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Abstract. The half-space matching (HSM) method has recently been developed as a new
method for the solution of two-dimensional scattering problems with complex backgrounds, providing
an alternative to perfectly matched layers or other artificial boundary conditions. Based on half-
plane representations for the solution, the scattering problem is rewritten as a system of integral
equations in which the unknowns are restrictions of the solution to the boundaries of a finite number
of overlapping half-planes contained in the domain: this integral equation system is coupled to a
standard finite element discretization localized around the scatterer. While satisfactory numerical
results have been obtained for real wavenumbers, well-posedness and equivalence to the original
scattering problem have been established only for complex wavenumbers. In the present paper, by
combining the HSM framework with a complex-scaling technique, we provide a new formulation
for real wavenumbers which is provably well-posed and has the attraction for computation that the
complex-scaled solutions of the integral equation system decay exponentially at infinity. The analysis
requires the study of double-layer potential integral operators on intersecting infinite lines, and their
analytic continuations. The effectiveness of the method is validated by preliminary numerical results.
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1. Introduction and the scattering problem. The mathematical and nu-
merical analysis of scattering by bounded obstacles and/or inhomogeneities in a ho-
mogeneous background is a mature research area, and there are many effective nu-
merical schemes, at least for low to moderately high frequencies. However, when the
background is heterogeneous (stratified, periodic, etc.) and/or anisotropic, especially
when electromagnetic or elastic waves are considered, many theoretical questions are
still open and the design of efficient numerical methods remains a significant challenge.

It is well known that, for homogeneous backgrounds, the Sommerfeld radiation
condition ensures well-posedness of the scattering problem [25]. The extension of this
standard radiation condition to the aforementioned more complex backgrounds is
really intricate (see, e.g., [10, 13, 29, 33, 36]). Moreover, a Green's function or tensor,
which could be used to derive an integral equation formulation of the problem, is in
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THE COMPLEX-SCALED HALF-SPACE MATCHING METHOD 513

general not available or hard to compute. Finally, perfectly matched layer (PML)
techniques, which are popular in homogeneous backgrounds because they are easy to
implement, can produce spurious effects for complex backgrounds, as is well known
for anisotropic backgrounds in relation to instabilities in the time domain [8].

To overcome these difficulties a new method, called the half-space matching
(HSM) method, has been developed as an (exact) artificial boundary condition for
two-dimensional (2D) scattering problems. This method is based on explicit or semiex-
plicit expressions for the outgoing solutions of radiation problems in half-planes, these
expressions established by using Fourier, generalized Fourier, or Floquet transforms
when the background is, respectively, homogeneous [12, 11] (and possibly anisotropic
[46, 7, 45]), stratified [42], or periodic [32]. The domain exterior to a bounded region
enclosing the scatterers is covered by a finite number of half-planes (at least three).
The unknowns of the formulation are the traces of the solution on the boundaries
of these half-planes and the restriction of the solution to the bounded region. The
system of equations which couples these unknowns is derived by writing compatibility
conditions between the different representations of the solution. This coupled system
includes second-kind integral equations on the infinite boundaries of the half-planes.

This new formulation is attractive and versatile as a method to truncate compu-
tational domains in problems of scattering by localized inhomogeneities in complex
backgrounds (including backgrounds that may be different at infinity in different di-
rections). It has been employed successfully in numerical implementations for a range
of problems, namely periodic [34] and stratified media (including cases with different
stratifications in different parts of the background domain) [42], and anisotropic scalar
and elastic problems [46, 45].

Up to now the theoretical and numerical analysis of the method has remained
an open question in the challenging, and more practically relevant, nondissipative
case when waves radiate out to infinity. But a rather complete analysis has been
carried out in the simpler dissipative case, when the solution (and its traces) decay
exponentially at infinity. In that case the analysis can be done using an L2 framework
for the traces, and the associated formulation has been shown to be of Fredholm type
and well-posed in a number of cases [12, 11], with the sesquilinear form of the weak
formulation coercive plus compact, enabling standard numerical analysis arguments
[11]. One of the main difficulties in the nondissipative case is the slow decay at
infinity of the solution which results in non-L2 traces. The possibility, to address this,
of working in the framework initially introduced in [14, 15] was investigated by the
authors, but it seems to be inappropriate for the present analysis.

The objective of this paper is to propose a new formulation of the HSM method
which is well-suited for theoretical and numerical analysis (and practical computa-
tion) in the nondissipative case. For the sake of clarity and as a first step, we restrict
ourselves in the present paper to a relatively simple model problem for which the justi-
fication of the method is based on the simple form of the associated Green's function.
(Let us mention that the extension of this formulation to anisotropic backgrounds has
been already validated and will be the subject of a forthcoming paper. See section
8 for a brief discussion of extensions to other more complex configurations.) This
new formulation exploits a fundamental property of the solution in the spirit of the
ideas behind complex-scaling methods (e.g., the pioneering works of [6], [2]): in any
given direction, the solution, as a function of the associated curvilinear abscissa, has
an analytic continuation into the complex plane which is exponentially decaying in
the upper complex plane. This enables us to replace the system of equations for the
traces by similar equations for exponentially decaying analytical continuations of these
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514 BONNET-BEN DHIA ET AL.

traces. This recovers well-posedness in an L2 framework, with coercive plus compact
sesquilinear forms; moreover, attractive for computation, the rate of exponential de-
cay of these analytically continued traces increases with increasing wavenumber. Let
us mention that in [39] a similar integral-equation-based complex-scaling idea, namely
a boundary integral equation formulation of PML, is used to compute 2D scattering
by localized perturbations in a straight interface between different media.

In the present paper we consider the rather simple model case of a scalar equation,
the isotropic Helmholtz equation

(1.1)  - \Delta u - k2 \rho u = f in \Omega ,

deduced from the wave equation assuming a time-dependence e - i\omega t for a given angular
frequency \omega > 0. Here \rho is a function in L\infty (\Omega ), bounded from below by a positive
constant, and such that \rho  - 1 is compactly supported, and the constant k = \omega /c is
the wavenumber, where c is the wave speed outside the support of \rho  - 1, so that (1.1)
models propagation in a domain with a local perturbation in wave speed.

The propagation domain \Omega is \BbbR 2, or \BbbR 2 minus a set of obstacles which are included
in a bounded region. We assume that, for a positive constant a,

\partial \Omega \subset \Omega a where \Omega a := ( - a, a)2.

In the presence of obstacles, boundary conditions have to be added to the model. The
source term f is supposed to be a function in L2(\Omega ) with compact support included
in \Omega a, and we assume that

supp(\rho  - 1) \subset \Omega a.

As already mentioned, in order to get well-posedness, one has to prescribe in addition
the Sommerfeld radiation condition, that, for \bfitx := (x1, x2) \in \BbbR 2,

(1.2)
\partial u

\partial r
(\bfitx ) - iku(\bfitx ) = o

\Bigl( 
r - 1/2

\Bigr) 
as r := | \bfitx | \rightarrow +\infty ,

uniformly with respect to \widehat \bfitx := \bfitx /r.
In what follows, we will consider two configurations in order to focus first on the

HSM formulation and then on its coupling with a variational formulation in a bounded
region. In sections 2 to 5 we consider a Dirichlet problem set in the exterior of the
square \Omega a. The application of the analysis in sections 2--5 to general configurations,
with source terms, inhomogeneities, and/or obstacles contained in \Omega a, is the object
of section 6.

The outline of the paper is as follows. In section 2 we recall the main results
concerning the HSM formulation in the dissipative case (that is, with a complex
wavenumber k). In previous papers the HSM formulation has been derived using
Fourier representations for the solution in half-planes. Here we introduce a new for-
mulation using double-layer potential integral representations to derive the so-called
complex-scaled version of the method, valid for a real wavenumber k.

The derivation and the analysis of this new formulation are the object of section
3, which finishes with a statement of our main well-posedness result for the new
method. In section 4 we establish properties of the solution that can be reconstructed
a posteriori, from knowledge of the complex-scaled traces, notably elements of the
far-field pattern. These properties are used in section 5 to establish the uniqueness
result for the complex-scaled HSM problem.

The HSM method approach is extended to general configurations in section 6; the
analysis in this section depends throughout on the well-posedness and other results
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obtained in sections 3--5. In section 7 the implementation of a finite element dis-
cretization of the complex-scaled HSM formulation is described and numerical results
are presented, for both the model Dirichlet problem and more general configurations.
The paper finishes with three appendices to which we defer certain technical details
of the analysis.

2. The HSM method for complex wavenumber. In this section, as prepa-
ration for studying the HSM method for real wavenumber, we first recall what is
known about the method in the dissipative case. It is enough for this purpose to
consider the Dirichlet problem for complex wavenumber (\Im (k) > 0, \Re (k) > 0) in the
exterior of the square \Omega a, i.e.,

(2.1)

\Biggl\{ 
 - \Delta u - k2 u = 0 in \Omega := \BbbR 2 \setminus \Omega a,

u = g on \Sigma a := \partial \Omega a,

for a given g \in H1/2(\Sigma a). It is well-known that problem (2.1) has a unique solution
u \in H1(\Omega ).

Let us first recall the main results of [12].
The domain \Omega is the union of four overlapping half-planes \Omega j that abut the

four edges of the square \Omega a. We introduce the following local coordinates for all
j \in J0, 3K := \{ 0, 1, 2, 3\} :

(2.2)

\biggl( 
xj1
xj2

\biggr) 
:=

\biggl( 
cos(j\pi /2) sin(j\pi /2)
 - sin(j\pi /2) cos(j\pi /2)

\biggr) \biggl( 
x1
x2

\biggr) 
.

The half-planes and their boundaries are defined as follows for all j \in J0, 3K:

(2.3) \Omega j := \{ (xj1, x
j
2) : x

j
1 > a, xj2 \in \BbbR \} , \Sigma j := \{ (xj1, x

j
2) : x

j
1 = a, xj2 \in \BbbR \} .

Finally, we denote

(2.4) \Sigma j
a := \Sigma a \cap \Sigma j .

These notations are summarized in Figure 2.1. As explained in the introduction, the
formulation uses the representation of the solution in each half-plane \Omega j in terms of
its trace on \Sigma j . More precisely, let us denote

(2.5) \varphi j := u
\bigm| \bigm| 
\Sigma j for j \in J0, 3K

so that

(2.6) u
\bigm| \bigm| 
\Omega j = U j(\varphi j) for j \in J0, 3K,

where, for any \psi \in H1/2(\Sigma j), U j(\psi ) \in H1(\Omega j) is the unique solution of

(2.7)
 - \Delta U j  - k2 U j = 0 in \Omega j ,

U j = \psi on \Sigma j .

In what follows, we identify any function defined on \Sigma j , in particular the function \varphi j ,
with a function of the real variable xj2.

We can express U j(\psi ) explicitly in terms of its trace \psi in two manners: using the
Fourier transform or using a Green's function representation. First, using the Fourier
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x1

x2

\Omega a

\Sigma 1

\Sigma 0

\Sigma 2

\Sigma 3

\Sigma 0
a

\Sigma 1
a

\Sigma 2
a

\Sigma 3
a

\Omega 0

\Omega 1

\Omega 2

\Omega 3

Fig. 2.1. The notations defined in (2.2)--(2.3)--(2.4).

transform in the xj2-direction, it is easy to see that the solution of (2.7) is given by

(2.8) U j(\psi )(\bfitx j) =
1\surd 
2\pi 

\int 
\BbbR 
\widehat \psi (\xi )e - \surd \xi 2 - k2(xj

1 - a)ei\xi x
j
2d\xi , \bfitx j := (xj1, x

j
2) \in \Omega j ,

where the square root is defined with the convention \Re (
\surd 
z) \geq 0, for z \in \BbbC \setminus \BbbR  - (with

\BbbR  - := ( - \infty , 0]) and \widehat \psi is the Fourier transformation of \psi using the convention

(2.9) \widehat \psi (\xi ) := 1\surd 
2\pi 

\int 
\BbbR 
\psi (xj2) e

 - i\xi xj
2dxj2, \xi \in \BbbR .

Second, using a Green's function representation, we can show that

(2.10) U j(\psi )(\bfitx j) =

\int 
\Sigma j

\partial Gj(\bfitx j ,\bfity j)

\partial n(\bfity j)
\psi (\bfity j) ds(\bfity j), \bfitx j \in \Omega j ,

where Gj(\bfitx j ,\bfity j) is the Dirichlet Green's function for \Omega j and n(\bfity j) is the unit normal
to \Sigma j that points into \Omega j . Explicitly, Gj(\bfitx j ,\bfity j) = \Phi (\bfitx j ,\bfity j)  - \Phi (\~\bfitx j ,\bfity j), with \~\bfitx j

the image of \bfitx j in \Sigma j , where \Phi (\bfitx ,\bfity ) is the standard fundamental solution of the
Helmholtz equation defined by

(2.11) \Phi (\bfitx ,\bfity ) :=
i

4
H

(1)
0 (k| \bfitx  - \bfity | ), \bfitx , \bfity \in \BbbR 2, \bfitx \not = \bfity ,

so that, equivalently,

(2.12) U j(\psi )(\bfitx j) = 2

\int 
\Sigma j

\partial \Phi (\bfitx j ,\bfity j)

\partial n(\bfity j)
\psi (\bfity j) ds(\bfity j), \bfitx j \in \Omega j .

This leads to

(2.13) U j(\psi )(\bfitx j) =

\int 
\BbbR 
h(xj1  - a, xj2  - yj2)\psi (y

j
2) dy

j
2, \bfitx j \in \Omega j ,
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\Omega a

\Sigma 1

\Sigma 0

\Omega 0

\Omega 1 \Omega 0 \cap \Omega 1

Fig. 2.2. Construction of the compatibility condition.

where

(2.14) h(x1, x2) :=
ikx1
2

H
(1)
1 (kR(x1, x2))

R(x1, x2)
,

and

(2.15) R(x1, x2) := (x21 + x22)
1/2, x1, x2 \in \BbbR .

Let us remark that the two representations (2.8) and (2.13) of U j(\psi ) can be derived
one from other by using simply a Plancherel formula (e.g., [19, p. 821]).

To derive the system of equations whose unknowns are the traces \varphi j of the solu-
tion, it suffices to write that the half-plane representations must coincide where they
coexist. For instance, in the quarter plane \Omega 0 \cap \Omega 1 (see Figure 2.2) we have

(2.16) u = U0(\varphi 0) = U1(\varphi 1) in \Omega 0 \cap \Omega 1,

and in particular

(2.17) \varphi 1 = U0(\varphi 0) on \Omega 0 \cap \Sigma 1,

which leads to a first integral equation linking \varphi 0 and \varphi 1. Indeed, for any point of
\Sigma 1 \cap \Omega 0, represented by (x01, x

0
2) and (x11, x

1
2) in local coordinates systems, we have

x12 =  - x01 <  - a and x11 = x02 = a (indeed, the point is on \Sigma 1 \cap \Omega 0 if and only if these
equations hold). Thus the compatibility relation (2.17) can be rewritten (identifying
\Sigma 1 with \BbbR in the way noted above) as

(2.18) \varphi 1(x12) = U0(\varphi 0)( - x12, a), x12 <  - a,

where we can use either of the two integral representations (2.8) and (2.13) for the
half-plane solution U0(\varphi 0). From (2.16) we have also

\varphi 0 = U1(\varphi 1) on \Sigma 0 \cap \Omega 1,

which leads to another integral equation linking \varphi 0 and \varphi 1:

\varphi 0(x02) = U1(\varphi 1)(x02, - a), x02 > a.
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Repeating this for each quarter plane we get eight equations linking the four
traces. In order to write the system of equations in a condensed manner, we shall use
the same notation t instead of the various variables xj2 so that the eight equations
become

(2.19) \forall j \in J0, 3K, \varphi j(t) = S D\varphi j - 1(t), t <  - a,
\varphi j(t) = DS \varphi j+1(t), t > a,

where we have set \varphi  - 1 := \varphi 3 and \varphi 4 := \varphi 0, and where the operators S and D are
defined as follows. For any \psi \in L2(\BbbR ),

(2.20) S\psi (t) := \psi ( - t), t \in \BbbR ,

and the integral operator D is defined by

(2.21) D\psi (t) := U0(\psi )(t, a), t > a.

D can be given explicitly by either of the following two expressions:

(2.22) D\psi (t) =
1\surd 
2\pi 

\int 
\BbbR 
\widehat \psi (\xi )ei\surd k2 - \xi 2(t - a)ei\xi a d\xi , t > a,

or

(2.23) D\psi (t) =

\int 
\BbbR 
h(t - a, s - a)\psi (s) ds, t > a,

where the kernel h is defined in (2.14).1 The system of equations has to be completed
with the Dirichlet boundary condition rewritten as

(2.24) \varphi j(t) = g| \Sigma j
a
(t),  - a < t < a, j \in J0, 3K.

One can easily check that (2.19)--(2.24) is equivalent to the original problem (2.1).
More precisely, if \{ \varphi 0, \varphi 1, \varphi 2, \varphi 3\} \in (H1/2(\BbbR ))4 is a solution to (2.19)--(2.24), then
one can recover the solution u to (2.1), from the knowledge of the \varphi j 's, thanks to the
half-plane representations (2.8) or (2.13). Indeed, by uniqueness of Dirichlet quarter-
plane problems, two half-plane representations U j(\varphi j) and U j+1(\varphi j+1) coincide on
the quarter-plane \Omega j \cap \Omega j+1 since the compatibility conditions (2.19) imply that they
coincide on its boundary.

For the analysis and the computation it is convenient to consider the formulation
in an L2-framework:

(2.25)

Find \{ \varphi 0, \varphi 1, \varphi 2, \varphi 3\} \in (L2(\BbbR ))4 such that

\varphi j(t) = S D\varphi j - 1(t), t <  - a,
\varphi j(t) = g| \Sigma j

a
(t),  - a < t < a,

\varphi j(t) = DS \varphi j+1(t), t > a.

j \in J0, 3K,

One attraction of this L2-framework is that it allows the use of elementary operations
of restriction and extension. More precisely, for any function of L2(\BbbR ), its restriction
to an open interval I \subset \BbbR is in L2(I). More significantly, any function of L2(I)

1Note that, as is clear from (2.12), D is precisely a double-layer potential operator (in the sense,
e.g., of [26] or [17]) from \{ (a, t) : t \in \BbbR \} to \{ (t, a) : t \geq a\} .
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extended by 0 belongs to L2(\BbbR ). For simplicity, any function defined on a part of \BbbR 
is identified hereafter with its extension by 0. With this convention we can write

(2.26) L2(\BbbR ) = L2( - \infty , - a)\oplus L2( - a, a)\oplus L2(a,+\infty ),

which will be extensively used hereafter. In line with this convention, we define D\psi (t)
for all t \in \BbbR by setting

(2.27) D\psi (t) := 0, t \leq a.

