <
√

2 or θ > 0. Then, for some constant
α > 0,

|b(u, u)| ≥ α‖u‖2
VH

, u ∈ VH ,
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so that the variational problem (14) is uniquely solvable. Moreover, the solution
satisfies the estimate

‖u‖VH
≤ C‖G‖V ∗H (16)

where C := α−1 satisfies

C ≤ 2 + κ2
+

2− κ2∞
if κ∞ <

√
2, and satisfies

C ≤ cosec θ

(
1 +

κ2
+

max(2, κ2−)

)

if θ > 0. In particular, the scattering problem (13) is uniquely solvable and the
solution satisfies the bound

k+‖u‖VH
≤ max

(
1,

κ+√
2

)
C‖g‖2. (17)

Let us recall from [8] some results needed to prove Theorem 4.

Lemma 5 For all u ∈ VH ,

‖γ−u‖H1/2(ΓH) ≤ ‖u‖VH
and ‖u‖2 ≤ H − f−√

2

∥∥∥∥∥
∂u

∂xn

∥∥∥∥∥
2

.

Lemma 6 For all φ, ψ ∈ H1/2(ΓH),

∫

ΓH

φTψds =
∫

ΓH

ψTφds.

For all φ ∈ H1/2(ΓH),

<
∫

ΓH

φ̄ Tφ ds ≥ 0 and =
∫

ΓH

φ̄ Tφ ds ≤ 0.

The above lemmas imply that b(·, ·) is bounded, giving an explicit value for
the bound, and that b(·, ·) has the following important symmetry property.

Corollary 7 For all u, v ∈ VH , b(v, u) = b(ū, v̄).

Lemma 8 For all u, v ∈ VH ,

|b(u, v)| ≤
[
k2
∞

k2
+

+ 1

]
‖u‖VH

‖v‖VH
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so that the sesquilinear form b(., .) is bounded.

Proof. From the definition of the sesquilinear form b(., .) and the Cauchy-
Schwarz inequality we have

|b(u, v)| ≤ ‖∇u‖2‖∇v‖2 +
k2
∞k2

+

k2
+

‖u‖2‖v‖2 + ‖γ−u‖H1/2(ΓH)‖T‖ ‖γ−v‖H1/2(ΓH).

Applying the Cauchy-Schwarz inequality, (9), and Lemma 5 we obtain the
desired estimate.

Our last lemma of this section shows that the sesquilinear form b(., .) is VH-
elliptic provided that κ∞ is not too large or arg(k2) is strictly positive.

Lemma 9 i) For all u ∈ VH ,

|b(u, u)| ≥ 2− κ2
∞

2 + κ2
+

‖u‖2
VH

.

ii) For all u ∈ VH ,

|b(u, u)| ≥ sin θ

1 + κ2
+/ max(2, κ2−)

‖u‖2
VH

.

Proof. i) By Lemma 6, < b(u, u) ≥ ‖u‖2
VH
− k2

+‖u‖2
2 − k2

∞‖u‖2
2. The result

follows from Lemma 5 which implies that ‖u‖2
VH
≥ k2

+(2/κ2
+ + 1)‖u‖2

2.

ii) Choose α ≥ 0 and define β ∈ (0, θ] by

tan β =
sin θ

α + cos θ
,

so that α sin β = sin(θ − β) and

sin β =
sin θ√

α2 + 2α cos θ + 1
≥ sin θ

1 + α
.

Then, by Lemma 6, and since π/2− β ∈ [0, π/2],

<

ei(π/2−β)

∫

ΓH

γ−ūTγ−uds


 ≥ 0.

Hence
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R :=<
(
ei(π/2−β)b(u, u)

)
≥ sin β‖∇u‖2

2 +
∫

SH

sin(arg(k2)− β)|k2| |u|2dx

≥ sin β‖∇u‖2
2 + sin(θ − β)

k2
−

k2
+

k2
+‖u‖2 = sin β

(
‖∇u‖2

2 + α
k2
−

k2
+

k2
+‖u‖2

2

)
.

