Convergence of boundary element methods on fractals SIMON N. CHANDLER-WILDE

(joint work with David P. Hewett, Andrea Moiola, Jeanne Besson)

This talk is concerned with BEM for time-harmonic acoustic scattering by infinitely thin, bounded planar screens. This is a classical subject [8]: our substantial and novel twist is that we consider the case where the screen is fractal or has fractal boundary. One motivation is the application of fractal antennae in electromagnetics [9]. For details, including numerical examples, see the preprint [5].

We work in n dimensions (n = 2 or 3), and suppose that the screen Γ is a bounded subset of $\Gamma_{\infty} := \{x = (x_1, ..., x_n) \in \mathbb{R}^n : x_n = 0\}$, which we identify with \mathbb{R}^{n-1} . We restrict attention to the case that Γ is either a closed or an open¹ subset of Γ_{∞} , and set $D := \mathbb{R}^n \setminus \overline{\Gamma}$. We suppose that an incident wave u^i , to be concrete the plane wave $u^i(x) = \exp(ikx \cdot d)$, where d is a unit vector, is incident on the screen Γ . This incident wave is a solution of the Helmholtz equation

(1)
$$\Delta u + k^2 u = 0$$

for wavenumber k > 0. We focus on the case of a sound soft screen (see [3] for the sound hard case). The scattering problem that we consider is the following:

Given the incident field u^i , find the total field $u \in C^2(D) \cap W_0^{1,\text{loc}}(D)$ such that (1) holds in D, and $u^s := u - u^i$ satisfies the standard Sommerfeld radiation condition. Here $\phi \in W_0^{1,\text{loc}}(D)$ if $\chi \phi \in W_0^1(D)$, for every $\chi \in C_0^{\infty}(\mathbb{R}^n)$; and $W_0^1(D)$ is the closure of $C_0^{\infty}(D)$ in $W^1(D)$, where $W^1(D) := \{\phi \in L^2(D) : \nabla \phi \in L^2(D)\}.$

Our numerical scheme is: approximate the screen Γ by a sequence Γ_j of more regular screens; compute the solution for Γ_j by a conventional BEM with some maximum element diameter h_j . BEM computations for fractals have been carried out previously using this methodology, for example in potential theory [6]. Our main novelty is that we present the first results, conditions on the sequences Γ_j and h_j , that guarantee convergence in the limit $j \to \infty$. Our focus is concrete fractal scattering problems, but our numerical analysis ideas are widely applicable, to general classes of BIEs/pseudo-differential equations on rough sets approximated by sequences of more regular sets.

BIE and Variational Formulations. Our Sobolev space notations are those of [7], and we identify $H^s(\Gamma_{\infty})$ with $H^s(\mathbb{R}^{n-1})$ in the obvious way. In particular, for a closed set $F \subset \Gamma_{\infty}$, H_F^s is the set of those $\phi \in H^s(\Gamma_{\infty})$ with support in Fand, for an open set $O \subset \Gamma_{\infty}$, $\tilde{H}^s(O) \subset H^s(\Gamma_{\infty})$ is the closure of $C_0^{\infty}(O)$ in the $H^s(\Gamma_{\infty})$ norm. Both H_F^s and $\tilde{H}^s(O)$ are closed subspaces of $H^s(\Gamma_{\infty})$. Further, $\tilde{H}^s(O) \subset H_{\overline{O}}^s$, with equality if: O is C^0 [7]; $|s| \leq 1/2$ and O is C^0 except at a set of countably many points in ∂O that has only finitely many limit points [4]; ∂O has (n-1)-dimensional Lebesgue measure zero, and O is 'thick' in the sense of Triebel, the case for many open O with fractal boundaries, for example the interior of the Koch snowflake [1]. See [4] for examples where equality does not hold.

¹Strictly speaking 'relatively open', which we abbreviate as 'open' throughout.

