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This talk is concerned with BEM for time-harmonic acoustic scattering by infin-
itely thin, bounded planar screens. This is a classical subject [8]: our substantial
and novel twist is that we consider the case where the screen is fractal or has
fractal boundary. One motivation is the application of fractal antennae in electro-
magnetics [9]. For details, including numerical examples, see the preprint [5].

We work in n dimensions (n = 2 or 3), and suppose that the screen Γ is a
bounded subset of Γ∞ := {x = (x1, ..., xn) ∈ Rn : xn = 0}, which we identify with
Rn−1. We restrict attention to the case that Γ is either a closed or an open1 subset
of Γ∞, and set D := Rn \ Γ. We suppose that an incident wave ui, to be concrete
the plane wave ui(x) = exp(ikx · d), where d is a unit vector, is incident on the
screen Γ. This incident wave is a solution of the Helmholtz equation

(1) ∆u+ k2u = 0

for wavenumber k > 0. We focus on the case of a sound soft screen (see [3] for the
sound hard case). The scattering problem that we consider is the following:

Given the incident field ui, find the total field u ∈ C2(D)∩W 1,loc
0 (D) such that (1)

holds in D, and us := u−ui satisfies the standard Sommerfeld radiation condition.

Here ϕ ∈ W 1,loc
0 (D) if χϕ ∈ W 1

0 (D), for every χ ∈ C∞
0 (Rn); and W 1

0 (D) is the
closure of C∞

0 (D) in W 1(D), where W 1(D) := {ϕ ∈ L2(D) : ∇ϕ ∈ L2(D)}.
Our numerical scheme is: approximate the screen Γ by a sequence Γj of more

regular screens; compute the solution for Γj by a conventional BEM with some
maximum element diameter hj . BEM computations for fractals have been carried
out previously using this methodology, for example in potential theory [6]. Our
main novelty is that we present the first results, conditions on the sequences Γj and
hj , that guarantee convergence in the limit j → ∞. Our focus is concrete fractal
scattering problems, but our numerical analysis ideas are widely applicable, to
general classes of BIEs/pseudo-differential equations on rough sets approximated
by sequences of more regular sets.

BIE and Variational Formulations. Our Sobolev space notations are those
of [7], and we identify Hs(Γ∞) with Hs(Rn−1) in the obvious way. In particular,
for a closed set F ⊂ Γ∞, Hs

F is the set of those ϕ ∈ Hs(Γ∞) with support in F

and, for an open set O ⊂ Γ∞, H̃s(O) ⊂ Hs(Γ∞) is the closure of C∞
0 (O) in the

Hs(Γ∞) norm. Both Hs
F and H̃s(O) are closed subspaces of Hs(Γ∞). Further,

H̃s(O) ⊂ Hs
O
, with equality if: O is C0 [7]; |s| ≤ 1/2 and O is C0 except at a set

of countably many points in ∂O that has only finitely many limit points [4]; ∂O
has (n − 1)-dimensional Lebesgue measure zero, and O is ‘thick’ in the sense of
Triebel, the case for many open O with fractal boundaries, for example the interior
of the Koch snowflake [1]. See [4] for examples where equality does not hold.

1Strictly speaking ‘relatively open’, which we abbreviate as ‘open’ throughout.
1



In the case when the screen Γ is some C∞ open subset of Γ∞, it is well-known
[8, 2] that u satisfies the above scattering problem iff

(2) u(x) = ui(x)−
∫
Γ

Φ(x, y)

[
∂u

∂n

]
(y)ds(y), x ∈ D,

and

(3) S[∂u/∂n] = g := ui|Γ.

Here [∂u/∂n] = [∂u/∂xn] ∈ H
−1/2

Γ
= H̃−1/2(Γ) is the jump in the normal deriva-

tive across Γ∞ and S is the standard acoustic single-layer potential operator on Γ.

S is an isomorphism from H̃−1/2(Γ) to its dual space H1/2(Γ), indeed is coercive
[2]. In particular, in the case that Γ = ΓR := {x ∈ Γ∞ : |x| < R}, it holds that

(4) |⟨Sϕ, ϕ⟩| ≥ CR∥ϕ∥2H̃−1/2(ΓR)
,

for ϕ ∈ H̃−1/2(ΓR), where ⟨·, ·⟩ is the usual extension of the inner product on
L2(Γ∞) to a sesquilinear form on Hs(Γ∞)×H−s(Γ∞) and CR > 0 depends only
on k and R. This implies, by Lax-Milgram, that the variational form of (3)

has exactly one solution. Where a(ϕ, ψ) := ⟨Sϕ, ψ⟩, for ϕ, ψ ∈ H̃−1/2(ΓR), this

variational form is to find [∂u/∂n] ∈ H̃−1/2(ΓR) such that

(5) a ([∂u/∂n], ψ) = ⟨g, ψ⟩, ∀ψ ∈ H̃−1/2(ΓR).