With these various conventions (2.25) can be rewritten briefly as

(2.28) \varphi j = SD\varphi j - 1 +DS\varphi j+1 + g| \Sigma j
a
, j \in J0, 3K.

Also, with the above conventions, results proved in [17, 12] can be stated as follows.

Proposition 2.1.
(i) D is a continuous operator on L2(\BbbR ), with range in L2(a,+\infty ) \subset L2(\BbbR ).
(ii) As an operator on L2(a,+\infty ), D is the sum of an operator of norm \leq 1/

\surd 
2

and a compact operator.
(iii) As an operator from L2( - \infty , - a) to L2(a,+\infty ), D is compact.

Proof. Note first that (i) follows immediately from (ii) and (2.27), since (ii), to-
gether with a symmetry argument with respect to a, implies that D : L2( - \infty , a) \rightarrow 
L2(a,+\infty ) is also the sum of an operator of norm \leq 1/

\surd 
2 and a compact operator.

Consider the expression (2.23) for D. Because of the dissipation (\Im (k) > 0), the
kernel h is exponentially decaying at infinity (i.e., as t or s tends to \infty ). Further, the
mapping (t, s) \mapsto \rightarrow h(t - a, s - a) is continuous except at t = s = a. Thus (iii) is clear
since the kernel of D is Hilbert--Schmidt, i.e.,

(t, s) \mapsto \rightarrow h(t - a, s - a) \in L2(( - \infty , - a)\times (a,+\infty )).

To show (ii), the only difficulty comes from the singularity of the kernel h at
t = s = a. As in Proposition C.2 and Remark C.3 in Appendix C, let h0 and D0

denote h andD, respectively, when k = 0. For b > a let \chi (a,b) denote the characteristic
function of (a, b). Then it is straightforward to see that, for every b > a, D - \chi (a,b)D0

is an integral operator with kernel h(t  - a, s  - a)  - \chi (a,b)(t)h0(t  - a, s  - a) that is
Hilbert--Schmidt, so D  - \chi (a,b)D0 is compact. Further (Remark C.3), as an operator

on L2(a,+\infty ), \| D0\| = 1/
\surd 
2, so also \| \chi (a,b)D0\| \leq \| \chi (a,b)\| \| D0\| = 1/

\surd 
2.

Now the system (2.25) can be formulated in an operator form. Let us introduce

(2.29) L2
0(\BbbR ) := \{ \psi \in L2(\BbbR ) : \psi (t) = 0 for  - a < t < a\} 

and
\Phi := \{ \varphi 0, \varphi 1, \varphi 2, \varphi 3\} \in (L2(\BbbR ))4,

(2.30) \Phi g := \{ g| \Sigma 0
a
, g| \Sigma 1

a
, g| \Sigma 2

a
, g| \Sigma 3

a
\} \in (L2( - a, a))4 \subset (L2(\BbbR ))4.

Then, noting (2.28), the system (2.25) can be rewritten as

(2.31)
Find \Phi \in (L2(\BbbR ))4 such that \Phi  - \Phi g \in (L2

0(\BbbR ))4 and

(\BbbI  - \BbbD )(\Phi  - \Phi g) = \BbbD \Phi g,
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520 BONNET-BEN DHIA ET AL.

where

(2.32) \BbbD :=

\left[    
0 DS 0 S D
SD 0 DS 0
0 S D 0 DS
DS 0 S D 0

\right]    .
In [12], the following result is proven.

Theorem 2.2.
(i) \BbbD is a continuous operator on (L2(\BbbR ))4 and \BbbD ((L2(\BbbR ))4) \subset (L2

0(\BbbR ))4.
(ii) As an operator on (L2

0(\BbbR ))4, \BbbD is the sum of an operator of norm \leq 1/
\surd 
2

and a compact operator.
(iii) Problem (2.31) is well-posed.

Let us give some ideas of the proof which will be relevant for the following sections.
The property (iii) is largely a consequence of (ii) since (ii) gives that (\BbbI  - \BbbD ), as an
operator acting on (L2

0(\BbbR ))4, is the sum of a coercive operator2 and a compact one.
By Fredholm theory, it suffices then to show uniqueness (which is not straightforward
in the L2 framework; see [12] and also [9] for more details). The properties (i) and
(ii) are consequences (see Appendix A) of Proposition 2.1.

3. The complex-scaled HSM method for real wavenumber. In this sec-
tion we consider the Dirichlet problem of the previous section, but now with real
wavenumber (k > 0). Where H1

loc(\Omega ) := \{ v| \Omega : v \in H1
loc(\BbbR 2)\} , we seek u \in H1

loc(\Omega )
such that

(3.1)

\Biggl\{ 
 - \Delta u - k2 u = 0 in \Omega := \BbbR 2 \setminus \Omega a,

u = g on \Sigma a,

for a given g \in H1/2(\Sigma a), and such that the radiation condition (1.2) holds. It is well
known that this problem has a unique solution.

The half-plane representations (2.6), with U j(\varphi j) given by (2.10) (equivalently
(2.12) or (2.13)), still hold for k real and can be derived via Green's theorem using
the radiation condition (1.2) (cf. [18, Theorem 2.1]). As a consequence, the traces
\varphi j , j \in J0, 3K, of the solution u on \Sigma j , still satisfy the system of equations (2.25)
when k > 0. We note that, although the solution of (3.1)--(1.2) decays only slowly,
like r - 1/2 as r \rightarrow +\infty , the integrals (2.13) still make sense. The bound (C.1), which

follows from asymptotics of the Hankel function H
(1)
1 , implies that, for some constant

C > 0 depending only on k,

| h(x1, x2)| \leq Cx1(R
 - 3/2 +R - 2), x1 > 0, x2 \in \BbbR ,

where R := (x21 + x22)
1/2, so that (2.13) is well-defined, even when k is real, for every

\bfitx j \in \Omega j and \psi \in L2
loc(\BbbR ) with \psi (t) = \scrO (1) as | t| \rightarrow +\infty . Moreover, though we shall

not need this, it is still possible to rewrite (2.13) equivalently as (2.8), provided that
care is taken in interpreting the right-hand side of (2.8); see the discussion in [4, 20]
and [14, 15].

From a numerical point of view, the HSM method for real k works well [12].
However, from a theoretical point of view, the formulation does not make sense in

2Recall that, given a Hilbert space \scrH with inner product (\cdot , \cdot ), we call a bounded linear operator
A on \scrH coercive if the corresponding sesquilinear form a(\cdot , \cdot ), defined by a(\phi , \psi ) = (A\phi ,\psi ) for all
\phi , \psi \in \scrH , is coercive, i.e., if, for some constant \gamma > 0, \Re (a(\phi , \phi )) \geq \gamma \| \phi \| 2 for all \phi \in \scrH .
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an L2 setting. Indeed, as the solution of (3.1)--(1.2) decays only like r - 1/2 as r \rightarrow 
+\infty , we cannot expect that its traces on \Sigma j , j \in J0, 3K, are in L2(\BbbR ). In parallel
work [9] we have shown that the HSM formulation for real k is equivalent with the
original problem (3.1) if we supplement it with radiation conditions analogous to the
Sommerfeld condition (1.2) (see (5.1) below). However, there are still significant gaps
in our understanding of this formulation when k is real. In particular, while (2.25) can
be written formally in operator form as (2.31), just as in the dissipative case, in the
case when k is real there is no obvious function space setting (e.g., Lp, or a weighted
Lp space) for which this formulation makes sense, with \BbbD a well-defined bounded
linear operator. Consequently, we are not able to justify the numerical method and
neither provide a priori error estimates.

These difficulties with the standard formulation for real k are part of the moti-
vation for the method proposed in this paper that we term the complex-scaled HSM
method. The idea behind this method is to ``complexify."" Since the pioneering works
of Aguilar, Balslev, and Combes [2, 6], complex-scaling methods have been used inten-
sively to construct the analytic continuation of resolvents in mathematical physics;
see, for instance, [31] and the references therein. The complex-scaling method in
[2, 6] is closely related to the idea behind PML (see, for instance, [24]). Our use of
complex-scaling is somewhat different since we consider only analytic continuation of
traces of the solution on particular infinite half-lines and apply that complex scaling
in an integral equation context. This is similar to manipulations made to understand
analyticity of boundary traces in high frequency scattering problems in [22, section
4.1]. Precisely our plan is as follows:

1. From properties of the solution u of (3.1)--(1.2) we deduce that the traces \varphi j ,
j \in J0, 3K, have analytic continuations into the complex plane from ( - \infty , - a)
and from (a,+\infty ). Further, we introduce paths in the complex plane on
which the \varphi j 's are L2 (in fact, decay exponentially); see Proposition 3.3. The
objective of the next steps is to derive an equivalent of the HSM formulation
for these ``complex-scaled"" traces.

2. For real wavenumbers (2.6) and (2.13) provide half-plane representations of
the solution u in terms of the traces \varphi j , j \in J0, 3K. The magic result is that the
solution u can also be represented in terms of the complex-scaled traces; see
Theorem 3.4. The price to pay is that the jth representation, for j \in J0, 3K,
is valid only in a part, which depends on the path chosen in step 1, of the
corresponding half-plane \Omega j . These new representations are deduced from
the initial ones (2.6) by applying Cauchy's integral theorem.

3. Fortunately, the part of \Omega j where the new representation holds contains the
half-lines \Sigma j\pm 1 \cap \Omega j . By complexifying---by which we mean analytically
continuing---this new representation into the complex plane from the half-
lines \Sigma j\pm 1\cap \Omega j , we can derive compatibility conditions for the complex-scaled
traces which constitute a complex-scaled version of the HSM formulation in
an L2 setting. Fredholmness of this formulation can be proven using similar
arguments as for the standard HSM for complex wavenumbers; see Theorem
3.7.

4. Once the complex-scaled traces are computed the solution can be recon-
structed using the new representations in terms of the complex-scaled traces
established in step 2.

Let us mention that, while the initial motivation for the complexification was a
theoretical one, it turns out that the new formulation is very attractive computa-
tionally, because of the fast decay at infinity of the complex-scaled traces. Let us
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note also that this idea of complexification is potentially valuable for computation
in the dissipative case too, and it is likely that the formulation in the nondissipative
case could be derived from a complex-scaled formulation in the dissipative case by
a limiting absorption argument. (Something similar has been done in the context of
scattering by wedges in [28, 37].) An attraction of such a derivation would be that
traces are in L2 at each step of the derivation.

3.1. The complex-scaled traces. The construction of the so-called complex-
scaled traces is based on an analyticity property of any solution u \in H1

loc(\Omega ) to
(1.2)--(3.1), which can be derived as follows. Following [16] (and see [21, Theorem
2.27, Corollary 2.28]), u can be expressed as a combined single- and double-layer
potential on \Sigma a, i.e., as

(3.2) u(\bfitx ) = \scrD \phi (\bfitx ) - ik\scrS \phi (\bfitx ), \bfitx \in \Omega ,

for some \phi \in H1/2(\Sigma a) (specified below). Here \scrS \phi and \scrD \phi are the (acoustic) single-
and double-layer potentials, respectively, with density \phi , defined for \phi \in L2(\Sigma a) by

\scrS \phi (\bfitx ) :=
\int 
\Sigma a

\Phi (\bfitx ,\bfity )\phi (\bfity ) ds(\bfity ), \scrD \phi (\bfitx ) :=
\int 
\Sigma a

\partial \Phi (\bfitx ,\bfity )

\partial n(\bfity )
\phi (\bfity ) ds(\bfity ), \bfitx \in \Omega ,

where the normal n is directed into \Omega and \Phi is the outgoing Green's function of
the Helmholtz equation given in (2.11). The function u defined in (3.2) satisfies the
Helmholtz equation (3.1) and the Sommerfeld radiation condition (1.2) for any choice
of \phi \in H1/2(\Sigma a) (in fact, any \phi \in L2(\Sigma a)) and (see [21, section 2.6]) satisfies the
boundary condition u = g on \Sigma a provided

(3.3) A\phi = g,

where A\phi is defined for \phi \in L2(\Sigma a) and almost all \bfitx \in \Sigma a by

A\phi (\bfitx ) :=
\phi (\bfitx )

2
+

\int 
\Sigma a

\biggl[ 
\partial \Phi (\bfitx ,\bfity )

\partial n(\bfity )
 - ik\Phi (\bfitx ,\bfity )

\biggr] 
\phi (\bfity )ds(\bfity ),

with the integral understood as a Cauchy principal value. SinceA : Hs(\Sigma a) \rightarrow Hs(\Sigma a)
is invertible for 0 \leq s \leq 1 [23, Corollary 2.8], in particular for s = 1/2, (3.3) has a
unique solution \phi \in H1/2(\Sigma a).

For a given j \in J0, 3K, we apply (3.2) for \bfitx \in \Sigma j \setminus \Sigma j
a, and we use the coordinate

system (xj1, x
j
2) defined in (2.2). Defining \bfitx j(t) := (a, t) with | t| > a, this yields, by

definition of \varphi j ,

(3.4) \varphi j(t) = \scrD j\phi (t) - ik\scrS j\phi (t),

for real t with | t| > a, where
(3.5)

\scrD j\phi (t) :=

\int 
\Sigma a

\partial \Phi (\bfitx j(t),\bfity j)

\partial n(\bfity j)
\phi (\bfity j)ds(\bfity j), \scrS j\phi (t) :=

\int 
\Sigma a

\Phi (\bfitx j(t),\bfity j)\phi (\bfity j) ds(\bfity j),

and we recall from (2.11) that

\Phi (\bfitx j(t),\bfity j) =
i

4
H

(1)
0

\bigl( 
kR(a - yj1, t - yj2)),

where R is defined in (2.15).
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Let us use (3.4) to prove that the function \varphi j , defined by (2.5), can be continued
analytically into the complex plane from ( - \infty , - a) and from (a,+\infty ). Consider a
fixed \bfity j \in \Sigma a. The function z \mapsto \rightarrow R(a - yj1, z  - yj2) has an analytic continuation from
(a,+\infty ) (respectively, ( - \infty , - a)) to the complex half-plane \Re (z) > a (respectively,
\Re (z) <  - a). Indeed, to obtain this analytic continuation we simply have to use, in
the definition (2.15) of R(a  - yj1, z  - yj2) for real z, the principal square root of a
complex number, which we will denote by z1/2 or

\surd 
z, defined as

\surd 
z := | z| 1/2 eiArg(z)/2 with Arg(z) \in ( - \pi ,+\pi ],

which is analytic in \BbbC \setminus \BbbR  - , where \BbbR  - := ( - \infty , 0]. The analyticity of z \mapsto \rightarrow R(a - yj1, z - 
yj2) follows by noticing that (yj1  - a)2 +(yj2  - z)2 \in \BbbC \setminus \BbbR  - if \Re (z) > a (respectively, if

\Re (z) <  - a), since yj2 \in [ - a,+a]. Since also z \mapsto \rightarrow H
(1)
0 (z) is analytic in \Re (z) > 0, we

conclude that the function z \mapsto \rightarrow \Phi (\bfitx j(z),\bfity j) is analytic in | \Re (z)| > a. And the same
arguments and conclusion apply also for z \mapsto \rightarrow \partial \Phi (\bfitx j(z),\bfity j)/\partial n(\bfity j). Finally, using
standard results about analyticity of functions defined as integrals (e.g., [3, Corollary
X.3.19]), we conclude that z \mapsto \rightarrow \scrS j\phi (z), z \mapsto \rightarrow \scrD j\phi (z), and so also z \mapsto \rightarrow \varphi j(z), have
analytic continuations from (a,+\infty ) (respectively, ( - \infty , - a)) to the complex half-
plane \Re (z) > a (respectively, \Re (z) <  - a).

The behavior of these analytic continuations as | z| \rightarrow +\infty depends on \Im (z).
Indeed, for m \in \BbbN := \{ 0, 1, . . .\} , we have [1, equation (9.2.30)]

(3.6) H(1)
m (z) =

\sqrt{} 
2

\pi z
ei(z - m\pi /2 - \pi /4)

\Bigl( 
1 +\scrO 

\bigl( 
| z|  - 1

\bigr) \Bigr) 
as | z| \rightarrow +\infty ,

uniformly in Arg(z) for | Arg(z)| < \zeta , for every \zeta < \pi . Further, as a consequence of
Lemma B.2 and Remark B.3,

R(a - yj1, z  - yj2) = z  - yj2 +\scrO (| z|  - 1) in \Re (z) > a, and(3.7)

R(a - yj1, z  - yj2) = yj2  - z +\scrO (| z|  - 1) in \Re (z) <  - a,(3.8)

as | z| \rightarrow +\infty , uniformly in Arg(z) and \bfity j , for \bfity j \in \Sigma a. Using (3.4) it follows from
the above asymptotics that

\varphi j(z) = \scrO 
\Bigl( 
e - k\Im (z) | z|  - 1/2

\Bigr) 
in \Re (z) > a, and(3.9)

\varphi j(z) = \scrO 
\Bigl( 
ek\Im (z) | z|  - 1/2

\Bigr) 
in \Re (z) <  - a,(3.10)

as | z| \rightarrow +\infty , uniformly with respect to Arg(z), and we note that \Im (R(a - yj1, z  - yj2))
and \Im (z) have the same sign if \Re (z) > a (opposite signs if \Re (z) <  - a). Thus
\varphi j(z) is exponentially decreasing in the quadrants

\bigl\{ 
\Re (z) > a and \Im (z) > 0

\bigr\} 
and\bigl\{ 

\Re (z) <  - a and \Im (z) < 0
\bigr\} 
.

Our idea is to choose half-lines in these quadrants and consider the analytic
continuations of the \varphi j on these half-lines as new unknowns instead of the initial
traces. In other words, choosing some \theta \in (0, \pi /2), we introduce the complex path
(Figure 3.1) parameterized by

(3.11) z = \tau \theta (s) :=

\left\{    - a+ (s+ a) ei\theta if s <  - a,
s if  - a \leq s \leq +a,
a+ (s - a) ei\theta if s > a,

and we define the complex-scaled traces by

(3.12) \varphi j
\theta (s) := \varphi j

\bigl( 
\tau \theta (s)

\bigr) 
for s \in \BbbR and j \in J0, 3K.
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524 BONNET-BEN DHIA ET AL.

