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This talk is concerned with BEM for time-harmonic acoustic scattering by infin-
itely thin, bounded planar screens. This is a classical subject [8]: our substantial
and novel twist is that we consider the case where the screen is fractal or has
fractal boundary. One motivation is the application of fractal antennae in electro-
magnetics [9]. For details, including numerical examples, see the preprint [5].

We work in n dimensions (n = 2 or 3), and suppose that the screen T' is a
bounded subset of 'y, := {z = (21, ..., 2,) € R™ : x,, = 0}, which we identify with
R™ 1. We restrict attention to the case that I' is either a closed or an open' subset
of I's, and set D := R™\ T'. We suppose that an incident wave u’, to be concrete
the plane wave u'(x) = exp(ikx - d), where d is a unit vector, is incident on the
screen I'. This incident wave is a solution of the Helmholtz equation

(1) Au+ k*u=0

for wavenumber k > 0. We focus on the case of a sound soft screen (see [3] for the
sound hard case). The scattering problem that we consider is the following:

Given the incident field u?, find the total field u € C2(D)NWy"'°°(D) such that (1)
holds in D, and v’ := u—u’ satisfies the standard Sommerfeld radiation condition.

Here ¢ € Wg’lOC(D) if x¢p € W}(D), for every x € C§°(R"™); and W (D) is the
closure of C§°(D) in W1(D), where W(D) := {¢ € L*(D) : V¢ € L*(D)}.

Our numerical scheme is: approximate the screen I' by a sequence I'; of more
regular screens; compute the solution for I'; by a conventional BEM with some
maximum element diameter h;. BEM computations for fractals have been carried
out previously using this methodology, for example in potential theory [6]. Our
main novelty is that we present the first results, conditions on the sequences I'; and
h;, that guarantee convergence in the limit j — co. Our focus is concrete fractal
scattering problems, but our numerical analysis ideas are widely applicable, to
general classes of BIEs/pseudo-differential equations on rough sets approximated
by sequences of more regular sets.

BIE and Variational Formulations. Our Sobolev space notations are those
of [7], and we identify H*(T's,) with H*(R"~!) in the obvious way. In particular,
for a closed set F' C I'wo, H} is the set of those ¢ € H*(I',) with support in F
and, for an open set O C T, H*(0) C H*(I's) is the closure of C§°(0) in the
H?(T's) norm. Both H{ and H*(0) are closed subspaces of H(I's,). Further,
H*(0) C HE, with equality if: O is C° [7]; [s| < 1/2 and O is C” except at a set
of countably many points in O that has only finitely many limit points [4]; O
has (n — 1)-dimensional Lebesgue measure zero, and O is ‘thick’ in the sense of
Triebel, the case for many open O with fractal boundaries, for example the interior
of the Koch snowflake [1]. See [4] for examples where equality does not hold.

1Strictly speaking ‘relatively open’, which we abbreviate as ‘open’ throughout.
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In the case when the screen I' is some C*° open subset of 'y, it is well-known
[8, 2] that u satisfies the above scattering problem iff

) ue) =)~ [ @) | 3¢| Gast). 2D,

r
and

(3) S[ou/on] = g == u'|r.

Here [0u/On] = [Ou/dz,] € H%l/z = H~Y/2(I") is the jump in the normal deriva-
tive across I'o, and S is the standard acoustic single-layer potential operator on T'.
S is an isomorphism from H~/2(T") to its dual space H'/2(T'), indeed is coercive
[2]. In particular, in the case that ' =T'p := {x € ' : |2| < R}, it holds that

(4) <S¢7¢>| > CR“¢H%—1/2(FR)’

for ¢ € H-1/2(T'g), where (-,-) is the usual extension of the inner product on
L?*(T') to a sesquilinear form on H*(T's,) x H *(I's) and Cg > 0 depends only
on k and R. This implies, by Lax-Milgram, that the variational form of (3)
has exactly one solution. Where a(¢,v) := (S¢, ), for ¢,9 € IA{T*I/Q(FR), this
variational form is to find [@u/On] € H~/2(I'g) such that

(5) a([0u/on].¥) = (g.4), ¥y € H/*(Tx).

These observations immediately give us well-posedness of variational formula-
tions of integral equations on arbitrary bounded open or closed subsets of I',. For
any such subset I' is contained in I'g for some R > 0. These variational formu-
lations are (5) with H~/2(T'g) replaced by the closed subspace V'C H~1/2(T'g),
where V := HF_1/2 if I is closed, V := H~Y2(T') if T is open. It is immediate from
(4) and the Lax-Milgram lemma that these variational formulations are well-posed.
This is part of the proof of the following theorem.

Theorem 1. [3, 5] If T C Ty is closed, (5), with H='/2(Tg) replaced by V =
HF_l/Z, has exactly one solution, and u given by (2) is the unique solution of the
above scattering problem. If I' C I'p is open, (5), with ﬁ_l/Q(FR) replaced by
V = H Y2(T'), has exactly one solution. Further, u given by (2) is the unique
solution of the above scattering problem, provided ﬁ_l/Q(F) = H%l/Q.

Generally the integral in (2) has to be interpreted as a duality pairing, in par-
ticular if I' is closed with empty interior, when the solution of (5) is zero iff

HF_I/2 = {0}, but Hr_l/2 # {0} if the Hausdorff dimension of I' exceeds n — 2 [4].