In the case when the screen Γ is some C^{∞} open subset of Γ_{∞} , it is well-known [8, 2] that u satisfies the above scattering problem iff

(2)
$$u(x) = u^{i}(x) - \int_{\Gamma} \Phi(x, y) \left[\frac{\partial u}{\partial n}\right](y) \mathrm{d}s(y), \quad x \in D,$$

and

(3)
$$S[\partial u/\partial n] = g := u^i|_{\Gamma}.$$

Here $[\partial u/\partial n] = [\partial u/\partial x_n] \in H_{\overline{\Gamma}}^{-1/2} = \widetilde{H}^{-1/2}(\Gamma)$ is the jump in the normal derivative across Γ_{∞} and S is the standard acoustic single-layer potential operator on Γ . S is an isomorphism from $\widetilde{H}^{-1/2}(\Gamma)$ to its dual space $H^{1/2}(\Gamma)$, indeed is coercive [2]. In particular, in the case that $\Gamma = \Gamma_R := \{x \in \Gamma_{\infty} : |x| < R\}$, it holds that

(4)
$$|\langle S\phi, \phi\rangle| \geq C_R \|\phi\|_{\widetilde{H}^{-1/2}(\Gamma_R)}^2,$$

for $\phi \in \widetilde{H}^{-1/2}(\Gamma_R)$, where $\langle \cdot, \cdot \rangle$ is the usual extension of the inner product on $L^2(\Gamma_{\infty})$ to a sequilinear form on $H^s(\Gamma_{\infty}) \times H^{-s}(\Gamma_{\infty})$ and $C_R > 0$ depends only on k and R. This implies, by Lax-Milgram, that the variational form of (3) has exactly one solution. Where $a(\phi, \psi) := \langle S\phi, \psi \rangle$, for $\phi, \psi \in \widetilde{H}^{-1/2}(\Gamma_R)$, this variational form is to find $[\partial u/\partial n] \in \widetilde{H}^{-1/2}(\Gamma_R)$ such that

(5)
$$a([\partial u/\partial n], \psi) = \langle g, \psi \rangle, \quad \forall \psi \in H^{-1/2}(\Gamma_R).$$

These observations immediately give us well-posedness of variational formulations of integral equations on *arbitrary* bounded open or closed subsets of Γ_{∞} . For any such subset Γ is contained in Γ_R for some R > 0. These variational formulations are (5) with $\tilde{H}^{-1/2}(\Gamma_R)$ replaced by the closed subspace $V \subset \tilde{H}^{-1/2}(\Gamma_R)$, where $V := H_{\Gamma}^{-1/2}$ if Γ is closed, $V := \tilde{H}^{-1/2}(\Gamma)$ if Γ is open. It is immediate from (4) and the Lax-Milgram lemma that these variational formulations are well-posed. This is part of the proof of the following theorem.

Theorem 1. [3, 5] If $\Gamma \subset \Gamma_R$ is closed, (5), with $\tilde{H}^{-1/2}(\Gamma_R)$ replaced by $V = H_{\Gamma}^{-1/2}$, has exactly one solution, and u given by (2) is the unique solution of the above scattering problem. If $\Gamma \subset \Gamma_R$ is open, (5), with $\tilde{H}^{-1/2}(\Gamma_R)$ replaced by $V = \tilde{H}^{-1/2}(\Gamma)$, has exactly one solution. Further, u given by (2) is the unique solution of the above scattering problem, provided $\tilde{H}^{-1/2}(\Gamma) = H_{\Gamma}^{-1/2}$.

Generally the integral in (2) has to be interpreted as a duality pairing, in particular if Γ is closed with empty interior, when the solution of (5) is zero iff $H_{\Gamma}^{-1/2} = \{0\}$, but $H_{\Gamma}^{-1/2} \neq \{0\}$ if the Hausdorff dimension of Γ exceeds n-2 [4].

BEM and Mosco convergence. In our BEM we approximate Γ by a sequence of (more regular) open sets $\Gamma_j \subset \Gamma_R$, and we mesh Γ_j with what we call a *preconvex* mesh $M_j = \{T_{j,1}, ..., T_{j,N_j}\}$, meaning that: each element $T_{j,\ell} \subset \Gamma_j$ is open; Γ_j is the interior of the union of the closures of the elements $T_{j,\ell}$; the convex hulls of the elements are pairwise disjoint; and each $\partial T_{j,\ell}$ has (n-1)-dimensional Lebesgue measure zero. Let $h_j := \max_{\ell} \operatorname{diam}(T_{j,\ell})$ and let $V_j^h \subset L^2(\Gamma_j) \subset \tilde{H}^{-1/2}(\Gamma_j)$ denote the piecewise constant BEM approximation space, the set of functions that are constant on each element $T_{j,\ell}$. Then the solution $\phi := [\partial u/\partial n] \in V$ and its BEM approximation $\phi_j^h \in V_j^h$ are defined by

(6)
$$a(\phi,\psi) = \langle g,\psi\rangle, \ \forall \psi \in V, \ a(\phi_j^h,\psi) = \langle g,\psi\rangle, \ \forall \psi \in V_j^h.$$

In contrast to usual BEM analysis, it need not be the case that $V_j^h \subset V$, in particular this cannot be the case if Γ is closed with empty interior. However, Vand V_j^h are both subsets of the larger Hilbert space $H := \tilde{H}^{-1/2}(\Gamma_R)$.