Remark 3.1. We have chosen particular complex paths in the quadrants
\bigl\{ 
\Re (z) >

a and \Im (z) > 0
\bigr\} 
and

\bigl\{ 
\Re (z) <  - a and \Im (z) < 0

\bigr\} 
, given by (3.11), that move into

the complex plane already from \pm a, the corners of \Sigma a. Note that it is possible,
alternatively, to start to complexify at a positive distance from the corners, i.e., from
\pm b, for some b > a. It is also possible to choose a smoother complex change of variable
as usually done in PML methods.

\theta 

\theta a - a
\Re (z)

\Im (z)

Fig. 3.1. The complex path s\rightarrow \tau \theta (s).

We note that, by definition, \varphi j
\theta | ( - a,a) \in L2( - a, a), since \varphi j

\theta (t) = \varphi j(t) = u(\bfitx j(t))

= g(\bfitx j(t)), for  - a < t < a, and g \in H1/2(\Sigma a) \subset L2(\Sigma a). Moreover, thanks to the
analyticity of \varphi j , it is clear that the restrictions of \varphi j

\theta to (a,+\infty ) and ( - \infty , - a) are
continuous. Further, it follows from (3.9)--(3.10) that

(3.13) \varphi j
\theta (s) = \scrO 

\Bigl( 
e - k| s| sin \theta | s|  - 1/2

\Bigr) 
as | s| \rightarrow +\infty .

Thus whether or not \varphi j
\theta \in L2(\BbbR ) depends on the behavior of \varphi j

\theta (t) as t \rightarrow a+ and
t\rightarrow  - a - .

The following propositions bound \varphi j
\theta (t) on | t| > a, in particular near \pm a, and

show that \varphi j
\theta \in L2(\BbbR ) for 0 < \theta < \pi /2. We relegate some of the technical details to

Appendix C. Applying the bounds from Proposition C.1 to (the analytic continuation
of) (3.4) we obtain the following proposition, on observing, from (3.3), that \phi = A - 1g
and that [23, Corollary 2.8] A - 1 is bounded as an operator on L2(\Sigma a).

Proposition 3.2. For every \theta \in (0, \pi /2) and j \in J0, 3K there exists a constant
C > 0, that depends only on a, k, and \theta , such that

| \varphi j(z)| \leq 
\biggl\{ 
C| z  - a|  - 1/2e - k\Im (z) \| g\| L2(\Sigma a) if \Re (z) > a with | Arg(z  - a)| \leq \theta ,
C| z + a|  - 1/2ek\Im (z) \| g\| L2(\Sigma a) if \Re (z) <  - a with | Arg( - z  - a)| \leq \theta .

The bound in the above proposition implies that \varphi j
\theta \in L1(\BbbR ), for 0 < \theta < \pi /2,

and is sufficient for our Cauchy's integral formula arguments below in section 3.2.
But it is not quite strong enough to establish \varphi j

\theta \in L2(\BbbR ), as discussed in the proof
of Proposition C.4 in Appendix C.

It follows from (the analytic continuation of) (3.4) that, in the notation of Propo-
sition C.4, \varphi j

\theta (s) = \scrD j
\theta \phi (s) - ik\scrS j

\theta \phi (s), for | s| > a, where \phi = A - 1g. Thus, and arguing
as above Proposition 3.2, we deduce the following result from the above proposition
and Proposition C.4.

Proposition 3.3. For 0 < \theta < \pi /2 and j \in J0, 3K, \varphi j
\theta \in L2(\BbbR ). Further, for

some constant C > 0 depending only on \theta , a, and k,

| \varphi j
\theta (s)| \leq C(| s|  - a) - 1/2e - k sin(\theta )(| s|  - a)\| g\| L2(\Sigma a), | s| > a,

and \| \varphi j
\theta \| L2(\BbbR ) \leq C\| g\| L2(\Sigma a).
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3.2. The deformed half-plane representations. We have introduced in the
previous section the complex-scaled traces \varphi j

\theta and proved that they belong to L2(\BbbR ).
The objective now is to derive an HSM formulation for these new unknowns. The
first step is to establish new representation formulas for the solution u of (1.1)--(1.2)
in the half-planes using these complex-scaled traces instead of the original traces \varphi j .

We recall that the solution u of (1.1)--(1.2) can be represented in each half-plane
in terms of its traces as

(3.14) u(\bfitx j) =

\int 
\BbbR 
h(xj1  - a, xj2  - yj2)\varphi 

j(yj2) dy
j
2, \bfitx j \in \Omega j ,

where the kernel h is defined by (2.14). Our objective is to derive a similar formula
using the complex-scaled trace \varphi j

\theta instead of the trace \varphi j . This can be done by
deforming the path of integration into the complex plane. This leads to the following
crucial result.

Theorem 3.4. Let u be the solution of (1.1)--(1.2) and \varphi j
\theta be defined as in (3.12).

For 0 < \theta < \pi /2 we have

(3.15) u(\bfitx j) =

\int 
\BbbR 
h(xj1  - a, xj2  - \tau \theta (s))\varphi 

j
\theta (s) \tau 

\prime 
\theta (s) ds, \bfitx j \in \Omega j

\theta , j \in J0, 3K,

where

(3.16) \Omega j
\theta := \{ \bfitx j = (xj1, x

j
2) \in \Omega j : xj1  - a > (| xj2|  - a) tan(\theta )\} .

Remark 3.5. Let us point out that the new representation formula (3.15) is valid
only in a subdomain \Omega j

\theta of the half-plane \Omega j (Figure 3.2). The larger the angle \theta , the

faster the decay of the complex-scaled traces \varphi j
\theta (Proposition 3.3) but the smaller the

domain of validity \Omega j
\theta of the new representation (3.15).

xj1

xj2
\Sigma j

\Omega j

\bfitx j

xj1

xj2
\Sigma j

\Omega j
\theta 

2a

\bfitx j

\theta 

Fig. 3.2. The domains of validity of the half-plane representations: left is without complex-
scaling (\Omega j); right is with complex-scaling (\Omega j

\theta ).

Proof. To derive (3.15) from (3.14) it suffices to show (note the symmetry \tau \theta ( - s) =
 - \tau \theta (s)) that, for all \bfitx j \in \Omega j

\theta ,\int +\infty 

a

h(xj1  - a, xj2  - yj2)\varphi 
j(yj2) dy

j
2 =

\int +\infty 

a

h(xj1  - a, xj2  - \tau \theta (s))\varphi 
j
\theta (s) \tau 

\prime 
\theta (s) ds

and\int +\infty 

a

h(xj1  - a, xj2 + yj2)\varphi 
j( - yj2) dy

j
2 =

\int +\infty 

a

h(xj1  - a, xj2 + \tau \theta (s))\varphi 
j
\theta ( - s) \tau 

\prime 
\theta (s) ds.

D
ow

nl
oa

de
d 

01
/1

9/
22

 to
 1

34
.2

25
.2

55
.3

8 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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For 0 < \delta < M and 0 < \theta < \pi /2 we introduce the complex domains

T\theta := \{ z = a+ rei\alpha : 0 < \alpha < \theta , r > 0\} and

T \delta ,M
\theta := \{ z = a+ rei\alpha : 0 < \alpha < \theta , \delta < r < M\} 

(see Figure 3.3). First we show that if \bfitx j = (xj1, x
j
2) \in \Omega j , then

(3.17) \bfitx j \in \Omega j
\theta \leftrightarrow 

\biggl\{ 
z \mapsto \rightarrow h(xj1  - a, xj2 \pm z) is analytic in T\theta 
and continuous in T\theta .

Indeed, for each \bfitx j , the function z \mapsto \rightarrow h(xj1  - a, xj2  - z) has two branch points z\pm , the

points where (xj1  - a)2 + (xj2  - z)2 vanishes, given by z\pm = xj2 \pm i(xj1  - a). If \bfitx j =

(xj1, x
j
2) \in \Omega j these branch points are outside T\theta if and only if xj1 - a > (xj2 - a) tan(\theta );

similarly, the branch points of the mapping z \mapsto \rightarrow h(xj1  - a, xj2 + z) are outside T\theta if

and only if xj1  - a > ( - xj2  - a) tan(\theta ).

Thus, and since also z \mapsto \rightarrow \varphi j(\pm z) is analytic in T \delta ,M
\theta and continuous in T \delta ,M

\theta , for
0 < \delta < M , applying Cauchy's integral theorem we have\int 

\partial T \delta ,M
\theta 

h(xj1  - a, x2 \mp z)\varphi j(\pm z) dz = 0, \bfitx j \in \Omega j
\theta .

To complete the proof, we have to show that

lim
\delta \rightarrow 0

\int \theta 

0

h(xj1  - a, xj2 \mp (a+ \delta ei\alpha ))\varphi j(\pm (a+ \delta ei\alpha ))i\delta ei\alpha d\alpha = 0

and

lim
M\rightarrow +\infty 

\int \theta 

0

h(xj1  - a, xj2 \mp (a+Mei\alpha ))\varphi j(\pm (a+Mei\alpha ))iMei\alpha d\alpha = 0.

These two limits are a consequence of Proposition 3.2, since the constraint \bfitx j \in \Omega j
\theta 

ensures, by (3.17), that h(xj1  - a, xj2 \mp z) is a continuous function of z in T\theta , and the

bound (C.1) and the asymptotics (3.7)--(3.8) imply that h(xj1 - a, x
j
2\mp z) = \scrO 

\bigl( 
| z|  - 1/2

\bigr) 
as z \rightarrow +\infty in T\theta , uniformly in Arg(z).

3.3. Derivation and analysis of the complex-scaled HSM method. We
derive now an analogue of (2.19) for the complex-scaled traces \varphi j

\theta . We know, thanks
to Theorem 3.4, that

u(\bfitx 0) =

\int 
\BbbR 
h(x01  - a, x02  - \tau \theta (s))\varphi 

0
\theta (s) \tau 

\prime 
\theta (s) ds, \bfitx 0 \in \Omega 0

\theta .

As \Omega 0 \cap \Sigma 1 \subset \Omega 0
\theta , for all \theta \in (0, \pi /2), this holds, in particular, when \bfitx 0 = (x01, x

0
2) \in 

\Omega 0 \cap \Sigma 1, i.e., for x01 =  - x12 > a and x02 = x11 = a, so that (cf. (2.18))

(3.18) \varphi 1(x12) =

\int 
\BbbR 
h( - x12  - a, a - \tau \theta (s))\varphi 

0
\theta (s) \tau 

\prime 
\theta (s) ds, x12 <  - a.

Remember that \varphi 1(x12) is analytic in \Re (x12) <  - a and, by the definition (3.12), \varphi 1
\theta (t)

for t <  - a is the value of the analytic continuation of \varphi 1 at x12 = \tau \theta (t).
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\Re e z

\Im mz

xj2

xj1  - a

 - (xj1  - a)

\theta 

a a+M

Fig. 3.3. The contour \partial T \delta ,M
\theta and the branch points z\pm = xj2 \pm i(xj1  - a) of h(xj1  - a, xj2  - z).

To obtain the new complex-scaled compatibility relation, the idea is to complexify
x12 in (3.18), i.e., simply to substitute x12 = \tau \theta (t). By the uniqueness of analytic
continuation, this is valid provided the right-hand side is analytic as a function of x12
in a connected domain containing the half-line x12 <  - a and the half-line x12 = \tau \theta (t),
t <  - a. We check this in the next lemma.

Lemma 3.6. Let \psi \in L2(\BbbR ). For 0 < \theta < \pi /2 the function

(3.19) z \rightarrow 
\int 
\BbbR 
h(z  - a, a - \tau \theta (s))\psi (s)\tau 

\prime 
\theta (s)ds

is analytic in the domain G\theta := \{ z \in \BbbC : z \not = a,  - \pi /2 + \theta < Arg(z  - a) < \pi /2\} .
Proof. We will prove that this function is analytic using standard results about

analyticity of functions defined as integrals based on the dominated convergence the-
orem (e.g., [3, Corollary X.3.18]). By the definition (2.14), for each s \in \BbbR the kernel
h(z  - a, a - \tau \theta (s)) is locally an analytic function of z wherever the quantity

R(z  - a, \tau \theta (s) - a) = [(z  - a)2 + (\tau \theta (s) - a)2]1/2

does not vanish. Lemma B.5 shows that, for every \theta 0 \in (\theta , \pi /2),

(3.20) | R(z  - a, \tau \theta (s) - a)| 2 \geq cos(\theta 0)| z  - a| 2

if  - \theta 0+\theta \leq Arg(z - a) \leq \theta 0. Consequently, R(z - a, \tau \theta (s) - a) does not vanish in G\theta .
Further, (3.20) implies that, for every bounded subdomain U of G\theta that is

bounded away from a, there exists mU > 0 such that

| R(z  - a, \tau \theta (s) - a)| \geq mU , z \in U, s \in \BbbR .

Moreover, for any such subdomain it follows from Lemma B.4 that, for some constant
C > 0 independent of s \in \BbbR and z \in U ,

\Im (R(z  - a, \tau \theta (s) - a)) \geq | s| sin(\theta ) - C.

From the above bounds, and the bound (C.1), it follows that

| h(z  - a, a - \tau \theta (s))| \leq C \prime e - k sin(\theta )| s| 
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for some constant C \prime > 0 independent of s \in \BbbR and z \in U . Thus, for every z \in U and
s \in \BbbR , the integrand in (3.19) has modulus \leq H(s), where H \in L1(\BbbR ) is defined by

H(s) := C \prime e - k sin(\theta )| s| | \psi (s)| , s \in \BbbR .

This domination property, and the analyticity of z \mapsto \rightarrow h(z - a, a - \tau \theta (s)) in U \subset G\theta ,
imply (e.g., [3, Corollary X.3.18]) that the function (3.19) is analytic in U , for every
U , and so analytic in G\theta .

Noting that, with G\theta as defined in the above lemma,  - x12 \in G\theta for x12 <  - a and
 - \tau \theta (t) \in G\theta for t <  - a, we see that we have justified the analytic continuation of
(3.18) from x12 <  - a to the path x12 = \tau \theta (t), t <  - a. Thus we obtain finally the new
complex-scaled compatibility relation

\varphi 1
\theta (t) =

\int 
\BbbR 
h( - \tau \theta (t) - a, a - \tau \theta (s))\varphi 

0
\theta (s) \tau 

\prime 
\theta (s) ds, t <  - a.

By applying similar reasoning, and noting that \tau \theta ( - t) =  - \tau \theta (t), we get eight
equations linking the four complex-scaled traces (cf. (2.19)), namely

(3.21) \forall j \in J0, 3K, \varphi j
\theta (t) = S D\theta \varphi 

j - 1
\theta (t), t <  - a,

\varphi j
\theta (t) = D\theta S \varphi 

j+1
\theta (t), t > a,

where we have set \varphi  - 1
\theta := \varphi 3

\theta and \varphi 4
\theta := \varphi 0

\theta . In this system the operator S is defined
as in (2.20), and, where h is as given in (2.14), D\theta is defined, for 0 < \theta < \pi /2, by

(3.22) D\theta \psi (t) :=

\int 
\BbbR 
h(\tau \theta (t) - a, a - \tau \theta (s))\psi (s) \tau 

\prime 
\theta (s) ds, t > a, \psi \in L2(\BbbR ),

and, similarly to (2.27), by

D\theta \psi (t) := 0, t \leq a, \psi \in L2(\BbbR ).

The system (3.21) has to be completed with the Dirichlet boundary condition

(3.23) \varphi j
\theta (t) = g| \Sigma j

a
(t),  - a < t < a, j \in J0, 3K.

As in section 2, these equations can be formulated as a single operator equation.
Introducing

\Phi \theta := \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} \in (L2(\BbbR ))4,

and recalling the definition (2.30) of \Phi g, the systems of equations (3.21) and (3.23)
can be rewritten as

(3.24)
Find \Phi \theta \in (L2(\BbbR ))4 such that \Phi \theta  - \Phi g \in (L2

0(\BbbR ))4 and

(\BbbI  - \BbbD \theta )(\Phi \theta  - \Phi g) = \BbbD \theta \Phi g,

where \BbbD \theta is obtained by replacing D by D\theta in (2.32), i.e.,

(3.25) \BbbD \theta :=

\left[    
0 D\theta S 0 S D\theta 

S D\theta 0 D\theta S 0
0 S D\theta 0 D\theta S

D\theta S 0 S D\theta 0

\right]    .
Our first main result is that, as proved for \BbbD in the dissipative case (Theorem 2.2),

the operator \BbbI  - \BbbD \theta , as an operator on (L2
0(\BbbR ))4, is Fredholm of index zero, indeed

(importantly for numerical analysis of Galerkin methods) is a compact perturbation
of a coercive operator.
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Theorem 3.7. For 0 < \theta < \pi /2:
(i) \BbbD \theta is a continuous operator on (L2(\BbbR ))4, and \BbbD \theta ((L

2(\BbbR ))4) \subset (L2
0(\BbbR ))4;

(ii) as an operator on (L2
0(\BbbR ))4, \BbbD \theta is the sum of an operator of norm \leq 1/

\surd 
2

and a compact operator.

To show well-posedness of (3.24), it remains to prove a uniqueness result which is
the subject of section 5 (Theorem 5.1). At the end of this section we will combine the
above theorem with Theorem 5.1 to write down a result expressing this well-posedness
and the equivalence of (3.24) with the original scattering problem (3.1)--(1.2).

The proof of Theorem 3.7, which we defer to Appendix A, mirrors the proof of
Theorem 2.2, once we establish properties of the operator D\theta to mirror those proved
for D in Proposition 2.1. Establishing these properties of D\theta , in Propositions 3.8, 3.9,
and 3.10, is the focus of most of the rest of this section: these propositions give the
properties of D\theta when it acts on functions whose support is, respectively, in (a,+\infty ),
( - \infty , - a), and the whole of \BbbR . (This splitting is necessary because of the piecewise
definition of the complex-scaling function \tau \theta .)

Let us point out a useful fact (see the proof of the following proposition): when
D\theta acts on functions whose support is in (a,+\infty ), it is equal to the operator D defined
in (2.21) for the dissipative case with wavenumber kei\theta .

Proposition 3.8. Suppose that \theta \in (0, \pi /2). For all \psi \in L2(a,+\infty ) we have

(3.26) D\theta \psi (t) =
i(t - a)kei\theta 

2

\int +\infty 

a

H
(1)
1 (kei\theta R(t - a, s - a))

R(t - a, s - a)
\psi (s) ds, t > a,

with R defined in (2.15). As a consequence, as an operator on L2(a,+\infty ), D\theta is the
sum of an operator of norm \leq 1/

\surd 
2 and a compact operator.

Proof. Using the definition (3.22) of D\theta and the expression (2.14) for the kernel
h, we easily see (3.26). This implies that D\theta , when it acts on functions whose support
is in (a,+\infty ), is exactly the operator D defined in (2.21) for the dissipative case if we
set the wavenumber in the dissipative case to be kei\theta . The result is therefore a direct
consequence of item (ii) of Proposition 2.1.