BEM and Mosco convergence. In our BEM we approximate I" by a sequence
of (more regular) open sets I'; C T'g, and we mesh I'; with what we call a pre-
convex mesh M; = {T} 1, ..., Tj n, }, meaning that: each element T}, C I'; is open;
I'; is the interior of the union of the closures of the elements T’ ¢; the convex hulls of
the elements are pairwise disjoint; and each 07 ¢ has (n—1)-dimensional Lebesgue
measure zero. Let h; := max,diam(7T},) and let th C LA(T;) ¢ HY*(Ty)
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denote the piecewise constant BEM approximation space, the set of functions that

are constant on each element Tj,. Then the solution ¢ := [Ou/On] € V and its
BEM approximation d);? € th are defined by
(6) a(¢,¥) = (g.¥), Y€V, a(d},¥)=(g,9), VeV

In contrast to usual BEM analysis, it need not be the case that th CcV,in
particular this cannot be the case if I' is closed with empty interior. However, V
and V] are both subsets of the larger Hilbert space H := H=Y2(Tg).

The following results are a partial extension to this case of the standard Céa’s
lemma. In these results we suppose temporarily that: H is any Hilbert space; (-, )
is the duality pairing on H* x H; a(-,-) is any continuous sesquilinear form on H;
V C H and th C H, for j € N, are closed subspaces; and ¢ € V and ¢? € th are
defined by (6), with g € H*. Further, — is norm and — weak convergence in H.

Theorem 2. Suppose that a(-,-) is invertible on V and, for some J € N, on th
for j > J (meaning that, for every g € H*, the problems (6) have exactly one
solution ¢ € V and ¢? € V}h, for j > J). Suppose also, for every g € H*, that

qb? — ¢ as j — oco. Then th Mosco-converges to V/ (th BN V'), meaning that
(i) for everyv €V and j € N there exists vj € th such that v; — v;
(ii) if jm is a subsequence of N, w;, € V' , and w;,, —w € H, then w € V.

Proof. Suppose v € V and define g € H* on V by (g,v¢) = a(v, ), for all p € V,
and then extend ¢ to a linear functional on H by Hahn-Banach. Then, where ¢,
(b;‘ are the solutions of (6), ¢? — ¢, but also ¢ = v by construction, so that (i)
holds. To see that (ii) holds suppose that a weakly convergent sequence wj, exists
as in (ii), but that its limit w ¢ V. Define g € H* on Cw + V by (g,cw + v) = ¢,
for c € C and v € V, and extend g to H by Hahn-Banach. Then, where ¢, d)? are
the solutions of (6), (,25? — ¢pasj—ooand ¢ =0 as (g,¢) =0, ¢ € V. Thus

a(qﬁg?m,wjm) — 0 as m — oo, but also a( ;Pm,wjm) = (g,w;,) — (g,w) = 1. O

Theorem 3. [5] Suppose that a(-,-) is invertible on V and is a compact perturba-
tion of a coercive form on H. Then, for every sequence of closed subspaces th CH
such that th M, V, there exists J € N such that a(-,-) is invertible on th for
j > J, and, for every g € H*, q’)? — ¢, where ¢ and qb? are the solutions of (6).

In the case that H =V (so th’ C V): (ii) holds automatically in Theorem 2;
V) My i m;(v) = infwevjh |lv—1]| — 0 as j — oo for every v € V; Theorem 3
reduces to (part of) a generalised Céa’s lemma. An open problem is what should
replace the standard Céa’s lemma quasi-optimality bound that H(b—qzﬁg? | < Cm;(¢)
in cases where th ¢ V?

Returning to the case in which (6) is the BIE variational problem and its BEM
approximation, with th the piecewise constant BEM approximation space on a
pre-convex mesh M;, it follows from the above theorems that the BEM approxi-
mation qb? — ¢ = [0u/dn] in H~Y/?(Tg), for every incident wave direction d, iff
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th M. V. The following theorem gives conditions in the case when I' is com-

pact (see [5] for the case I open) that guarantee that V)" M V. For e > 0,
T(e) := {x € T : dist(x,T") < €}.

Theorem 4. Let I'; be a sequence of open subsets of I'r such that I' C T'(¢;) C
I; C T(n;), for some 0 < €; < nj, with n; = 0 as j — oo. If HL is dense in
Hr_l/2 for some t € [—1/2,0] (always true for t = —1/2), and h; = o((e;) "),
theanhﬂ)VSO that(b?—nb as j — 0.

As an example, consider the n = 2 case when I' = C'x {0} C R?, where C C [0, 1]
is the Cantor set, with Hausdorff dimension d = log(2)/log(1/«), that is the
attractor of the iterated function system {si,ss}, where, for some « € (0,1/2),
s1(t) == at, sa2(t) == at +1—«, for t € R. Choose § € (0,—1 + 1/(2a)), set
Co = (—6,149), C; := 51(Cj_1) Us2(Cj_1), for j € N. Then Cy D C; D ... D C,
C =N;C;, and Cj is the disjoint union of 27 intervals of length H; := o’ (1 4 20).
Define I'; := C; x {0}, for j € N, choose i =i(j) € {1,...,j} and mesh I'; with a
pre-convex mesh M; of N; = 2" elements, each element comprising 27~ intervals
of length Hj, and each element having diameter h; = a(1 + 26a/~*). It is shown
in [1] that Hf is dense in H;l/Q for —1/2 <t < (d —1)/2, so that it follows from
the above theorem [5] that ¢ — ¢ in H~'/2(I'g) provided i(j) > pj for some
w>1—1og(2)/log(1l/a). An open problem is to prove convergence, even in the
case when i(j) = j, when § = 0 and C} is the standard prefractal sequence for C.
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