The following results are a partial extension to this case of the standard Céa's lemma. In these results we suppose temporarily that: H is any Hilbert space; $\langle \cdot, \cdot \rangle$ is the duality pairing on $H^* \times H$; $a(\cdot, \cdot)$ is any continuous sesquilinear form on H; $V \subset H$ and $V_j^h \subset H$, for $j \in \mathbb{N}$, are closed subspaces; and $\phi \in V$ and $\phi_j^h \in V_j^h$ are defined by (6), with $g \in H^*$. Further, \rightarrow is norm and \rightharpoonup weak convergence in H.

Theorem 2. Suppose that $a(\cdot, \cdot)$ is invertible on V and, for some $J \in \mathbb{N}$, on V_j^h for $j \geq J$ (meaning that, for every $g \in H^*$, the problems (6) have exactly one solution $\phi \in V$ and $\phi_j^h \in V_j^h$, for $j \geq J$). Suppose also, for every $g \in H^*$, that $\phi_j^h \to \phi$ as $j \to \infty$. Then V_j^h Mosco-converges to V ($V_j^h \xrightarrow{\mathcal{M}} V$), meaning that

- (i) for every $v \in V$ and $j \in \mathbb{N}$ there exists $v_j \in V_j^h$ such that $v_j \to v$;
- (ii) if j_m is a subsequence of \mathbb{N} , $w_{j_m} \in V_{j_m}^h$, and $w_{j_m} \rightharpoonup w \in H$, then $w \in V$.

Proof. Suppose $v \in V$ and define $g \in H^*$ on V by $\langle g, \psi \rangle = a(v, \psi)$, for all $\psi \in V$, and then extend g to a linear functional on H by Hahn-Banach. Then, where ϕ , ϕ_j^h are the solutions of (6), $\phi_j^h \to \phi$, but also $\phi = v$ by construction, so that (i) holds. To see that (ii) holds suppose that a weakly convergent sequence w_{j_m} exists as in (ii), but that its limit $w \notin V$. Define $g \in H^*$ on $\mathbb{C}w + V$ by $\langle g, cw + v \rangle = c$, for $c \in \mathbb{C}$ and $v \in V$, and extend g to H by Hahn-Banach. Then, where ϕ , ϕ_j^h are the solutions of (6), $\phi_j^h \to \phi$ as $j \to \infty$ and $\phi = 0$ as $\langle g, \psi \rangle = 0$, $\psi \in V$. Thus $a(\phi_{j_m}^h, w_{j_m}) \to 0$ as $m \to \infty$, but also $a(\phi_{j_m}^h, w_{j_m}) = \langle g, w_{j_m} \rangle \to \langle g, w \rangle = 1$. □

Theorem 3. [5] Suppose that $a(\cdot, \cdot)$ is invertible on V and is a compact perturbation of a coercive form on H. Then, for every sequence of closed subspaces $V_j^h \subset H$ such that $V_j^h \xrightarrow{\mathcal{M}} V$, there exists $J \in \mathbb{N}$ such that $a(\cdot, \cdot)$ is invertible on V_j^h for $j \geq J$, and, for every $g \in H^*$, $\phi_j^h \to \phi$, where ϕ and ϕ_j^h are the solutions of (6).

In the case that H = V (so $V_j^h \subset V$): (ii) holds automatically in Theorem 2; $V_j^h \xrightarrow{\mathcal{M}} V$ iff $m_j(v) := \inf_{\psi \in V_j^h} ||v - \psi|| \to 0$ as $j \to \infty$ for every $v \in V$; Theorem 3 reduces to (part of) a generalised Céa's lemma. An **open problem** is what should replace the standard Céa's lemma quasi-optimality bound that $||\phi - \phi_j^h|| \leq Cm_j(\phi)$ in cases where $V_j^h \notin V$?