Proposition 3.9. D\theta is compact as an operator from L2( - \infty , - a) to L2(a,+\infty )
for \theta \in (0, \pi /2).

Proof. Using the definition (3.22) of D\theta and the expression (2.14) for the kernel
h, we can show easily that, for all \psi \in L2( - \infty , - a), we have

D\theta \psi (t) =
ik(t - a)e2i\theta 

2

\int  - a

 - \infty 

H
(1)
1 (kR\theta (t, s))

R\theta (t, s)
\psi (s) ds, t > a,

with R\theta (t, s) := R(ei\theta (t  - a), 2a  - (s + a)ei\theta ) and R defined in (2.15). We prove the
compactness of D\theta , as we prove the compactness of D in (iii) of Proposition 2.1, by
showing that D\theta is a Hilbert--Schmidt operator from L2( - \infty , - a) to L2(a,+\infty ). By
a simple change of variable t \mapsto \rightarrow t - a and s \mapsto \rightarrow  - (s+ a), it suffices to show that

(3.27)

\int +\infty 

0

\int +\infty 

0

| K(t, s)| 2 dtds < +\infty ,

where

K(t, s) := t
H

(1)
1 (k \widetilde R\theta (t, s))\widetilde R\theta (t, s)

and \widetilde R\theta (t, s) := R(ei\theta t, 2a+ ei\theta s).
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Where \BbbR + := [0,+\infty ), K is continuous on \BbbR + \times \BbbR +, since \Re ( \~R\theta ) > 0 on \BbbR + \times \BbbR +.
We want to use now the bound on the Hankel function given in (C.1) which implies
that, for some c > 0,

(3.28)

\bigm| \bigm| \bigm| \bigm| \bigm| H(1)
1 (z)

z

\bigm| \bigm| \bigm| \bigm| \bigm| \leq c| z|  - 3/2e - \Im (z), \Re (z) > 0, | z| \geq 1.

\widetilde R\theta can be rewritten as \widetilde R\theta (t, s) = \^R(\^z, z), where \^z := 4asei\theta +4a2, z := ei\theta (t2+s2)1/2,
and \^R is defined in (B.1). Thus we can use Lemma B.4 and deduce that, for some
C > 0 and all s, t \in \BbbR + with s2 + t2 sufficiently large, it holds that

| \widetilde R\theta (t, s) - ei\theta (t2 + s2)1/2| \leq C
1 + | s| 

(s2 + t2)1/2

and

\Im ( \widetilde R\theta (t, s)) \geq sin(\theta )(t2 + s2)1/2  - C
1 + | s| 

(s2 + t2)1/2
.

Thus, for some C \prime > 0 and all s2 + t2 large enough, | \widetilde R\theta (t, s)| \geq 1
2 (t

2 + s2)1/2 and

\Im ( \widetilde R\theta (t, s)) \geq sin(\theta )(t2 + s2)1/2  - C \prime , so that, by (3.28),

| K(t, s)| = \scrO 

\Biggl( 
e - k sin(\theta )

\surd 
t2+s2

(t2 + s2)1/4

\Biggr) 
as
\sqrt{} 
t2 + s2 \rightarrow +\infty ,

uniformly in t and s. Thus (3.27) is clear.

Proposition 3.10. For 0 < \theta < \pi /2, D\theta is a continuous operator from L2(\BbbR ) to
L2(a,+\infty ).

Proof. From Propositions 3.8 and 3.9, it suffices to show that D\theta is a continuous
operator from L2( - a, a) to L2(a,+\infty ). But this is immediate from the continuity of
\scrD j

\theta from L2(\Sigma a) to L
2(a,+\infty ), established in Proposition C.4.

We finish this section with the promised statement of well-posedness of (3.24),
and of its equivalence with the original scattering problem (3.1)--(1.2).

Theorem 3.11. For every \theta \in (0, \pi /2), the operator \BbbI  - \BbbD \theta is invertible on
(L2

0(\BbbR ))4. Thus, for every g \in L2(\Sigma a), (3.24) has exactly one solution \Phi \theta \in (L2(\BbbR ))4
such that \Phi \theta  - \Phi g \in (L2

0(\BbbR ))4. Moreover, for some constant c > 0 depending on \theta ,

(3.29) \| \Phi \theta \| (L2(\BbbR ))4 \leq c\| \Phi g\| (L2(\BbbR ))4 = c\| g\| L2(\Sigma a)

for every g \in L2(\Sigma a). Further, if g \in H1/2(\Sigma a) and \Phi \theta = \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} \in (L2(\BbbR ))4

is the solution of (3.24), then, for j \in J0, 3K,
(i) \varphi j

\theta satisfies (3.12), i.e., \varphi j
\theta is the analytic continuation to the path \tau \theta of the

restriction to \Sigma j of the solution u of (3.1)--(1.2);
(ii) the solution u of (3.1)--(1.2) is given in terms of \varphi j

\theta in \Omega j
\theta by (3.15);

(iii) for some constant C > 0 that depends only on a, k, and \theta , \varphi j
\theta (s) satisfies the

bounds of Proposition 3.3 for | s| > a.

Proof. Theorem 3.7 implies that, as an operator on (L2
0(\BbbR ))4, \BbbI  - \BbbD \theta is Fredholm

of index zero, and Theorem 5.2 implies that it is injective, so that \BbbI  - \BbbD \theta is invertible
with a bounded inverse. This implies, since \BbbD \theta is a bounded operator from (L2(\BbbR ))4
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to (L2
0(\BbbR ))4 by Theorem 3.7(i), that (3.24) has exactly one solution, and this solution

satisfies the bound (3.29).
In the case that g \in H1/2(\Sigma a), that (i) holds follows from the derivation of (3.24)

from (3.1)--(1.2) in section 3.3, and since (3.24) has only one solution; that (ii) holds
follows from (i) and Theorem 3.4; that (iii) holds follows from (i) and Proposition
3.3.

4. Reconstruction of the solution and far-field formula. Suppose that we
have computed the solution \Phi \theta to (3.24). Then the solution u of the problem (3.1)--
(1.2) can be recovered a posteriori through the representation formulas (3.15). More
precisely, as we have observed in Theorem 3.11(ii), it can be reconstructed in the
union for j \in J0, 3K of the domains \Omega j

\theta defined by (3.16). Let us point out that if

\theta < \pi /4, the union of the \Omega j
\theta covers the whole domain \Omega , so that the whole solution

u can be reconstructed a posteriori.
It is well known (e.g., [21, Lemma 2.5]) that the solution of (3.1)--(1.2) satisfies

(4.1) u(\bfitx ) =
eikr

r1/2
\bigl( 
F (\widehat \bfitx ) +\scrO (r - 1)

\bigr) 
as r \rightarrow +\infty ,

uniformly in \widehat \bfitx := \bfitx /r, where F \in C\infty (S1), with S1 the unit circle, is the far-field
pattern. By analogy with classical boundary integral methods, one can wonder if this
far-field pattern can also be recovered from properties of the \varphi j

\theta . A partial answer will
be given in this section, by deriving far-field formulas in the four directions orthogonal
to the edges of the square \Omega a. The proof of this result requires first that we establish
some properties of the solution u that can be deduced from the representation formulas
(3.15). The far-field behavior that we will establish, indeed all of the results of this
section, will be ingredients in the proof of uniqueness for problem (3.24) that will be
the focus of the next section.

From (3.15), let us consider the representation formula for any \psi \in L2(\BbbR )

(4.2) U\theta (\psi )(\bfitx 
0) :=

\int 
\BbbR 
h(x01  - a, x02  - \tau \theta (s))\psi (s) \tau 

\prime 
\theta (s) ds, \bfitx 0 \in \Omega 0

\theta ,

and the associated integral operator defined by

(4.3) \widetilde D\theta \psi (t) := U\theta (\psi )(t, a), t > a.

Let us note that in Lemma 3.6 we have shown that, for any data \psi \in L2(\BbbR ), the
function t \mapsto \rightarrow \widetilde D\theta \psi (t) can be continued analytically from (a,+\infty ) into the domain of
the complex plane \{ z \in \BbbC : z \not = a,  - \pi /2 + \theta < Arg(z  - a) < \pi /2\} just replacing t

by z in (4.3). The following proposition bounds \widetilde D\theta \psi (z), in particular near a and for
large values of z.

Lemma 4.1. There exists a constant C > 0, depending only on \theta , a, and k, such
that, for all \psi \in L2(\BbbR ) and z \in \BbbC with \Re (z) > a and Arg(z  - a) \in [0, \theta ],

| \widetilde D\theta \psi (z)| \leq C(| z  - a|  - 1/2 + 1) exp( - k\Im (z)) \| \psi \| L2(\BbbR ).

Proof. Throughout this proof C will denote any positive constant, depending only
on a, k, and \theta , not necessarily the same at each occurrence.

Using the expressions (4.2)--(4.3), the definition (2.14) of the kernel h, and the

definition of the complex-scaling function (3.11), we see that | \widetilde D\theta \psi (z)| \leq \scrI (z  - a),
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where

\scrI (w) := k| w| 
2

\int 
\BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| H(1)
1 (k R(w, \tau \theta (s) - a))

R(w, \tau \theta (s) - a)

\bigm| \bigm| \bigm| \bigm| \bigm| | \psi (s)| ds, \Re (w) > 0, Arg(w) \in [0, \theta ],

with R defined in (2.15). The bound on the Hankel function given in (C.1) implies
that \bigm| \bigm| \bigm| \bigm| \bigm| H(1)

1 (z)

z

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C
\Bigl( 
| z|  - 2 + | z|  - 3/2

\Bigr) 
e - \Im z, \Re (z) > 0.

Further, Lemma B.5 (applied with \theta 0 = \theta ) gives, for Arg(w) \in [0, \theta ], that

| R(w, \tau \theta (s) - a)| 2 \geq cos(\theta )(| w| 2 + | \tau \theta (s) - a| 2)

and

\Im R(w, \tau \theta (s) - a) \geq cos(\theta  - Arg(w))\Im (w) - C.

Letting t := | w| and \gamma := Arg(w), we deduce from the above bounds that

| \scrI (w)| ek cos(\theta  - \gamma )\Im (w) \leq C

\int 
\BbbR 

\biggl( 
t

t2 + | \tau \theta (s) - a| 2
+

t

(t2 + | \tau \theta (s) - a| 2)3/4

\biggr) 
| \psi (s)| ds.

Applying the Cauchy--Schwarz inequality, and noticing that | \tau \theta (s)  - a| 2 = (s  - a)2,
for s \geq  - a, while | \tau \theta (s) - a| 2 = (s+ a)2 + 4a2(1 - cos(\theta )) - 4as cos(\theta ) \geq (s+ a)2, for
s <  - a, yields

| \scrI (w)| ek cos(\theta  - \gamma )\Im (w) \leq C

\biggl[ \int +\infty 

0

t2

(t2 + s2)2
ds+

\int +\infty 

0

t2

(t2 + s2)3/2
ds

\biggr] 1/2
\| \psi \| L2(\BbbR ).

We see, by substituting s = tp, that the first and second integrals on the right-hand
side of this last inequality are \leq Ct - 1 and \leq C, respectively. Thus we have shown
that

| \widetilde D\theta \psi (z)| \leq C(| z  - a|  - 1/2 + 1) exp( - k cos(\theta  - Arg(z  - a))\Im (z  - a)) \| \psi \| L2(\BbbR )

for all \psi \in L2(\BbbR ) and z \in \BbbC with \Re (z) > a and Arg(z  - a) \in [0, \theta ] Now, defining

\scrF (z) := (1 + (z  - a) - 1/2) - 1 exp( - ikz) \widetilde D\theta \psi (z),

this last bound implies that, for \Re (z) > a with 0 \leq Arg(z - a) \leq \theta , \scrF is analytic and
| \scrF (z)| \leq C\| \psi \| L2(\BbbR )B(z), where B(z) := exp(k\Im (z)(1  - cos(\theta  - Arg(z  - a)))). Now
B(z) = 1 when Arg(z  - a) = 0 or \theta , and | B(z)| \leq exp(k| z| ), for all z with \Re (z) > a
and 0 \leq Arg(z  - a) \leq \theta . Thus, by a standard Phr\'agmen--Lindel\"of principle (e.g.,
[27, Chapter VI, Corollary 4.2]), | \scrF (z)| \leq C\| \psi \| L2(\BbbR ), for all z with \Re (z) > a and

0 \leq Arg(z  - a) \leq \theta , and the required bound on | \widetilde D\theta \psi (z)| follows.

Defining \phi (t) := \widetilde D\theta \psi (t), for t > a, Lemma 4.1 implies that \phi \in L1(a, b), for every
b > a, if \psi \in L2(\BbbR ). In the uniqueness proof in the next section we will need also the
following stronger result.

Lemma 4.2. If \psi \in L2(\BbbR ) and \phi (t) := \widetilde D\theta \psi (t), for t > a, then \phi \in L2(a, b), for
every b > a.
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Proof. Arguing as in the proof of Lemma 4.1, we see that

| \phi (t)| \leq C

\Biggl( \int 
\BbbR 

(t - a) | \psi (s)| 
(t - a)2 + | \tau \theta (s) - a| 2

ds+

\int 
\BbbR 

(t - a) | \psi (s)| 
((t - a)2 + | \tau \theta (s) - a| 2)3/4

ds

\Biggr) 
for t > a. Further, arguing as at the end of the proof of Lemma 4.1, using that
| \tau \theta (s)  - a| 2 = (s  - a)2, for s \geq  - a, while | \tau \theta (s)  - a| 2 \geq (s + a)2, for s <  - a, we
see that the second integral in the above sum is bounded on (a,+\infty ), and so is in
L2(a, b), for every b > a, while the first integral is

\leq 
\int +\infty 

 - a

t - a

(t - a)2 + (s - a)2
| \psi (s)| ds+

\int +\infty 

a

t - a

(t - a)2 + (s - a)2
| \psi ( - s)| ds.

The right-hand side of this last inequality is in L2(a,+\infty ) by Remark C.3.

Let us remark that by definition (3.22) we have, for any \psi \in L2(\BbbR ),

(4.4) D\theta \psi (t) = \~D\theta \psi (\tau \theta (t)) = U\theta (\psi )(\tau \theta (t), a), t > a.

We deduce thus from Lemma 4.1 the following result.

Corollary 4.3. There exists a constant C > 0, depending only on \theta , a, and k,
such that, for all \psi \in L2(\BbbR ),

| D\theta \psi (t)| \leq C[(t - a) - 1/2 + 1] e - k sin(\theta )t\| \psi \| L2(\BbbR ), t > a.

Now we are able to prove the main result of this section, which provides far-field
formulas in the direction orthogonal to the edges of the square \Omega a.

Proposition 4.4. Let \psi \in L2(\BbbR ) be such that (t2 + 1)\psi (t) \in L1(\BbbR ). Then the
function U\theta (\psi ) defined by (4.2) has the following behavior at infinity:

U\theta (\psi )(x1, x2) = C\infty 
eikx1

\surd 
x1

\bigl( 
1 +\scrO 

\bigl( 
x - 1
1

\bigr) \bigr) 
, as x1 \rightarrow +\infty , for each x2 \in [ - a, a] fixed,

where

C\infty :=

\sqrt{} 
k

\pi 

1 - i

2

\int 
\BbbR 
\psi (s)\tau \prime \theta (s) ds.

Proof. Throughout this proof, C will denote a positive constant, depending only
on a, k, and \theta , not necessarily the same at each occurrence.

For any fixed x2 \in [ - a, a], let \phi x2(t) := U\theta (\psi )(t + a, x2) for t > 0. By the
definition (2.14) of h, we have

\phi x2(t) =
ikt

2

\int 
\BbbR 

H
(1)
1 (kR(t, x2  - \tau \theta (s)))

R(t, x2  - \tau \theta (s))
\psi (s) \tau \prime \theta (s) ds.

In order to use (3.6) that says that

(4.5) H
(1)
1 (z) =  - 1 + i\surd 

\pi 

eiz\surd 
z

\Bigl( 
1 +\scrO 

\bigl( 
| z|  - 1

\bigr) \Bigr) 
as | z| \rightarrow +\infty ,

uniformly in Arg(z) for | Arg(z)| < \zeta , for every \zeta < \pi , we write

(4.6) \phi x2
(t) - 

\sqrt{} 
k

\pi 

1 - i

2

eikt\surd 
t

\int 
\BbbR 
\psi (s) \tau \prime \theta (s) ds = \phi 1x2

(t) + \phi 2x2
(t),
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where

\phi 1x2
(t) :=

\sqrt{} 
k

\pi 

1 - i

2
t

\int 
\BbbR 

\biggl[ 
eikR(t,x2 - \tau \theta (s))

[R(t, x2  - \tau \theta (s))]3/2
 - eikt

t3/2

\biggr] 
\psi (s) \tau \prime \theta (s) ds,

\phi 2x2
(t) :=

ikt

2

\int 
\BbbR 

\biggl[ 
H

(1)
1 (kR(t, x2  - \tau \theta (s)))

R(t, x2  - \tau \theta (s))

+
1 + i\surd 
k\pi 

eikR(t,x2 - \tau \theta (s))

[R(t, x2  - \tau \theta (s))]3/2

\biggr] 
\psi (s) \tau \prime \theta (s) ds.

To estimate these quantities we note first that if t > 0 and z \in Z\theta := \{ z = rei\alpha :
0 \leq \alpha \leq \theta , r \geq 0\} (or  - z \in Z\theta ), then 0 \leq Arg(R(t, z)) \leq \pi /2, | cos(Arg(z))| \geq cos(\theta ),
and, by Lemma B.1,

(4.7) | R(t, z)| \geq cos(\theta ) t.

Since, from the definition (3.11), x2  - \tau \theta (s) or \tau \theta (s) - x2 is in Z\theta for all x2 \in [ - a, a]
and all s \in \BbbR , these observations hold in particular if z = x2  - \tau \theta (s), so that (4.5)
applies and implies that

(4.8) | \phi 2x2
(t)| \leq C

t3/2

\int 
\BbbR 
| \psi (s)| ds

for all sufficiently large t > 0. To estimate \phi 1x2
(t) we observe that, for t > 0 and

z \in Z\theta , \bigm| \bigm| \bigm| \bigm| eikR(t,z)

[R(t, z)]3/2
 - eikt

t3/2

\bigm| \bigm| \bigm| \bigm| \leq sup
w\in U(z)

\bigm| \bigm| \bigm| \bigm| \partial \partial w
\biggl[ 

eikR(t,w)

[R(t, w)]3/2

\biggr] \bigm| \bigm| \bigm| \bigm| | z| ,
where U(z) := \{ w \in Z\theta : | w| \leq | z| \} and where we have used that R(t, 0) = t. Using
again (4.7), this yields that\bigm| \bigm| \bigm| \bigm| eikR(t,z)

[R(t, z)]3/2
 - eikt

t3/2

\bigm| \bigm| \bigm| \bigm| \leq C
| z| 2

t5/2
, z \in Z\theta , t > 0.