These observations immediately give us well-posedness of variational formula-
tions of integral equations on arbitrary bounded open or closed subsets of Γ∞. For
any such subset Γ is contained in ΓR for some R > 0. These variational formu-

lations are (5) with H̃−1/2(ΓR) replaced by the closed subspace V ⊂ H̃−1/2(ΓR),

where V := H
−1/2
Γ if Γ is closed, V := H̃−1/2(Γ) if Γ is open. It is immediate from

(4) and the Lax-Milgram lemma that these variational formulations are well-posed.
This is part of the proof of the following theorem.

Theorem 1. [3, 5] If Γ ⊂ ΓR is closed, (5), with H̃−1/2(ΓR) replaced by V =

H
−1/2
Γ , has exactly one solution, and u given by (2) is the unique solution of the

above scattering problem. If Γ ⊂ ΓR is open, (5), with H̃−1/2(ΓR) replaced by

V = H̃−1/2(Γ), has exactly one solution. Further, u given by (2) is the unique

solution of the above scattering problem, provided H̃−1/2(Γ) = H
−1/2

Γ
.

Generally the integral in (2) has to be interpreted as a duality pairing, in par-
ticular if Γ is closed with empty interior, when the solution of (5) is zero iff

H
−1/2
Γ = {0}, but H−1/2

Γ ̸= {0} if the Hausdorff dimension of Γ exceeds n− 2 [4].

BEM and Mosco convergence. In our BEM we approximate Γ by a sequence
of (more regular) open sets Γj ⊂ ΓR, and we mesh Γj with what we call a pre-
convex mesh Mj = {Tj,1, ..., Tj,Nj

}, meaning that: each element Tj,ℓ ⊂ Γj is open;
Γj is the interior of the union of the closures of the elements Tj,ℓ; the convex hulls of
the elements are pairwise disjoint; and each ∂Tj,ℓ has (n−1)-dimensional Lebesgue

measure zero. Let hj := maxℓ diam(Tj,ℓ) and let V hj ⊂ L2(Γj) ⊂ H̃−1/2(Γj)
2



denote the piecewise constant BEM approximation space, the set of functions that
are constant on each element Tj,ℓ. Then the solution ϕ := [∂u/∂n] ∈ V and its
BEM approximation ϕhj ∈ V hj are defined by

(6) a(ϕ, ψ) = ⟨g, ψ⟩, ∀ψ ∈ V, a(ϕhj , ψ) = ⟨g, ψ⟩, ∀ψ ∈ V hj .

In contrast to usual BEM analysis, it need not be the case that V hj ⊂ V , in
particular this cannot be the case if Γ is closed with empty interior. However, V

and V hj are both subsets of the larger Hilbert space H := H̃−1/2(ΓR).
The following results are a partial extension to this case of the standard Céa’s

lemma. In these results we suppose temporarily that: H is any Hilbert space; ⟨·, ·⟩
is the duality pairing on H∗ ×H; a(·, ·) is any continuous sesquilinear form on H;
V ⊂ H and V hj ⊂ H, for j ∈ N, are closed subspaces; and ϕ ∈ V and ϕhj ∈ V hj are
defined by (6), with g ∈ H∗. Further, → is norm and ⇀ weak convergence in H.

Theorem 2. Suppose that a(·, ·) is invertible on V and, for some J ∈ N, on V hj
for j ≥ J (meaning that, for every g ∈ H∗, the problems (6) have exactly one
solution ϕ ∈ V and ϕhj ∈ V hj , for j ≥ J). Suppose also, for every g ∈ H∗, that

ϕhj → ϕ as j → ∞. Then V hj Mosco-converges to V (V hj
M−−→ V ), meaning that

(i) for every v ∈ V and j ∈ N there exists vj ∈ V hj such that vj → v;

(ii) if jm is a subsequence of N, wjm ∈ V hjm , and wjm ⇀ w ∈ H, then w ∈ V .