Thus, and by Lemma 5, for 0 ≤ γ ≤ 1,

R ≥ sin β

(
γ ‖∇u‖2

2 +
2(1− γ) + ακ2

−
κ2

+

k2
+‖u‖2

)
.

Choosing first γ = 1 and α = κ2
+/κ2

−, we see that

R ≥ sin β‖u‖2
VH
≥ sin θ

1 + κ2
+/κ2−

‖u‖2
VH

.

Alternatively, choosing γ = 2/(2 + κ2
+) and α = 0, so that β = θ, we see that

R ≥ sin θ

1 + κ2
+/2

‖u‖2
VH

.

Theorem 4 now follows from Lemmas 8 and 9 and the Lax-Milgram lemma.
The final bound (17) is a consequence of the definition of the norm on VH and
of Lemma 5. These imply, in the particular case that G(v) := −(g, v) for some
g ∈ L2(SH), that

‖G‖V ∗H = sup
v∈VH

|(v, g)|
‖v‖VH

≤ sup
v∈VH

‖v‖2‖g‖2

‖v‖VH

≤ max

(
k−1

+ ,
H − f−√

2

)
‖g‖2.

4 Ellipticity in weighted spaces

In this final section we study the variational problem in a weighted space
setting. Given w : SH → R which satisfies that w ∈ C1(SH), and that w(x) > 0
for x ∈ SH , we define weighted versions of the spaces L2(SH) and VH by

L2
w(SH) := {φ ∈ L2

loc(SH) : wφ ∈ L2(SH)}, VH,w := {φ ∈ H1
loc(SH) : wφ ∈ VH}.

Both of these spaces are Hilbert spaces when equipped with the appropriate
scalar product. In particular, the induced norms are, respectively, ‖ · ‖2,w and
‖ · ‖VH,w

, defined by

‖φ‖2,w := ‖wφ‖2, ‖φ‖VH,w
:= ‖wφ‖VH

.
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We let V ∗
H,w denote the space of continuous anti-linear functionals on VH,w.

We have shown that, at least in certain cases discussed in the previous section,
our boundary value problem is well-posed; for every g ∈ L2(SH) there exists
exactly one solution to the boundary value problem, with v ∈ Va for every
a > f+, and ‖v‖VH

bounded in terms of ‖g‖2 by Theorem 4.

We will extend these results to a certain class of weighted spaces via a study of
the following generalization of the variational formulation (13) of the boundary
value problem: given g ∈ L2

w(SH) find u ∈ VH,w such that

b(u, v) = −(g, v), v ∈ VH,1/w. (18)

The weights we shall consider are those which are constant on ΓH and satisfy,
for some M > 0, the inequality

|∇w(x)|
k+w(x)

≤ M, x ∈ SH . (19)

These conditions are satisfied, for example, if

w(x) := exp(ηxn), x ∈ SH , (20)

for some η ∈ R, with M = |η|/k+.

The assumptions (19) and that w is constant on ΓH ensure that b is a bounded
sesquilinear form on VH,w×VH,1/w. To see this note first that the operator Mw

of multiplication by w is an isometric isomorphism from L2
w(SH) to L2(SH)

and from VH,w to VH . Thus b(·, ·) is bounded on VH,w × VH,1/w if and only if
bw(·, ·) is bounded on VH × VH , where

bw(u, v) := b(u/w, wv), u, v ∈ VH .

We calculate, for u, v ∈ VH , noting w is constant on ΓH , that

bw(u, v)− b(u, v) =
(

1

w
∇u, v∇w

)
−

(
u
∇w

w2
, w∇v

)
−

(
u

w2
∇w, v∇w

)

so that

|bw(u, v)− b(u, v)| ≤Mk+‖∇u‖2‖v‖2 + Mk+‖u‖2‖∇v‖2 + M2k2
+‖u‖2‖v‖2

≤M‖u‖VH
‖v‖VH

+ M2k2
+‖u‖2‖v‖2

≤M(1 + M)‖u‖VH
‖v‖VH

. (21)
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This bound implies that bw(·, ·)− b(·, ·), and hence bw(·, ·) itself, are bounded
on VH × VH so that b(·, ·) is bounded on VH,w × VH,1/w. Moreover, combined
with Theorem 4, it establishes the VH-ellipticity of bw(·, ·) under the conditions
of Theorem 4, if M is small enough.