Since | x2  - \tau \theta (s)| \leq C(1 + | s| ), it follows that

(4.9) | \phi 1x2
(t)| \leq C

t3/2

\int 
\BbbR 
(1 + | s| )2| \psi (s)| ds, t > 0.

Combining (4.6), (4.8), and (4.9), we get that\bigm| \bigm| \bigm| \bigm| \bigm| \phi x2(t) - 
\sqrt{} 
k

\pi 

1 - i

2

eikt\surd 
t

\int 
\BbbR 
\psi (s) \tau \prime \theta (s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C

t3/2

\int 
\BbbR 
(1 + s2)| \psi (s)| ds

for all sufficiently large t > 0, which ends the proof.

This proposition proves in particular that

(4.10) F (cos(j\pi /2), sin(j\pi /2)) =

\sqrt{} 
k

\pi 

1 - i

2

\int 
\BbbR 
\varphi j
\theta (s)\tau 

\prime 
\theta (s) ds, j \in J0, 3K,

where the far-field F is defined by (4.1) and \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta are the complex-scaled

traces of u, which are exponentially decaying at infinity thanks to Proposition 3.3, or
thanks to (3.21) and Corollary 4.3.
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5. Uniqueness. In this section we will prove uniqueness of solution for the
complex-scaled HSM method (3.24). This result, important in its own right, is also
key to the proof of uniqueness for the complex-scaled HSM method for more gen-
eral configurations; see Proposition 6.1 below. Our proof depends on the following
uniqueness result for the standard HSM (2.25) that we prove, using completely dif-
ferent arguments, in [9].

Theorem 5.1. If k > 0 and \{ \varphi 0, \varphi 1, \varphi 2, \varphi 3\} \in (L2
loc(\BbbR ))4 satisfies (2.25) with

g = 0, and satisfies the radiation condition that

(5.1) \varphi j(t) =

\biggl\{ 
cj+ eik| t| | t|  - 1/2

\bigl( 
1 +\scrO (| t|  - 1)

\bigr) 
as t\rightarrow +\infty ,

cj - eik| t| | t|  - 1/2
\bigl( 
1 +\scrO (| t|  - 1)

\bigr) 
as t\rightarrow  - \infty ,

for some constants cj\pm \in \BbbC and every j \in J0, 3K, then \varphi j = 0 for j \in J0, 3K.

To see how this result is relevant to uniqueness for the complex-scaled HSM
method (3.24), recall that to derive (3.21) and (3.23) we started from (2.25), satisfied
for real k by \varphi j , the trace on \Sigma j of the solution u of (3.1)--(1.2), for j \in J0, 3K. We
showed that \varphi j

\theta , defined by (3.12) as the analytic continuation of \varphi j from the real line
to the path \tau \theta of Figure 3.1, satisfies (3.21) and (3.23), equivalently (3.24). A key
component in this argument was to deform paths of integration from the real line to
the path \tau \theta (Theorem 3.4).

In the following uniqueness proof we reverse this derivation. We show that if
the \varphi j

\theta satisfy (3.21) and (3.23), with g = 0, then, in the sense that (3.12) holds,
they are the analytic continuations onto the path \tau \theta of functions \varphi j that satisfy the
system (2.25) with g = 0. (A key component in this argument is a deformation of
paths of integration from \tau \theta back to the real line, justified as in the proof of Theorem
3.4.) Moreover, by an application of Proposition 4.4 (justified by Corollary 4.3), the
functions \varphi j satisfy the radiation conditions (5.1), so that \varphi j = 0 by Theorem 5.1.
Thus \varphi j

\theta , which is the analytic continuation of \varphi j , is also zero.

Theorem 5.2. Suppose that \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} \in (L2(\BbbR ))4 is a solution of (3.21)

such that

(5.2) \varphi \theta 
j (t) = 0,  - a < t < a, j \in J0, 3K.

Then \varphi \theta 
j = 0 for j \in J0, 3K.

Proof. Suppose that \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} \in (L2(\BbbR ))4 is a solution of (3.21) that sat-

isfies (5.2), and define the functions \varphi 0, \varphi 1, \varphi 2, \varphi 3 by

(5.3)

\varphi j(t) := S \widetilde D\theta \varphi 
j - 1
\theta (t), t <  - a,

\varphi j(t) := 0,  - a \leq t \leq a,

\varphi j(t) := \widetilde D\theta S \varphi 
j+1
\theta (t), t > a,

for j \in J0, 3K, where \widetilde D\theta is defined by (4.3). As discussed below (4.3), since the \varphi j
\theta 's

are in L2(\BbbR ), it follows from this definition, the definition (2.20) of S, and Lemma 3.6
that the \varphi j 's have analytic continuations from (a,+\infty ) (respectively, ( - \infty , - a)) to
the part of the half-plane \Re (z) > a with  - \pi /2 + \theta < Arg(z  - a) < \pi /2 (respectively,
\Re (z) <  - a with  - \pi /2+\theta < Arg( - z - a) < \pi /2). In particular, by (4.4), and recalling
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(2.20) and that \tau \theta ( - t) = \tau \theta (t) for t <  - a,

\varphi j(\tau \theta (t)) = S D\theta \varphi 
j - 1
\theta (t), t <  - a,

\varphi j(\tau \theta (t)) = 0,  - a \leq t \leq a,

\varphi j(\tau \theta (t)) = D\theta S \varphi 
j+1
\theta (t), t > a,

for j \in J0, 3K. Comparing this equation with (3.21) we see that

(5.4) \varphi j
\theta (s) = \varphi j

\bigl( 
\tau \theta (s)

\bigr) 
for s \in \BbbR and j \in J0, 3K.

Thus, for s > a and for s <  - a, the \varphi j
\theta 's are the analytic continuations of the \varphi j 's

to the complex path parametrized by \tau \theta . Therefore, to complete the proof of the
theorem it is enough to show, for j \in J0, 3K, that \varphi j(t) = 0 for t \in \BbbR with | t| > a,
for this will imply, by the uniqueness of analytic continuation, that \varphi j(\tau \theta (s)) = 0 for
s > a and s <  - a, which will imply, using (5.4), that each \varphi j

\theta = 0.
To establish, for j \in J0, 3K, that \varphi j(t) = 0 for t > a and t <  - a, we show, via

an application of Cauchy's integral theorem as in the proof of Theorem 3.4, that uses
the analyticity of the \varphi j 's noted above, Lemma 4.1, and (5.4), that (5.3) implies that
the \varphi j satisfy (2.25) with g = 0, i.e.,

\varphi j(t) = S D\varphi j - 1(t), t <  - a,
\varphi j(t) = 0,  - a < t < a,

\varphi j(t) = DS \varphi j+1(t), t > a,

for j \in J0, 3K, where D is defined in (2.23), or equivalently by (3.22) with \theta = 0. (The
key step in the argument is to show, as we have done in the proof of Theorem 3.4,
that \int +\infty 

a

h(t - a, a\mp \tau \theta (s))\varphi (s)\tau 
\prime 
\theta (s) ds =

\int +\infty 

a

h(t - a, a\mp s)\varphi (s) ds

if, for every 0 < \delta < M , \varphi is analytic in the domain T \delta ,M
\theta introduced in the proof

of Theorem 3.4, and continuous in its closure, and if the behavior of \varphi (z) as z \rightarrow 0
and as z \rightarrow +\infty is suitably constrained, satisfying the bounds of Lemma 4.1.) We
note also that it follows from (5.3) and Lemma 4.2 that \varphi j \in L2

loc(\BbbR ) for j \in J0, 3K.
Moreover, the \varphi j

\theta are in L2(\BbbR ) and it follows, from (3.21) and Corollary 4.3, that each

\varphi j
\theta decays exponentially at infinity, so that (t2 + 1)\varphi j

\theta (t) \in L1(\BbbR ), j \in J0, 3K. Thus
we can apply Proposition 4.4 to (5.3), noting the second equality in (4.4), to see that
the radiation conditions (5.1) hold. But this is enough to conclude that \varphi j = 0, for
j \in J0, 3K, by Theorem 5.1.

6. The complex-scaled HSM method for the general case. Let us now
explain how to extend the complex-scaled HSM method of section 3 to solve the
general problem presented in the introduction. More precisely, for a real wavenumber
k > 0 and for a function \rho and a subdomain \Omega of \BbbR 2 satisfying the hypotheses
described in section 1, the objective is to derive a complex-scaled HSM formulation
to compute the solution u \in H1

loc(\Omega ) of (1.1) and (1.2). For the sake of simplicity, we
will restrict attention to the case \Omega = \BbbR 2, but adding bounded obstacles contained in
\Omega a is completely straightforward (see section 7.3). As in section 1, the source term f
is in L2(\Omega ), with compact support that is a subset of \Omega a.

The idea is to introduce, in addition to the lines \Sigma j , j \in J0, 3K, a square \Omega b :=
( - b, b)2 for some b > a. (As in section 2 we set \Sigma b := \partial \Omega b and denote the sides of \Sigma b
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\Omega b

\Sigma 1

\Sigma 0

\Sigma 2

\Sigma 3

\Sigma 0
b

\Sigma 1
b

\Sigma 2
b

\Sigma 3
b

\Omega 0

\Omega 1

\Omega 2

\Omega 3

\Omega b \Sigma 0
b \Omega 0

\theta 

\theta 

Fig. 6.1. The notations for the general case.

by \Sigma j
b, j \in J0, 3K; see Figure 6.1.) We will show how to derive a formulation of problem

(1.1), (1.2) whose unknowns are the complex-scaled traces \varphi j
\theta , j \in J0, 3K, associated

to the infinite lines \Sigma j , and the restriction ub := u| \Omega b
of the solution u to the square

\Omega b. To do that, we need to make the following assumption on the parameter \theta :

(6.1) \theta <
\pi 

4
.

Let us derive the equations linking the \varphi j
\theta , j \in J0, 3K, and ub. On the one hand, the

\varphi j
\theta still satisfy the system of compatibility relations (3.21). But, instead of (3.23), we

have to impose equality between \varphi j
\theta and ub on \Sigma j

a:

\varphi j
\theta (t) = ub| \Sigma j

a
(t),  - a < t < a, j \in J0, 3K.

On the other hand, we can derive a variational formulation for ub in \Omega b. Since
 - \Delta ub  - k2\rho ub = f in \Omega b and f is supported in \Omega a, the following Green's identity
holds for all vb \in H1(\Omega b), where n is the normal unit vector pointing out of \Omega b:

(6.2)

\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb  - k2\rho ubvb

\bigr) 
 - 
\int 
\Sigma b

\partial ub
\partial n

vb =

\int 
\Omega a

fvb.

The last idea is to replace in the previous identity the normal derivative of ub on the
jth side of the square by an integral representation as a function of \varphi j

\theta . Indeed, we
must have, for j \in J0, 3K,

\partial ub
\partial n

 - ikub =
\partial U j

\partial n
 - ikU j on \Sigma j

b,

where U j denotes the restriction of the solution u to the half-plane \Omega j . (Our choice
of Robin traces instead of normal derivatives is so that later we have uniqueness for
the boundary value problem (6.8) for all k > 0.)

We have proved in Theorem 3.4 that U j(\bfitx j) has an integral representation in
terms of \varphi j

\theta , as soon as \bfitx j belongs to the domain \Omega j
\theta defined by (3.16). Notice that

under condition (6.1) one has \Sigma j
b \subset \Omega j

\theta (see Figure 6.1). Consequently, one can use the

formula (3.15) to rewrite the above Robin compatibility condition on \Sigma j
b. Precisely,
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we have\biggl( 
\partial ub
\partial n

 - ikub

\biggr) \bigm| \bigm| \bigm| 
\Sigma j

b

(t)

=

\int 
\BbbR 
(\partial 1h(b - a, t - \tau \theta (s)) - ikh(b - a, t - \tau \theta (s)))\varphi 

j
\theta (s)\tau 

\prime 
\theta (s) ds,  - b < t < b,

where \partial 1h denotes the derivative of h with respect to its first variable. This leads us to
define the following Dirichlet-to-Robin operator \Lambda \theta . For \psi \in L2(\BbbR ) and 0 < \theta < \pi /4,
define \Lambda \theta \psi \in L2( - b, b) by

(6.3) \Lambda \theta \psi (t) :=

\int 
\BbbR 
\lambda (b - a, t - \tau \theta (s))\psi (s)\tau 

\prime 
\theta (s) ds,  - b < t < b,

where we have set

\lambda (x1, z) := \partial 1h(x1, z) - ikh(x1, z), x1 > 0, z \in \BbbC ,

which one can easily check, using [30, (10.6.2)] and the definition (2.14) of h, takes
the explicit form

(6.4) \lambda (x1, z) =
ik

2R

\biggl( 
[1 - ikx1]H

(1)
1 (kR) - kx21

R
H

(1)
2 (kR)

\biggr) 
, R = [x21 + z2]1/2.

With this notation, the previous equations linking ub and the \varphi j
\theta can be written as

(6.5)

\biggl( 
\partial ub
\partial n

 - ikub

\biggr) \bigm| \bigm| \bigm| 
\Sigma j

b

(t) = \Lambda \theta \varphi 
j
\theta (t),  - b < t < b, j \in J0, 3K.

Our complete formulation reads as follows:

(6.6)

Find \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} \in (L2(\BbbR ))4 and ub \in H1(\Omega b) such that

\varphi j
\theta (t) = S D\theta \varphi 

j - 1
\theta (t) for t <  - a,

\varphi j
\theta (t) = ub| \Sigma j

a
(t) for  - a < t < a,

\varphi j
\theta (t) = D\theta S \varphi 

j+1
\theta (t) for t > a,

j \in J0, 3K,

and such that, \forall vb \in H1(\Omega b),\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb  - k2\rho ubvb

\bigr) 
 - ik

3\sum 
j=0

\int 
\Sigma j

b

ubvb

 - 
3\sum 

j=0

\int b

 - b

\Lambda \theta \varphi 
j
\theta (t)vb| \Sigma j

b
(t)dt =

\int 
\Omega a

fvb,

where S, D\theta , and \Lambda \theta are defined by (2.20), (3.22), and (6.3).

Let us denote by \Phi \theta , \Phi (ub), and \widetilde \Phi \theta the following elements of (L2(\BbbR ))4:

\Phi \theta := \{ \varphi 0
\theta , \varphi 

1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} , \Phi (ub) := \{ ub| \Sigma 0

a
, ub| \Sigma 1

a
, ub| \Sigma 2

a
, ub| \Sigma 3

a
\} ,\widetilde \Phi \theta = \{ \widetilde \varphi 0

\theta , \widetilde \varphi 1
\theta , \widetilde \varphi 2

\theta , \widetilde \varphi 3
\theta \} := \Phi \theta  - \Phi (ub).

Note that, using the second equation of (6.6) and recalling (2.29), we have \widetilde \Phi \theta \in 
(L2

0(\BbbR ))4. With these notations the first block of equations in (6.6) can be rewritten
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(cf. (3.24)) as (\BbbI  - \BbbD \theta )\widetilde \Phi \theta = \BbbD \theta \Phi (ub), where \BbbD \theta is defined by (3.25), so that problem
(6.6) can be rewritten as

(6.7)

Find \widetilde \Phi \theta \in (L2
0(\BbbR ))4 and ub \in H1(\Omega b) such that

\forall \widetilde \Psi \in (L2
0(\BbbR ))4 and \forall vb \in H1(\Omega b),

((\BbbI  - \BbbD \theta )\widetilde \Phi \theta , \widetilde \Psi )(L2
0(\BbbR ))4  - (\BbbD \theta \Phi (ub), \widetilde \Psi )(L2

0(\BbbR ))4

+

\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb  - k2\rho ubvb

\bigr) 
 - ik

3\sum 
j=0

\int 
\Sigma j

b

ubvb

 - 
3\sum 

j=0

\int b

 - b

\Lambda \theta 

\Bigl( \widetilde \varphi j
\theta + ub| \Sigma j

a

\Bigr) 
(t) vb| \Sigma j

b
(t) dt =

\int 
\Omega a

fvb.

Let us first prove a uniqueness result for this problem.

Proposition 6.1. If f = 0, then the only solution of problem (6.7) is the trivial

solution ub = 0, \widetilde \Phi \theta = 0.

Proof. Suppose that \widetilde \Phi \theta \in (L2
0(\BbbR ))4 and ub \in H1(\Omega b) are such that (6.7) holds

with f = 0. Then (\BbbI  - \BbbD \theta )\widetilde \Phi \theta = \BbbD \theta \Phi (ub), and the second of equations (6.6) holds
with f = 0 and \varphi j

\theta := \widetilde \varphi j
\theta + ub| \Sigma j

a
, j \in J0, 3K, so that  - \Delta ub  - k2\rho ub = 0 in \Omega b and

(6.5) holds for j \in J0, 3K.
Let us denote by u\infty \in H1

loc(\BbbR 2\setminus \Omega a) the unique solution of (3.1)--(1.2) with
g = ub| \Sigma a

\in H1/2(\Sigma a). Then, as we have shown in section 3.3, the vector of complex-
scaled traces of u\infty satisfies (3.24) with \Phi g = \Phi (ub), so that, by Theorem 5.2, it
coincides with the vector \Phi \theta := \{ \varphi 0

\theta , \varphi 
1
\theta , \varphi 

2
\theta , \varphi 

3
\theta \} . Thus, applying Theorem 3.4 (as we

did above to derive (6.5) from (1.1)--(1.2)) we see that

\Lambda \theta \varphi 
j
\theta =

\biggl( 
\partial u\infty 
\partial n

 - iku\infty 

\biggr) \bigm| \bigm| \bigm| 
\Sigma j

b

, j \in J0, 3K.

Consequently, v := ub  - u\infty belongs to H1(\Omega b\setminus \Omega a) and satisfies

(6.8)

\Delta v + k2 v = 0 in \Omega b\setminus \Omega a,

v = 0 on \Sigma a,

\partial v

\partial n
 - ikv = 0 on \Sigma b.