Proof. Suppose v ∈ V and define g ∈ H∗ on V by ⟨g, ψ⟩ = a(v, ψ), for all ψ ∈ V ,
and then extend g to a linear functional on H by Hahn-Banach. Then, where ϕ,
ϕhj are the solutions of (6), ϕhj → ϕ, but also ϕ = v by construction, so that (i)
holds. To see that (ii) holds suppose that a weakly convergent sequence wjm exists
as in (ii), but that its limit w ̸∈ V . Define g ∈ H∗ on Cw + V by ⟨g, cw + v⟩ = c,
for c ∈ C and v ∈ V , and extend g to H by Hahn-Banach. Then, where ϕ, ϕhj are

the solutions of (6), ϕhj → ϕ as j → ∞ and ϕ = 0 as ⟨g, ψ⟩ = 0, ψ ∈ V . Thus

a(ϕhjm , wjm) → 0 as m→ ∞, but also a(ϕhjm , wjm) = ⟨g, wjm⟩ → ⟨g, w⟩ = 1. �

Theorem 3. [5] Suppose that a(·, ·) is invertible on V and is a compact perturba-
tion of a coercive form on H. Then, for every sequence of closed subspaces V hj ⊂ H

such that V hj
M−−→ V , there exists J ∈ N such that a(·, ·) is invertible on V hj for

j ≥ J , and, for every g ∈ H∗, ϕhj → ϕ, where ϕ and ϕhj are the solutions of (6).

In the case that H = V (so V hj ⊂ V ): (ii) holds automatically in Theorem 2;

V hj
M−−→ V iff mj(v) := infψ∈V h

j
∥v−ψ∥ → 0 as j → ∞ for every v ∈ V ; Theorem 3

reduces to (part of) a generalised Céa’s lemma. An open problem is what should
replace the standard Céa’s lemma quasi-optimality bound that ∥ϕ−ϕhj ∥ ≤ Cmj(ϕ)

in cases where V hj ̸⊂ V ?
Returning to the case in which (6) is the BIE variational problem and its BEM

approximation, with V hj the piecewise constant BEM approximation space on a
pre-convex mesh Mj , it follows from the above theorems that the BEM approxi-

mation ϕhj → ϕ = [∂u/∂n] in H̃−1/2(ΓR), for every incident wave direction d, iff
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V hj
M−−→ V . The following theorem gives conditions in the case when Γ is com-

pact (see [5] for the case Γ open) that guarantee that V hj
M−−→ V . For ϵ > 0,

Γ(ϵ) := {x ∈ Γ∞ : dist(x,Γ) < ϵ}.

Theorem 4. Let Γj be a sequence of open subsets of ΓR such that Γ ⊂ Γ(ϵj) ⊂
Γj ⊂ Γ(ηj), for some 0 < ϵj < ηj, with ηj → 0 as j → ∞. If Ht

Γ is dense in

H
−1/2
Γ for some t ∈ [−1/2, 0] (always true for t = −1/2), and hj = o((ϵj)

−2t),

then V hj
M−−→ V so that ϕhj → ϕ as j → ∞.

As an example, consider the n = 2 case when Γ = C×{0} ⊂ R2, where C ⊂ [0, 1]
is the Cantor set, with Hausdorff dimension d = log(2)/ log(1/α), that is the
attractor of the iterated function system {s1, s2}, where, for some α ∈ (0, 1/2),
s1(t) := αt, s2(t) := αt + 1 − α, for t ∈ R. Choose δ ∈ (0,−1 + 1/(2α)), set
C0 := (−δ, 1 + δ), Cj := s1(Cj−1) ∪ s2(Cj−1), for j ∈ N. Then C0 ⊃ C1 ⊃ ... ⊃ C,
C = ∩jCj , and Cj is the disjoint union of 2j intervals of length Hj := αj(1 + 2δ).
Define Γj := Cj × {0}, for j ∈ N, choose i = i(j) ∈ {1, ..., j} and mesh Γj with a
pre-convex mesh Mj of Nj = 2i elements, each element comprising 2j−i intervals
of length Hj , and each element having diameter hj = αi(1 + 2δαj−i). It is shown

in [1] that Ht
Γ is dense in H

−1/2
Γ for −1/2 ≤ t < (d− 1)/2, so that it follows from

the above theorem [5] that ϕhj → ϕ in H̃−1/2(ΓR) provided i(j) > µj for some
µ > 1− log(2)/ log(1/α). An open problem is to prove convergence, even in the
case when i(j) = j, when δ = 0 and Cj is the standard prefractal sequence for C.
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