Theorem 10 Suppose that w(x) is constant on ΓH and satisfies (19). Then
b(·, ·) is bounded on VH,w × VH,1/w and bw(·, ·) is bounded on VH × VH , with

sup
u∈VH,w, v∈VH,1/w

|b(u, v)|
‖u‖VH,w

‖v‖VH,1/w

= sup
u∈VH , v∈VH

|bw(u, v)|
‖u‖VH

‖v‖VH

≤ 1 +
k2
∞

k2
+

+ M(1 + M).

If also β := N −M(1 + M) > 0, where

N := max

(
2− κ2

∞
2 + κ2

+

,
sin θ

1 + κ2
+/ max(2, κ2−)

)
,

then
|bw(u, u)| ≥ β‖u‖2

VH
, u ∈ VH .

It follows that the variational problem: given G ∈ V ∗
H,1/w, find u ∈ VH,w such

that
b(u, v) = G(v), v ∈ VH,1/w,

is uniquely solvable and the solution satisfies the estimate

‖u‖VH,w
≤ β−1‖G‖V ∗

H,1/w
. (22)

In particular, the scattering problem (18) is uniquely solvable and the solution
satisfies the bound

k2
+‖wu‖2 ≤ k+‖wu‖VH

= k+‖u‖VH,w
≤ β−1‖g‖2,w = β−1‖wg‖2. (23)

We note that β > 0 if and only if M < N/(1/2 +
√

N + 1/4 ), which clearly
holds if

M <
Ñ

1
2

+
√

Ñ + 1
4

,

where

Ñ :=
sin θ

1 + κ2
+/κ2−

.

If, for some ki > 0,

=k(x) ≥ ki, x ∈ SH , (24)
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then arg k(x) ≥ χ := sin−1(ki/k∞), x ∈ SH , so that (15) holds with θ = 2χ
and, defining kr = k∞ cos χ, we have that

Ñ =
2kikr

k2∞(1 + k2
+/k2−)

. (25)

Consider now the case when w is given by (20), and note that, since xn is
bounded on SH , VH,w = VH so that, for this weight, a large part of the above
theorem (though not the explicit bounds) follows already from Theorem 4.
Thus, noting the above observations, we obtain the following corollary of the
above theorem and Theorems 3 and 4.

Corollary 11 If (24) holds for some ki > 0 then the boundary value problem
has at most one solution. Moreover, for

|η| < ηmax :=
k+Ñ

1
2

+
√

Ñ + 1
4

,

where Ñ is given by (25), it holds that

k2
+





∫

SH

e2ηxn|u(x)|2 dx





1/2

≤ β−1





∫

SH

e2ηxn |g(x)|2 dx





1/2

, (26)

with β = Ñ − η(1 + η/k+)/k+.

We note that, in the above corollary,

ηmax < k+Ñ <
2kik+k∞
k2∞ + k2

+

< ki (27)

and that, in the case when k is constant in SH with modulus k+, so that
k+ = k∞ = k−, it holds that ηmax ∼ k+Ñ ∼ ki as ki → 0 with k+ fixed, so
that the bound (27) is sharp in this limit. Of course the bound (27), limiting
the range of validity of (26) to |η| < ηmax < ki, is to be expected. In the case
when k is constant in SH , a vertically travelling plane wave in SH has the form
exp(±(ikrxn − kixn)), so it is reasonable to suppose that

∫
SH

e2ηxn|u(x)|2 dx
cannot be bounded, independently of H and of the location of ∂D, for |η| = ki

for every compactly supported g.
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