But, for every k > 0, this homogeneous problem has no solution except v = 0. (To
see this apply Green's identity (cf. (6.2)) in \Omega b\setminus \Omega a to deduce that

\int 
\Sigma b

| v| 2 = 0, so

that v = \partial v/\partial n = 0 on \Sigma b, and apply Holmgren's uniqueness theorem; [21, p. 104].)
Thus ub = u\infty in \Omega b\setminus \Omega a so that the function

w :=

\Biggl\{ 
ub in \Omega b,

u\infty in \BbbR 2\setminus \Omega a,

is well-defined and is a solution of the homogeneous Helmholtz equation in \BbbR 2 which
satisfies the radiation condition (1.2). As a consequence (e.g., [25, Theorem 8.7]),
w = 0 in \BbbR 2, so that ub = 0 in \Omega b and u\infty = 0. Further, each \varphi j

\theta is zero, since it is a
complex trace of u\infty . This completes the proof.
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The well-posedness of problem (6.7) follows from classical arguments combined
with the results of the previous sections and the following lemma.

Lemma 6.2. The operator \Lambda \theta , defined by (6.3), is a compact operator from L2(\BbbR )
to L2( - b, b).

Proof. To establish this lemma, we will prove that the kernel of \Lambda \theta is Hilbert--
Schmidt, i.e., that

(6.9) (t, s) \mapsto \rightarrow \lambda (b - a, t - \tau \theta (s)) \in L2(( - b, b)\times \BbbR ),

by using similar arguments as in the proof of Proposition 3.9. On the one hand, since
b > a and \theta < \pi /4, the function R which appears in expression (6.4) never vanishes
for  - b \leq t \leq b and s \in \BbbR . As a consequence, the kernel is continuous on [ - b, b]\times \BbbR .
On the other hand we have, using (3.7), (3.8), and (3.6), the asymptotic estimate

| \lambda (b - a, t - \tau \theta (s))| = \scrO 
\biggl( 
e - k sin \theta | s| 

| s| 1/2

\biggr) 
as | s| \rightarrow +\infty ,

uniformly in t, for | t| \leq b. Together, these properties prove (6.9).

Recall that we call a sesquilinear form a(\cdot , \cdot ) on a Hilbert space \scrH compact if the
associated linear operator A on \scrH , defined by (A\phi ,\psi ) = a(\phi , \psi ), for all \phi , \psi \in \scrH ,
is compact. (Here (\cdot , \cdot ) denotes the inner product on \scrH .) Equivalently, a(\cdot , \cdot ) is
compact if, whenever \phi n \rightharpoonup 0 and \psi n \rightharpoonup 0 (weak convergence in \scrH ), it holds that
a(\phi n, \psi n) \rightarrow 0.

In our final theorem we show that the sesquilinear form on the Hilbert space
(L2

0(\BbbR ))4\times H1(\Omega b) which appears on the left-hand side of (6.7) is the sum of coercive
plus compact sesquilinear forms, and that, as a consequence of this and of the above
uniqueness result, problem (6.7) is well-posed. Regarding the last sentence of the
theorem, note that, given the constraint 0 < \theta < \pi /4,

\Omega \subset \Omega b \cup 
3\bigcup 

j=0

\Omega j
\theta ,

so that the solution of the original scattering problem can be recovered in the whole
of \Omega from the solution (\widetilde \Phi \theta , ub) of (6.7).

Theorem 6.3. For every \theta \in (0, \pi /4) and every f \in L2(\Omega ) with support in \Omega a,

problem (6.7) has exactly one solution (\widetilde \Phi \theta , ub) \in (L2
0(\BbbR ))4 \times H1(\Omega b). Further, for

some constant c > 0 depending on \theta ,

(6.10) \| \widetilde \Phi \theta \| (L2
0(\BbbR ))4 + \| ub\| H1(\Omega b) \leq c\| f\| L2(\Omega a)

for all f \in L2(\Omega ) with support in \Omega a. Moreover, if (\widetilde \Phi \theta , ub) \in (L2
0(\BbbR ))4 \times H1(\Omega b) is

the solution of (6.7) and u \in H1
loc(\Omega ) is the solution of (1.1)--(1.2), then u = ub in

\Omega b, while u is given in terms of \varphi j
\theta in \Omega j

\theta by (3.15) for j \in J0, 3K.

Proof. As an operator on (L2
0(\BbbR ))4 we have, by Theorem 3.7, that \BbbD \theta = \BbbD 1

\theta +\BbbD 2
\theta ,

where \| \BbbD 1
\theta \| \leq 1/

\surd 
2 and \BbbD 2

\theta is compact. Thus we can decompose the sesquilinear
form which appears on the left-hand side of (6.7) as the sum of a first sesquilinear
form

((\BbbI  - \BbbD 1
\theta )
\widetilde \Phi \theta , \widetilde \Psi )(L2

0(\BbbR ))4 +

\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb + ubvb

\bigr) 
 - ik

3\sum 
j=0

\int 
\Sigma j

b

ubvb,
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which is coercive on (L2
0(\BbbR ))4 \times H1(\Omega b), and a second sesquilinear form

 - (\BbbD 2
\theta 
\widetilde \Phi \theta , \widetilde \Psi )(L2

0(\BbbR ))4  - (\BbbD \theta \Phi (ub), \widetilde \Psi )(L2
0(\BbbR ))4  - (1 + k2)

\int 
\Omega b

ubvb

 - 
3\sum 

j=0

\int b

 - b

\Lambda \theta 

\Bigl( \widetilde \varphi j
\theta + ub| \Sigma j

b

\Bigr) 
(t) vb| \Sigma j

b
(t) dt,

which is compact on the same space. The proofs of compactness of the four terms of
this second sesquilinear form rely on different arguments. The first is compact because
\BbbD 2

\theta is compact. For the second term, we notice that the operator ub \mapsto  - \rightarrow \BbbD \theta \Phi (ub) is
compact from H1(\Omega b) to (L2

0(\BbbR ))4, as it is the composition of the bounded operator
\BbbD \theta on (L2

0(\BbbR ))4 and the compact map ub \mapsto  - \rightarrow \Phi (ub). (To see the compactness of
this last map, note that it can be thought of as a composition of the bounded trace
map from H1(\Omega b) to H

1/2(\Sigma b) and the compact embedding H1/2(\Sigma b) \subset L2(\Sigma b).) The
compactness of the third term is a consequence of the Rellich embedding theorem, that
the embedding H1(\Omega b) \subset L2(\Omega b) is compact. To see that the last term is compact one
can use Lemma 6.2. Indeed, note that continuity of \Lambda \theta , combined with compactness
of the map vb \mapsto  - \rightarrow vb| \Sigma j

b
from H1(\Omega b) to L

2(\Sigma j
b), suffices to conclude.

Since the sesquilinear form is coercive plus compact, the Fredholm alternative
holds (e.g., [40, Theorem 2.33]), so that unique solvability of (6.7) and the stability
bound (6.10) are a consequence of Proposition 6.1. We have shown the last sentence
of the theorem in our derivation, earlier in this section, of (6.7) from (1.1)--(1.2), using
Theorem 3.4.

7. Numerical implementation and results. In this section we demonstrate,
through some illustrative numerical experiments implemented in XLiFE++ [38], that
the complex-scaled HSM formulations (3.24) and (6.7) can be solved numerically to
compute solutions to the scattering problems (3.1)--(1.2) and (1.1)--(1.2), respectively.

7.1. Numerical implementation of the deformed half-space represen-
tation. Before considering the discretization of the HSM systems, we just want to
provide an illustration of Theorem 3.4. More precisely, let

(7.1) u(\bfitx ) :=
i

4
H

(1)
0 (k R(x1, x2)), \bfitx \in \BbbR 2 \setminus \{ 0\} ,

where R is defined by (2.15), so that u satisfies (3.1)--(1.2) in the case that g := u| \Sigma a
.

Then \varphi 0 := u| \Sigma 0 is given by

\varphi 0(s) =
i

4
H

(1)
0 (k R(s, a)), s \in \BbbR .

The corresponding complex-scaled trace \varphi 0
\theta , defined by (3.11) and (3.12), is an even

function given, for | s| < a, by
\varphi 0
\theta (s) := \varphi 0(s)

and, for s > a, by

\varphi 0
\theta (s) := \varphi 0(\tau \theta (s)) =

i

4
H

(1)
0

\biggl( 
k
\sqrt{} 
a2 + (a+ (s - a)ei\theta )2

\biggr) 
\sim ei(ka+\pi /4 - \theta /2) eik(s - a)ei\theta 

2
\surd 
2\pi ks

as s\rightarrow +\infty ,(7.2)
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 - 4  - 2 0 2 4

 - 5

0

5

\cdot 10 - 2
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\theta = 0

\theta = \pi /6

\theta = \pi /4

\theta = \pi /3
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s

Fig. 7.1. Left: representation of the exact complex-scaled traces s \mapsto \rightarrow \varphi 0
\theta (s) for \theta =

0, \pi /6, \pi /4, \pi /3. Right: comparison of the exact (red line) and computed (blue dots) complex-scaled
trace s \mapsto \rightarrow \varphi 0

\theta (s) for \theta = \pi /6. In both plots a = 1 and k = 2\pi .

by (3.6) and (3.7). The asymptotic behavior (7.2) agrees with (3.13) and Proposition
3.3, indeed demonstrates that (3.13) and Proposition 3.3 are sharp.

We represent, in Figure 7.1, \varphi 0
\theta for four different values of \theta , with a = 1 and

k = 2\pi . We see that \varphi 0
\theta is more and more rapidly decaying at infinity as \theta increases,

in line with (7.2), (3.13), and Proposition 3.3. Then we represent in Figure 7.2 the
function

(7.3) U\theta (\varphi 
0
\theta )(\bfitx 

0) =

\int 
\BbbR 
h(x01  - a, x02  - \tau \theta (s))\varphi 

0
\theta (s) \tau 

\prime 
\theta (s) ds

(cf. (4.2)) in the half-space \Omega 0, for \theta = \pi /6, \pi /4, \pi /3, evaluating this integral accu-
rately by standard numerical quadrature methods (namely a fifth order composite
Gauss quadrature rule on a fine mesh of step length 0.1). From Theorem 3.4 we know
that

(7.4) U\theta (\varphi 
0
\theta )(\bfitx 

0) = u(\bfitx 0) :=
i

4
H

(1)
0 (k R(x01, x

0
2)), \bfitx 0 \in \Omega 0

\theta ,

where \Omega 0
\theta := \{ \bfitx 0 = (x01, x

0
2) : x01  - a > (| x02|  - a) tan \theta \} . The boundary of \Omega 0

\theta is
indicated on the figures by dashed lines and, as predicted in (7.4), U\theta (\varphi 

0
\theta ) coincides

with u in \Omega 0
\theta . U\theta (\varphi 

0
\theta ) is not equal to u outside \Omega 0

\theta ; in particular, it is easy to see
from the definition that U\theta (\varphi 

0
\theta )(a, x

0
2) = 0 for | x02| > a. It appears at first glance that

U\theta (\varphi 
0
\theta ) is continuous across the dashed lines in Figure 7.2, but an application of the

residue theorem, modifying the argument of Theorem 3.4, shows a jump in the value
of U\theta (\varphi 

0
\theta ) across the dashed lines of

\varphi 0(x02 \pm i(x01  - a)) = \varphi 0
\theta (s)

at the point \bfitx 0 = (x01, x
0
2) where x02 = \pm (a + (x01  - a) cot(\theta )) = \pm a + (s \mp a) cos(\theta ).

This jump across the dashed lines is just about visible very close to \bfitx 0 = (a,\pm a) but
not visible elsewhere because \varphi 0

\theta (s) is exponentially decaying as s \rightarrow \pm \infty ; see the
zoom for \theta = \pi /3.

7.2. Discretization of the complex-scaled HSM formulation and valida-
tions. We approximate the solution \Phi \theta  - \Phi g of (3.24) by \widetilde \Phi \theta ,\bfh \in V0,\bfh , where V0,\bfh 
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\theta = \pi /6 \theta = \pi /4 \theta = \pi /3

Fig. 7.2. Representation of U\theta (\varphi 
0
\theta ) in \Omega 0 (see (7.3)), where \varphi 0

\theta (s) =
i
4
H

(1)
0 (k R(\tau \theta (s), a)), with

a = 1 and k = 2\pi . The dotted lines are part of the boundary of \Omega 0
\theta .

is a finite dimensional space V0,\bfh \subset (L2
0(\BbbR ))4 that we specify below and \widetilde \Phi \theta ,\bfh is the

solution of the following Galerkin approximation:

(7.5)
Find \widetilde \Phi \theta ,\bfh \in V0,\bfh such that

((\BbbI  - \BbbD \theta )\widetilde \Phi \theta ,\bfh , \widetilde \Psi \bfh )(L2
0(\BbbR ))4 = (\BbbD \theta \Phi g,\bfh , \widetilde \Psi \bfh )(L2

0(\BbbR ))4 \forall \widetilde \Psi \bfh \in V0,\bfh ,

where \BbbD \theta is defined by (3.25).
To define the approximation spaceV0,\bfh , where h := (h, q, T ), let us first introduce

V\bfh \subset L2(\BbbR ). To construct V\bfh we truncate the infinite line at some distance T > 0
and build V\bfh with 1D Lagrange finite elements of degree q \geq 1 and maximum element
length h supported on [ - T, T ]. The space V0,\bfh is nothing else but V\bfh \cap (L2

0(\BbbR ))4

where V\bfh := (V\bfh )
4. Thus, for \widetilde \Phi \theta ,\bfh = \{ \~\varphi 0

\theta ,\bfh , \~\varphi 
1
\theta ,\bfh , \~\varphi 

2
\theta ,\bfh , \~\varphi 

3
\theta ,\bfh \} \in V0,\bfh , each \~\varphi j

\theta ,\bfh 

is a continuous piecewise polynomial function supported in [ - T, T ] which vanishes
on [ - a, a]. In (7.5), \Phi g,\bfh \in V\bfh \cap (L2( - a, a))4 is an interpolate of \Phi g. Finally, we

approximate \Phi \theta by \Phi \theta ,\bfh = \{ \varphi 0
\theta ,\bfh , \varphi 

1
\theta ,\bfh , \varphi 

2
\theta ,\bfh , \varphi 

3
\theta ,\bfh \} \in V\bfh , given by \Phi \theta ,\bfh := \widetilde \Phi \theta ,\bfh +\Phi g,\bfh .

It is clear that the approximation space V0,\bfh that we have constructed has the
approximation property that, for all \Phi \in (L2

0(\BbbR ))4,

inf\widetilde \Psi \bfh \in \bfV 0,\bfh 

\| \Phi  - \widetilde \Psi \bfh \| (L2
0(\BbbR ))4 \rightarrow 0

as h \rightarrow 0 and T \rightarrow +\infty . Thus, and since the sesquilinear form in (7.5) is coercive
plus compact on (L2

0(\BbbR ))4 by Theorem 3.7(ii) (cf. Theorem 6.3), standard convergence
results for Galerkin methods apply (e.g., [44, Theorem 4.2.9]). These give that, for

some h0 > 0 and T0 > 0, the solution \widetilde \Phi \theta ,\bfh of (7.5) is well-defined for all 0 < h \leq h0
and T \geq T0, and a quasi-optimality error estimate holds that, for some constant C > 0
and all 0 < h \leq h0 and T \geq T0,

\| \Phi \theta  - \Phi \theta ,\bfh \| (L2(\BbbR ))4 \leq C inf
\Psi \bfh \in \Phi g,\bfh +\bfV 0,\bfh 

\| \Phi \theta  - \Psi \bfh \| (L2(\BbbR ))4

\leq C
\Bigl( 
\| \Phi \theta \| (L2(\BbbR \setminus ( - T,T )))4

+ inf
\Psi \bfh \in \Phi g,\bfh +\bfV 0,\bfh 

\| \Phi \theta  - \Psi \bfh \| (L2( - T,T ))4

\Bigr) 
.(7.6)

This right-hand side tends to zero as h\rightarrow 0 and T \rightarrow +\infty , i.e., our Galerkin method
is convergent, as long as \| \Phi g  - \Phi g,\bfh \| (L2( - a,a))4 \rightarrow 0 as h\rightarrow 0.

D
ow

nl
oa

de
d 

01
/1

9/
22

 to
 1

34
.2

25
.2

55
.3

8 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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To implement the Galerkin method (7.5), the integrals\int T

a

\Biggl( \int T

 - T

h(\tau \theta (t) - a, a - \tau \theta (s))\varphi 
j
\theta ,\bfh (s) \tau 

\prime 
\theta (s) ds

\Biggr) 
\~\psi j\pm 1
\bfh (t)dt, \~\psi j\pm 1

\bfh \in V\bfh ,

which appear in the variational formulation, need to be approximated. In the results
below we use a standard quadrature formula, without any specific treatment of the
singularity.

To validate the method, we consider u given by (7.1) which is the solution of
(3.24)--(1.2) with g := u| \Sigma a . In the case that \theta = \pi /6, a = 1, and k = 2\pi , we draw in
the right-hand side of Figure 7.1 the exact complex-scaled trace \varphi 0

\theta of u (by symmetry,
the four traces are equal in this case) and the computed complex-scaled trace \varphi 0

\theta ,\bfh ,
obtained by solving (7.5) with h = 0.1, q = 1, and T = 5. We observe a very good
agreement.

More quantitatively, to explore the dependence of the error on T , we plot in
Figure 7.3, for a fixed small value of h, the error

(7.7) \| \varphi 0
\theta  - \varphi 0

\theta ,\bfh \| L2(\BbbR )

as a function of T for \theta = \pi /6, \pi /4, \pi /3. As \varphi 0
\theta ,\bfh is zero outside ( - T, T ) the er-

ror cannot be smaller than the L2 norm of \varphi 0
\theta on \BbbR \setminus ( - T, T ), which decreases

like e - k sin(\theta )T /T 1/2 as T tends to +\infty by (7.2) and Proposition 3.3. On the other
hand, when h is small enough so that the second term on the right-hand side of
(7.6) is negligible, the quasi-optimality bound (7.6) and Proposition 3.3 imply that
e - k sin(\theta )T /T 1/2 is also an upper bound for the error, precisely that the error (7.7)
is \leq Ce - k sin(\theta )T /T 1/2, for some constant C > 0 and all sufficiently large T . And,
indeed, we observe in Figure 7.3 this rate of exponential behavior as T increases, until
the other sources of error become significant.

Using a standard numerical quadrature applied to formula (3.15), with \varphi j
\theta approx-

imated by \varphi 0
\theta ,\bfh , we represent finally in Figure 7.4 the numerical solution in \Omega 0

\theta \cup \Omega 1
\theta 

(left) and the whole of \Omega (right) for \theta = \pi /6. To reconstruct the solution in the
whole of \Omega several choices are possible, since \theta < \pi /4 is such that the reconstruction

1 1.5 2 2.5 3

 - 3

 - 2

 - 1
1

k sin(\pi /6)

k sin(\pi /4)

k sin(\pi /3)

T

lo
g
\| \varphi 

0 \theta 
 - 
\varphi 
0 \theta 
,\bfh 
\| L

2
(\BbbR 

)

1 1.5 2 2.5 3

 - 3

 - 2

 - 1

T

\theta = \pi /6

\theta = \pi /4

\theta = \pi /3

Fig. 7.3. Absolute error in \varphi 0
\theta ,\bfh for three different values of \theta computed with P3 elements

(q = 3), a = 1, and h = 0.002 and k = \pi (left), h = 0.001, and k = 2\pi (right).
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domains overlap (\Omega j
\theta overlaps with \Omega j\pm 1

\theta , for j \in J0, 3K). Here we have reconstructed
the solution using the identity

u(\bfitx j) = U\theta (\varphi 
j
\theta )(\bfitx 

j), \bfitx j \in \Omega j
\pi /4, j \in J0, 3K,

where U\theta is defined in (4.2), and where we have used that \Omega j
\pi /4 \subset \Omega j

\theta . We notice

in Figure 7.4 that these different representations are compatible, up to a small dis-
cretization error not visible in the plots.

u
\bigm| \bigm| 
\Omega 0

\theta \cup \Omega 1
\theta 

u
\bigm| \bigm| 
\Omega 

Fig. 7.4. Reconstruction of the computed solution in \Omega 0
\theta \cup \Omega 1

\theta (left) and in the whole do-
main (right), with \theta = \pi /6, a = 1, k = 2\pi .

Finally, we validate formula (4.10) for the far-field pattern. In the present case,
the far-field pattern is the same in all directions and one has for j \in J0, 3K

(7.8) F (cos(j\pi /2), sin(j\pi /2)) =
1 - i\surd 
k\pi 

=

\sqrt{} 
k

\pi 

1 - i

2

\int 
\BbbR 
\varphi j
\theta (s)\tau 

\prime 
\theta (s) ds.

In Figure 7.5 we plot the real and the imaginary part of the right-hand side of (7.8)
when j = 0, a = 1, and k = 2\pi , with \varphi 0

\theta approximated by \varphi 0
\theta ,\bfh , that is, we plot

(7.9) F\theta ,\bfh :=

\sqrt{} 
k

\pi 

1 - i

2

\int T

 - T

\varphi j
\theta ,\bfh (s)\tau 

\prime 
\theta (s) ds

as a function of T for different values of \theta . We again observe a rapid convergence
toward the exact value as T increases.

7.3. Numerical results for the general case. Finally, to discretize problem
(6.7), we combine the previous tools with a classical Lagrange finite element approxi-
mation of the 2D unknown ub. Precisely, we use the HSM method to solve the problem
of diffraction of the incident plane wave

ui(\bfitx ) = exp(ik(x1 cos(\pi /6) + x2 sin(\pi /6)))

by a perfectly reflecting scatterer which is the union of a disk and a triangle, this
union contained in the square \Omega a with a = 0.8. The scattering problem is (1.1)--(1.2)
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1 1.5 2 2.5
0.2

0.22

0.24

0.26

0.28

0.3

T

1 1.5 2 2.5

 - 0.24

 - 0.22

 - 0.2

 - 0.18

 - 0.16

T

\theta = \pi /6

\theta = \pi /4

\theta = \pi /3

Fig. 7.5. Real (left figure) and imaginary (right figure) parts of the far-field coefficient for three
different \theta with P3 elements (q = 3), h = 0.001, a = 1, and k = 2\pi , computed using the formula
(7.9). The black lines indicate the exact values.

in \Omega , the domain exterior to the scatterer, with f = 0, \rho = 1, and the Dirichlet
boundary condition u = g :=  - ui on \partial \Omega . The HSM problem we solve is a variation
on (6.7) in which (i) we replace \Omega b by \widetilde \Omega b := \Omega \cap \Omega b; (ii) we replace H1(\Omega b) by an

affine subspace of H1(\widetilde \Omega b) that respects the Dirichlet boundary condition; precisely,

we seek ub \in \{ v \in H1(\widetilde \Omega b) : v = g on \partial \Omega \} . It is easy to see, by a straightforward
variation of the arguments of Proposition 6.1 and Theorem 6.3, that this modification
of (6.7) remains well-posed: uniqueness holds and the modified sesquilinear form is

coercive plus compact on (L2
0(\BbbR ))4 \times H1

D(\widetilde \Omega b), where H
1
D(\widetilde \Omega b) := \{ v \in H1(\widetilde \Omega b) : v =

0 on \partial \Omega \} . As in section 7.2, this implies convergence of Galerkin methods of numerical
solution, provided the sequence of approximation spaces used is asymptotically dense
in (L2

0(\BbbR ))4 \times H1
D(\widetilde \Omega b).

In our numerical implementation of a Galerkin method for this HSM formulation
we fix a = 0.8 and b = 1.2, we use P2 elements for both the 2D unknown ub and the
1D unknowns \varphi j

\theta , j \in J0, 3K, with a maximum element diameter for both meshes of
h = 0.05, choose the truncation parameter T = 5, and choose \theta = \pi /6. The additional
integrals, involving the operator \Lambda \theta , which appear in the variational formulation are
approximated, like the other ones, by a standard quadrature formula.

To reconstruct the solution everywhere several choices are possible, since \theta < \pi /4

and the different reconstruction domains overlap (for instance, \widetilde \Omega b with \Omega 0
\theta , or \Omega 

0
\theta with

\Omega 1
\theta ). We have reconstructed the solution as

u(\bfitx ) = ub(\bfitx ), \bfitx \in \widetilde \Omega b,

u(\bfitx j) = U\theta (\varphi 
j
\theta )(\bfitx 

j), \bfitx j \in \Omega j
\pi /4 \setminus \widetilde \Omega b, j \in J0, 3K,

where U\theta is defined in (4.2) and where we have used that \Omega j
\pi /4 \subset \Omega j

\pi /6. See Figure

7.6 for the reconstruction in \widetilde \Omega b \cup \Omega 0
\pi /4 \cup \Omega 1

\pi /4 (left), the reconstruction in the whole

domain \Omega (middle), and the corresponding total field u + ui (right). We notice that

the different deformed half-space representations (the representations in \Omega j
\pi /4 \setminus \widetilde \Omega b,

j \in J0, 3K) are compatible between themselves and are also compatible with the 2D

solution ub in \widetilde \Omega b.
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Diffracted field Total field

Fig. 7.6. The diffracted field u reconstructed in \Omega b \cup \Omega 0
\pi /4

\cup \Omega 1
\pi /4

(left) and in the whole of

\Omega (middle), and the corresponding total field u+ ui (right) for the case of scattering by a Dirichlet
obstacle.

8. Perspectives. Our new complex-scaled HSM method has been presented in
this paper for a relatively simple configuration. We expect that it can be extended
easily to more complex problems for which the relevant half-space Green's functions
are known sufficiently explicitly, such as acoustic scattering in stratified media, in-
cluding cases where the stratification is different in different half-spaces (see, e.g., [42]
for a presentation of the method in the dissipative case). The method is also expected
to work well in at least some cases with infinite boundaries, for instance, scattering
by an infinite wedge with Dirichlet, Neumann, or Robin boundary conditions. In all
these cases, the complex-scaled HSM should be a convenient way to take into account
possible surface/guided waves that propagate toward infinity. Elastic scattering in
isotropic media can also be considered. More challenging extensions are to the cases
where PMLs are observed to fail, such as anisotropic media. A potential advantage
over PML of the complex-scaled HSM method in such cases is that it requires the ex-
istence of exponentially decaying analytical continuation of the traces of the solution
only in a few directions (on the boundaries of a few half-planes).

Appendix A. Properties of the operators \BbbD and \BbbD \bfittheta . The operator \BbbD 
defined by (2.32) can be rewritten as

\BbbD = DS \otimes \BbbJ + S D \otimes \BbbJ \ast with \BbbJ :=

\left[    
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

\right]    ,
where the operator S \in \scrL (L2(\BbbR )) (the space of continuous linear operators on L2(\BbbR ))
is defined in (2.20) and the operator D \in \scrL (L2(\BbbR )) is defined in (2.21) and (2.27).
Here A \otimes \BbbM denotes the tensor product of an operator A \in \scrL (L2(\BbbR )) with a 4 \times 4
scalar matrix \BbbM (see, e.g., [5, section 12.4]), which yields an operator of \scrL ((L2(\BbbR ))4).
But it is actually enough to see this as a simple notation which makes the writing of
the proof below easier: A \otimes \BbbM is the block operator matrix obtained by multiplying
each scalar component of \BbbM by the operator A. One can easily verify that it satisfies
the basic property \| A\otimes \BbbM \| \leq \| A\| \| \BbbM \| .

The operator \BbbD \theta , given by (3.25), has the same definition as \BbbD just replacing
D by D\theta . The operators D and D\theta satisfy similar properties, given respectively in
Proposition 2.1 and in Propositions 3.8, 3.9, and 3.10.
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We show in this appendix properties (i) and (ii) of Theorems 2.2 and 3.7. These
results are properties of \BbbD and \BbbD \theta , respectively, that are based on the above properties
of D and D\theta . Let us give now the proof for (i) and (ii) of Theorem 2.2 for \BbbD ; the
same proof holds for Theorem 3.7 for \BbbD \theta .

As D and S are continuous operators on L2(\BbbR ), the continuity of \BbbD on (L2(\BbbR ))4
(part (i) of Theorem 2.2) is obvious.

To show part (ii) of Theorem 2.2 we consider \BbbD as an operator on (L2
0(\BbbR ))4. Let us

denote by \chi + (respectively, \chi  - ) the characteristic function of (a,+\infty ) (respectively,
( - \infty , - a)). We have, by using (2.26), that for \varphi \in L2

0(\BbbR )

\varphi = \chi +\varphi + \chi  - \varphi ,

and

(A.1) \| \varphi \| 2L2(\BbbR ) = \| \chi +\varphi \| 2L2(\BbbR ) + \| \chi  - \varphi \| 2L2(\BbbR ).

We can reformulate items (ii) and (iii) of Proposition 2.1 using these characteristic
functions as follows:

(ii) D\chi + = L\chi + + K\chi + \in \scrL (L2(\BbbR ), L2(a,+\infty )), where L,K \in \scrL (L2(a,+\infty ))
are such that \| L\| \leq 1/

\surd 
2 and K is compact.

(iii) D\chi  - \in \scrL (L2(\BbbR ), L2(a,+\infty )) is compact.

These properties, and that S \chi \pm = \chi \mp S, lead us to decompose \BbbD as an operator on
(L2

0(\BbbR ))4 as

\BbbD = \BbbL +\BbbK ,

where

\BbbK := (DS\chi + +K S \chi  - )\otimes \BbbJ + (S D\chi  - + S K\chi +)\otimes \BbbJ \ast 

and

\BbbL := (LS\chi  - )\otimes \BbbJ + (S L\chi +)\otimes \BbbJ \ast .

It follows from (ii) and (iii) that \BbbK is compact. Moreover, noting that \chi + L = L, so
that \chi  - S L = S L, we have

\BbbL = \chi + (LS \otimes \BbbJ ) \chi  - + \chi  - (S L\otimes \BbbJ \ast ) \chi +.

We deduce then by (A.1) that, for all \Phi \in (L2
0(\BbbR ))4,

\| \BbbL \Phi \| 2L2(\BbbR )4 = \| (LS \otimes \BbbJ )\chi  - \Phi \| 2L2(\BbbR )4 + \| (S L\otimes \BbbJ \ast )\chi +\Phi \| 2L2(\BbbR )4

\leq 1

2
\| \chi  - \Phi \| 2L2(\BbbR )4 +

1

2
\| \chi +\Phi \| 2L2(\BbbR )4 =

1

2
\| \Phi \| 2L2(\BbbR )4 ,

where we have used that \| LS \otimes \BbbJ \| \leq \| LS\| \| \BbbJ \| \leq 1/
\surd 
2, and the same bound for

S L\otimes \BbbJ \ast .

Appendix B. Technical lemmas. The lemmas in this annex (cf. [22, Lemma
4.4]) concern the complex functions

(B.1) R(\^z, z) := (\^z2 + z2)1/2, \^R(\^z, z) := (\^z + z2)1/2, z, \^z \in \BbbC .

Note that, as throughout the rest of the paper, all square roots in this appendix are
principal square roots, i.e., square roots with argument in the range ( - \pi /2, \pi , 2].
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Lemma B.1. We have

| R(t, z)| 2 \geq | cos(Arg(z))| 
\bigl( 
t2 + | z| 2

\bigr) 
, t \in \BbbR , z \in \BbbC , z \not = 0.

Proof. Let \gamma := Arg(z). We have

| R(t, z)| 4 = | t2 + | z| 2e2i\gamma | 2 = t4 + | z| 4 +2t2| z| 2 cos(2\gamma ) =
\bigl( 
t2  - | z| 2

\bigr) 2
+4t2| z| 2 cos2(\gamma ),

which yields

| R(t, z)| 4 \geq cos2(\gamma )
\Bigl[ \bigl( 
t2  - | z| 2

\bigr) 2
+ 4t2| z| 2

\Bigr] 
= cos2(\gamma )

\bigl( 
t2 + | z| 2

\bigr) 2
.

Lemma B.2. There exists a constant C > 0 such that, for all z \in \BbbC and t \in \BbbR ,

| R(t, z) - z| \leq C
t2

| z| 
, \Re (z) > 0, | z| \geq | t| ;

in particular

\Im (R(t, z)) \geq \Im (z) - C
t2

| z| 
, \Re (z) > 0, | z| \geq | t| .

Moreover, for all A > 0, there exists a constant C \prime > 0 such that, for  - A \leq t \leq A,

\Im (R(t, z)) \geq \Im (z) - C \prime , \Re (z) > 0.

Proof. Since the function z \mapsto \rightarrow (1 + z)1/2  - 1 is an analytic function of z in the
open unit disk that vanishes at the origin and is bounded in the closed disk, for some
constant C > 0,

(B.2) | (1 + z)1/2  - 1| \leq C| z| , | z| \leq 1.

Further, the function

z \mapsto \rightarrow (t2 + z2)1/2  - z

\biggl( 
1 +

t2

z2

\biggr) 1/2

is analytic in the domain \{ z \in \BbbC : \Re (z) > 0\} and it vanishes for z \in \BbbR with z > 0, so
that it vanishes everywhere in \{ z \in \BbbC : \Re (z) > 0\} . This implies that

R(t, z) - z = z

\Biggl[ \biggl( 
1 +

t2

z2

\biggr) 1/2

 - 1

\Biggr] 
, \Re (z) > 0.

Combined with (B.2), this proves the first inequality.
The second inequality is a direct consequence of the first since

| R(t, z) - z| \geq \Im (z  - R(t, z)).

Finally, the second inequality yields that, for any constant A > 0 and for all | t| \leq A \leq 
| z| , \Im (R(t, z)) \geq \Im (z) - CA. But a similar inequality also holds for | z| \leq A, possibly
with another constant, since | R(t, z)| \leq 

\surd 
2A for | t| \leq A and | z| \leq A.
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Remark B.3. Note that, replacing z by  - z, one directly deduces from the previous
lemma similar results valid for \Re (z) < 0. In particular,

| R(t, z) + z| \leq C
t2

| z| 
, \Re (z) < 0, | z| \geq | t| ,

and

\Im (R(t, z)) \geq  - \Im (z) - C
t2

| z| 
, \Re (z) < 0, | z| \geq | t| .

Analogous results can be proved in the more general case where the positive real
number t2 is replaced by any complex number \^z.

Lemma B.4. There exists a constant C > 0 such that, for all z, \^z \in \BbbC , z \not = 0,

| \^R(\^z, z) - z| \leq C

\bigm| \bigm| \bigm| \bigm| \^zz
\bigm| \bigm| \bigm| \bigm| , \Re (z) \geq | \^z| 1/2,

\Im ( \^R(\^z, z)) \geq \Im (z) - C

\bigm| \bigm| \bigm| \bigm| \^zz
\bigm| \bigm| \bigm| \bigm| , \Re (z) \geq | \^z| 1/2.(B.3)

Moroever, if U is a bounded subset of \BbbC and 0 < \gamma < \pi /2, there exists a constant
C \prime > 0 such that

\Im ( \^R(\^z, z)) \geq \Im (z) - C \prime , \^z \in U, | Arg(z)| < \gamma .

Proof. To proceed as in the proof of Lemma B.2, we just have to show that the
function

z \mapsto \rightarrow (\^z + z2)1/2  - z

\biggl( 
1 +

\^z

z2

\biggr) 1/2

is analytic in the domain \{ \Re (z) > | \^z| 1/2\} . For that, we have to check that the branch

cuts of the functions z \mapsto \rightarrow (\^z + z2)1/2 and z \mapsto \rightarrow 
\bigl( 
1 + \^z/z2

\bigr) 1/2
do not intersect the

domain \Re (z) > | \^z| 1/2.
This is clear for the function z \mapsto \rightarrow 

\bigl( 
1 + \^z/z2

\bigr) 1/2
. The branch cut of the function

z \mapsto \rightarrow (\^z + z2)1/2 is the subset of the hyperbola \{ z \in \BbbC : \Im (z2 + \^z) = 0\} where
\Re (z2 + \^z) \leq 0. The intersection of this hyperbola with the domain \Re (z) > | \^z| 1/2 is
the connected set

\^H = \{ z \in \BbbC : \Im (z2 + \^z) = 0, \Re (z) > | \^z| 1/2\} ,

which describes a curve which is asymptotic to the real axis when \Re (z) \rightarrow +\infty . To
conclude, we have to prove that for all z \in \^H, \Re (z2 + \^z) > 0. This is clearly true for
large values of \Re (z). If it were not true for all z \in \^H, there would exist some z0 \in \^H
such that \Re (z20+\^z) = 0. But then z20+\^z = 0, so that | z0| = | \^z| 1/2, which is impossible
since \Re (z0) > | \^z| 1/2.

An important application of the previous lemmas for our purpose is the following.

Lemma B.5. For \theta \in (0, \pi /2), let \tau \theta be defined by (3.11), and suppose that \theta 0 \in 
[\theta , \pi /2). Then, for w \in \BbbC such that w \not = 0 and  - \theta 0 + \theta \leq Arg(w) \leq \theta 0, and for all
s \in \BbbR , it holds that

(B.4) | R(w, \tau \theta (s) - a)| 2 \geq cos(\theta 0)(| w| 2+ | \tau \theta (s) - a| 2) \geq cos2(\theta 0)(| w| 2+ | \tau \theta (s) - a| 2).
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Further, there exists a constant C > 0, depending only on a and \theta , such that, for all
s \in \BbbR ,

(B.5) \Im (R(w, \tau \theta (s) - a)) \geq [cos(\theta  - Arg(w))]1/2\Im (w) - C \geq cos(\theta  - Arg(w))\Im (w) - C,

provided w \not = 0 and 0 \leq Arg(w) \leq \theta .

Proof. Let \gamma := Arg(w) \in [\theta  - \theta 0, \theta 0]. We have, for all s \in \BbbR ,

| R(w, \tau \theta (s) - a)| = | R(| w| ei\gamma , \tau \theta (s) - a)| = | R(| w| , (\tau \theta (s) - a)e - i\gamma )| .

Applying Lemma B.1 we obtain the inequality

(B.6) | R(w, \tau \theta (s) - a)| 2 \geq | cos(\^\gamma (s))| (| w| 2 + | \tau \theta (s) - a| 2),

where \^\gamma (s) := Arg
\bigl( 
(\tau \theta (s) - a)e - i\gamma 

\bigr) 
.

We now consider separately the three cases | s| \leq a, s > a, and s <  - a to derive
the two inequalities of the lemma.

Case 1. For | s| \leq a, since \tau \theta (s) = s, we have | cos(\^\gamma (s))| = cos(\gamma ) \geq cos(\theta 0) so
that (B.4) holds. Further, applying the third inequality of Lemma B.2 we get that
there exists a constant c > 0, dependent only on a, such that

(B.7) \Im (R(w, \tau \theta (s) - a)) = \Im (R(s - a,w)) \geq \Im (w) - c.

Case 2. For s > a, since \tau \theta (s) - a = \~sei\theta , where \~s := s - a > 0, and \^\gamma (s) = \theta  - \gamma 
so that | cos(\^\gamma (s))| = cos(\theta  - \gamma ) \geq cos(\theta 0), we have from (B.6) that

(B.8) | R(w, \tau \theta (s) - a)| 2 = | R(w, \~sei\theta )| 2 \geq cos(\theta  - \gamma )(| w| 2 + \~s2),

so that (B.4) holds. To see that (B.5) holds, for \gamma \in [0, \theta ] as required in the lemma,
note that

(B.9) Arg(R(w, \tau \theta (s) - a)) = Arg(R(| w| ei\gamma , \~sei\theta )) \in [\gamma , \theta ].

Combining this with the bound (B.8) we see that

\Im (R(w, \tau \theta (s) - a)) = \Im (R(w, \~sei\theta )) = | R(w, \~sei\theta )| sin
\bigl( 
Arg(R(w, \~sei\theta ))

\bigr) 
\geq 
\sqrt{} 
cos(\theta  - \gamma ) | w| sin(\gamma ) =

\sqrt{} 
cos(\theta  - \gamma )\Im (w).(B.10)

Case 3. For s <  - a, setting \~s :=  - (s+ a) > 0, we have \tau \theta (s) - a =  - (\~sei\theta + 2a)
and | cos(\^\gamma (s))| = | cos(\~\theta (s)  - \gamma )| , where \~\theta (\~s) := Arg(\~sei\theta + 2a). Since 0 \leq \~\theta (\~s) \leq \theta 
for \~s > 0, and \gamma \in [\theta  - \theta 0, \theta 0], we have

| cos(\^\gamma (s))| \geq min
0\leq \~\gamma \leq \theta 

| cos(\gamma  - \~\gamma )| \geq cos(\theta 0),

so that (B.4) follows from (B.6).
To show (B.5), for 0 \leq \gamma \leq \theta as required, we rewrite

R(w, \~sei\theta + 2a) = [R(w, \~sei\theta )2 + 4a2 + 4a\~sei\theta ]1/2

= \^R(4a2 + 4a\~sei\theta , R(w, \~sei\theta )),(B.11)

where \^R is defined by (B.1). Using (B.8) and (B.9) we see that

| R(w, \~sei\theta )| 2 \geq cos(\theta  - \gamma )\~s2 \geq cos(\theta )\~s2 and Arg(R(w, \~sei\theta )) \in [\gamma , \theta ].
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Thus, by (B.3) applied to (B.11), there exist constants C > 0 and \~s0 > 0, depending
only on \theta and a, such that

\Im (R(w, \~sei\theta + 2a)) \geq \Im (R(w, \~sei\theta )) - C
1 + \~s

\~s
,

for \~s \geq \~s0. Hence, and using (B.10), it follows that, for \~s \geq max(1, \~s0),

\Im (R(w, \~sei\theta + 2a)) \geq 
\sqrt{} 
cos(\theta  - \gamma )\Im (w) - 2C.

On the other hand, for \~s \leq max(1, \~s0) the last inequality of Lemma B.4 gives that
there exists a constant C \prime > 0, depending only on a, such that

\Im (R(w, \~sei\theta + 2a)) \geq \Im (w) - C \prime .

Gathering the two estimates we have that, for s <  - a,

(B.12) \Im (R(w, \tau \theta (s) - a))) \geq 
\sqrt{} 
cos(\theta  - \gamma )\Im (w) - max(C \prime , 2C).

We have shown that (B.4) holds in each case. That (B.5) also holds follows from
(B.7), (B.10), and (B.12), trivially noting that (cos(t))1/2 \geq cos(t) for t \in \BbbR .

Appendix C. Mapping properties of complex-scaled integral operators.
In this appendix we prove mapping properties of the analytic continuations into the
complex plane of the single- and double-layer potential operators \scrS j and \scrD j , defined
by (3.5) for j \in J0, 3K, \phi \in L2(\Sigma a), and | t| > a. The proofs use the bounds established
in Appendix B and bounds on the relevant Hankel functions. Specifically [35, Lemma
3.4], for some constant c1 > 0,

(C.1)
\bigm| \bigm| \bigm| e - izH

(1)
1 (z)

\bigm| \bigm| \bigm| \leq c1

\Bigl( 
| z|  - 1 + (1 + | z| ) - 1/2

\Bigr) 
, \Re (z) > 0.

Similarly, it follows from (3.6) and [30, section 10.2(ii)] that, for some constant c0 > 0,

(C.2)
\bigm| \bigm| \bigm| e - izH

(1)
0 (z)

\bigm| \bigm| \bigm| \leq c0M(| z| ), \Re (z) > 0,

where M(t) := log(1 + t - 1) + (1 + t) - 1/2, for t > 0.

Proposition C.1. For every \theta \in (0, \pi /2) there exists some constant C > 0, that
depends only on a, k, and \theta , such that, for j \in J0, 3K and every \phi \in L2(\Sigma a),

| \scrS j\phi (z)| \leq CM(| z  - a| ) exp( - k\Im (z)) \| \phi \| L2(\Sigma a),(C.3)

| \scrD j\phi (z)| \leq C | z  - a|  - 1/2 exp( - k\Im (z)) \| \phi \| L2(\Sigma a),(C.4)

for \Re (z) > a with | Arg(z  - a)| \leq \theta , while

| \scrS j\phi (z)| \leq CM(| z + a| ) exp(k\Im (z)) \| \phi \| L2(\Sigma a),(C.5)

| \scrD j\phi (z)| \leq C | z + a|  - 1/2 exp(k\Im (z)) \| \phi \| L2(\Sigma a),(C.6)

for \Re (z) <  - a with | Arg( - z  - a)| \leq \theta .

Proof. We prove only the bounds (C.3)--(C.4); the proofs of (C.5)--(C.6) are iden-
tical. Throughout this proof C will denote any positive constant depending only on
a, k, and \theta , not necessarily the same at each occurrence, and we assume that \bfity j \in \Sigma a

and that \Re (z) > a with | Arg(z  - a)| \leq \theta .
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It follows from (the analytic continuation of) (3.5) and the Cauchy--Schwarz in-
equality that

| \scrS j\phi (z)| \leq CI
1/2
\scrS \| \phi \| L2(\Sigma a), | \scrD j\phi (z)| \leq CI

1/2
\scrD \| \phi \| L2(\Sigma a),

where

I\scrS :=

\int 
\Sigma a

| \Phi (\bfitx j(z),\bfity j)| 2 ds(\bfity j), I\scrD :=

\int 
\Sigma a

\bigm| \bigm| \bigm| \bigm| \partial \Phi (\bfitx j(z),\bfity j)

\partial n(\bfity j)

\bigm| \bigm| \bigm| \bigm| 2 ds(\bfity j).

Now, from (C.2), and since \bfitx j(z) := (a, z) and recalling the definition (2.15),

| \Phi (\bfitx j(z),\bfity j)| \leq CM
\Bigl( 
k| R(a - yj1, z  - yj2)| 

\Bigr) \bigm| \bigm| \bigm| exp(ikR(a - yj1, z  - yj2))
\bigm| \bigm| \bigm| .

Further, it follows from Lemma B.2 that, for some constant Ca > 0 depending only
on a,

| exp(ikR(a - yj1, z  - yj2))| \leq exp( - k(\Im (z) - Ca)) \leq C exp( - k\Im (z))(C.7)

and from Lemma B.1 that

(C.8) | R(a - yj1, z  - yj2)| \geq cos(\theta )((a - yj1)
2 + | z  - a| 2)1/2 \geq cos(\theta )| z  - a| .

Thus, noting that M(t) is decreasing as t increases and that, for every c > 0, t \mapsto \rightarrow 
M(ct)/M(t) is a bounded function on t > 0, it follows that

| \Phi (\bfitx j(z),\bfity j)| \leq CM(| z  - a| ) exp( - k\Im (z)),

so that I
1/2
\scrS \leq CM(| z  - a| ) exp( - k\Im (z)) and (C.3) follows.

Writing n(\bfity j) = (n1(\bfity 
j), n2(\bfity 

j)) in the (xj1, x
j
2) coordinate system, we see that\bigm| \bigm| \bigm| \bigm| \partial \Phi (\bfitx j(z),\bfity j)

\partial n(\bfity j)

\bigm| \bigm| \bigm| \bigm| 
=
k

4

\bigm| \bigm| \bigm| H(1)
1 (kR(a - yj1, z  - yj2))

\bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| n1(\bfity j)(yj1  - a) + n2(\bfity 

j)(yj2  - z)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| R(a - yj1, z  - yj2)

\bigm| \bigm| \bigm| .(C.9)

How we bound the right-hand side of this equation depends on which side of \Sigma a the
point \bfity j is located. When \bfity j \in \Sigma j

a \subset \Sigma a the right-hand side of (C.9) vanishes, since
then yj1 = a and n2(\bfity 

j) = 0. When \bfity j \in \partial \Omega \setminus (\Sigma j
a \cup \Sigma j+1

a ) it holds that yj1 =  - a or

yj2 =  - a, so that | R(\bfitx j(z),\bfity j)| \geq C by Lemma B.1, from which it follows, applying
(C.1) and (C.7), that the right-hand side of (C.9) is bounded by C exp( - k\Im (z)). Thus

I\scrD \leq C exp( - 2k\Im (z)) + I\ast \scrD , where I
\ast 
\scrD :=

\int 
\Sigma j+1

a

\bigm| \bigm| \bigm| \bigm| \partial \Phi (\bfitx j(z),\bfity j)

\partial n(\bfity j)

\bigm| \bigm| \bigm| \bigm| 2 ds(\bfity j).

Finally, when \bfity j \in \Sigma j+1
a it holds that n1(\bfity 

j) = 0 and yj2 = a, so that, where \rho :=
| z  - a| , (C.9) says that\bigm| \bigm| \bigm| \bigm| \partial \Phi (\bfitx j(z),\bfity j)

\partial n(\bfity j)

\bigm| \bigm| \bigm| \bigm| = k

4

\bigm| \bigm| \bigm| H(1)
1 (kR(a - yj1, z  - yj2))

\bigm| \bigm| \bigm| \rho \bigm| \bigm| \bigm| R(a - yj1, z  - yj2)
\bigm| \bigm| \bigm| 

\leq C

\Biggl( 
\rho 

\rho 2 + (a - yj1)
2
+ (1 + \rho ) - 1/2

\Biggr) 
exp( - k\Im (z)),(C.10)
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using (C.1), (C.7), and (C.8). Thus

e2k\Im (z)I\ast \scrD \leq C

1 + \rho 
+ C

\int a

 - a

\rho 2 dyj1
(\rho 2 + (yj1  - a)2)2

\leq C

\rho 
,

where we see the final bound by substituting s := (yj1  - a)/\rho . Thus I
1/2
\scrD \leq C| z  - 

a|  - 1/2e - k\Im (z) and the bound (C.4) follows.

The final result of this appendix, and arguments we make elsewhere in the paper,
depend on a mapping property of the classical double-layer potential operator on the
boundary of a quadrant. For the convenience of the reader we state this key and
well-known result and sketch its proof in the following proposition.

Proposition C.2. Let h0 denote the kernel function h defined in (2.14) in the
case that k = 0, so that h0(x1, x2) = x1/(\pi (x

2
1 + x22)), for x1 > 0 and x2 \in \BbbR . For

\phi \in L2(0,+\infty ) define \frakD \phi : (0,+\infty ) \rightarrow \BbbC by

\frakD \phi (s) :=

\int +\infty 

0

h0(s, t)\phi (t) dt =
1

\pi 

\int +\infty 

0

s

s2 + t2
\phi (t) dt, s > 0.

Then \frakD \phi \in L2(0,+\infty ) and the mapping \frakD : L2(0,+\infty ) \rightarrow L2(0,+\infty ) is bounded,
with norm \| \frakD \| = 1/

\surd 
2.

Proof. This result can be proved by making use of the equivalence of (2.22) and
(2.23) in the static case k = 0 as in [12], or directly via Mellin transform methods
(cf. [41, 43]). Equivalently, we observe as in [17] that the mapping \frakI : L2(0,+\infty ) \rightarrow 
L2(\BbbR ), given by \frakI \phi (t) = \phi (e - t)e - t/2, t \in \BbbR , is unitary, as is the Fourier transform

operator \frakF : L2(\BbbR ) \rightarrow L2(\BbbR ), \phi \mapsto \rightarrow \widehat \phi , given by (2.9). Further [17], for \phi \in L2(\BbbR ),

\frakI \frakD \frakI  - 1\phi (s) =

\int 
\BbbR 
\kappa (s - t)\phi (t) dt, s \in \BbbR ,

where \kappa (\tau ) := e\tau /2/(\pi (e2\tau + 1)), for \tau \in \BbbR , and [17]

\widehat \kappa (\xi ) = 1\surd 
2\pi 

sinh(\pi (\xi  - i/2)/2)

sinh(\pi (\xi  - i/2))
, \xi \in \BbbR .

Thus, for \phi \in L2(\BbbR ),
\frakF \frakI \frakD \frakI  - 1\frakF  - 1\widehat \phi =

\surd 
2\pi \widehat \kappa \widehat \phi ,

so that [17], since \widehat \kappa \in L\infty (\BbbR ), \frakD is bounded on L2(0,+\infty ) with

\| \frakD \| = \| \frakF \frakI \frakD \frakI  - 1\frakF  - 1\| =
\surd 
2\pi \| \widehat \kappa \| L\infty (\BbbR ) =

\surd 
2\pi | \widehat \kappa (0)| = 1/

\surd 
2.

Remark C.3. Let D0 denote the operator D, given by (2.23) and (2.27), in the
case that k = 0, so that, for \phi \in L2(\BbbR ), D0\phi (t) = 0, for t \leq a, while

D0\phi (t) =

\int 
\BbbR 
h0(t - a, s - a)\phi (s) ds =

1

\pi 

\int 
\BbbR 

t - a

(t - a)2 + (s - a)2
\phi (t) dt, t > a,

where h0 is as defined in Proposition C.2. Then it is clear from the above proposition
that, as an operator on L2(a,+\infty ), D0 is bounded with norm \| D0\| = \| \frakD \| = 1/

\surd 
2,

and that D0 is also bounded as an operator on L2(\BbbR ), with norm \| D0\| = 2\| \frakD \| =
\surd 
2.
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Proposition C.4. For 0 < \theta < \pi /2 and j \in J0, 3K, \scrS j
\theta and \scrD j

\theta are continuous
operators from L2(\Sigma a) to L

2( - \infty , - a)\oplus L2(a,+\infty ), where, for \phi \in L2(\Sigma a),

\scrS j
\theta \phi (s) := \scrS j\phi (\tau \theta (s)), \scrD j

\theta \phi (s) := \scrD j\phi (\tau \theta (s)), | s| > a.

Proof. It is clear from the bounds (C.3) and (C.5) that \scrS j
\theta maps L2(\Sigma a) con-

tinuously to L2( - \infty , - a) \oplus L2(a,+\infty ). The analogous bounds (C.4) and (C.6) do
not quite imply that \scrD j

\theta \phi \in L2( - \infty , - a) \oplus L2(a,+\infty ) for each \phi \in L2(\Sigma a), since

(s  - a) - 1/2e - k sin(\theta )(s - a) is in L1(a,+\infty ) but not in L2(a,+\infty ). To see that \scrD j
\theta :

L2(\Sigma a) \rightarrow L2(a,+\infty ) and is continuous we argue as in the proof of Proposition C.1,
in particular using (C.9) and (C.10), and recalling that, except when \bfity j \in \Sigma j+1

a ,
the right-hand side of (C.9) is \leq C exp( - k\Im (z)). These bounds imply that, for
\phi \in L2(\Sigma a) and s > a,

| \scrD j
\theta \phi (s)| \leq Ce - k sin(\theta )(s - a)

\int 
\Sigma a

| \phi (\bfity j)| ds(\bfity j) + C

\int 
\Sigma j+1

a

| s - a| | \phi (\bfity j)| 
(s - a)2 + (yj1  - a)2

ds(\bfity j),

where, throughout the proof, C > 0 denotes a constant that depends only on \theta , a,
and k. Thus

| \scrD j
\theta \phi (s)| \leq Ce - k sin(\theta )(s - a)\| \phi \| L2(\Sigma a) + CD0\psi (s),

where D0 is as in Remark C.3 above, while \psi \in L2( - a, a) denotes the restriction of
| \phi | to \Sigma j+1

a , precisely \psi (yj1) := | \phi ((yj1, a))| , for  - a < yj1 < a, while \psi (yj1) := 0, for

| yj1| \geq a. Since (Remark C.3) D0 is a bounded operator on L2(\BbbR ), it follows that

\| \scrD j
\theta \phi \| L2(a,+\infty ) \leq C\| \phi \| L2(\Sigma a) + C\| D0\| \| \psi \| L2( - a,a) \leq C\| \phi \| L2(\Sigma a).

Arguing in the same way, we see that \scrD j
\theta is also continuous as a mapping from L2(\Sigma a)

to L2( - \infty , - a), and the proof is complete.
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