Returning to the case in which (6) is the BIE variational problem and its BEM approximation, with V_j^h the piecewise constant BEM approximation space on a pre-convex mesh M_j , it follows from the above theorems that the BEM approximation $\phi_j^h \to \phi = [\partial u / \partial n]$ in $\tilde{H}^{-1/2}(\Gamma_R)$, for every incident wave direction d, iff

 $V_j^h \xrightarrow{\mathcal{M}} V$. The following theorem gives conditions in the case when Γ is compact (see [5] for the case Γ open) that guarantee that $V_j^h \xrightarrow{\mathcal{M}} V$. For $\epsilon > 0$, $\Gamma(\epsilon) := \{x \in \Gamma_\infty : \operatorname{dist}(x, \Gamma) < \epsilon\}.$

Theorem 4. Let Γ_j be a sequence of open subsets of Γ_R such that $\Gamma \subset \Gamma(\epsilon_j) \subset \Gamma_j \subset \Gamma(\eta_j)$, for some $0 < \epsilon_j < \eta_j$, with $\eta_j \to 0$ as $j \to \infty$. If H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$ for some $t \in [-1/2, 0]$ (always true for t = -1/2), and $h_j = o((\epsilon_j)^{-2t})$, then $V_i^h \xrightarrow{\mathcal{M}} V$ so that $\phi_i^h \to \phi$ as $j \to \infty$.

As an example, consider the n = 2 case when $\Gamma = C \times \{0\} \subset \mathbb{R}^2$, where $C \subset [0, 1]$ is the Cantor set, with Hausdorff dimension $d = \log(2)/\log(1/\alpha)$, that is the attractor of the iterated function system $\{s_1, s_2\}$, where, for some $\alpha \in (0, 1/2)$, $s_1(t) := \alpha t, s_2(t) := \alpha t + 1 - \alpha$, for $t \in \mathbb{R}$. Choose $\delta \in (0, -1 + 1/(2\alpha))$, set $C_0 := (-\delta, 1 + \delta), C_j := s_1(C_{j-1}) \cup s_2(C_{j-1})$, for $j \in \mathbb{N}$. Then $C_0 \supset C_1 \supset \ldots \supset C$, $C = \cap_j C_j$, and C_j is the disjoint union of 2^j intervals of length $H_j := \alpha^j (1 + 2\delta)$. Define $\Gamma_j := C_j \times \{0\}$, for $j \in \mathbb{N}$, choose $i = i(j) \in \{1, ..., j\}$ and mesh Γ_j with a pre-convex mesh M_j of $N_j = 2^i$ elements, each element comprising 2^{j-i} intervals of length H_j , and each element having diameter $h_j = \alpha^i (1 + 2\delta \alpha^{j-i})$. It is shown in [1] that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$ for $-1/2 \leq t < (d-1)/2$, so that it follows from the above theorem [5] that $\phi_j^h \to \phi$ in $\widetilde{H}^{-1/2}(\Gamma_R)$ provided $i(j) > \mu j$ for some $\mu > 1 - \log(2)/\log(1/\alpha)$. An **open problem** is to prove convergence, even in the case when i(j) = j, when $\delta = 0$ and C_j is the standard prefractal sequence for C.

References

- A. Caetano, D. P. Hewett, and A. Moiola, Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets, arXiv:1904.05420, (2018).
- [2] S. N. Chandler-Wilde and D. P. Hewett, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, Integr. Equat. Oper. Th., 82 (2015), 423–449.
- [3] S. N. Chandler-Wilde and D. P. Hewett, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 50 (2018), 677–717.
- [4] S. N. Chandler-Wilde, D. P. Hewett, and A. Moiola, Sobolev spaces on non-Lipschitz subsets of Rⁿ with application to boundary integral equations on fractal screens, Integr. Equat. Operat. Th., 87 (2017), 179–224.
- [5] S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, and J. Besson, Boundary element methods for acoustic scattering by fractal screens, arXiv:1909.05547, (2019).
- [6] P. Jones, J. Ma, and V. Rokhlin, A fast direct algorithm for the solution of the Laplace equation on regions with fractal boundaries, J. Comput. Phys., 113 (1994), 35–51.
- [7] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, CUP, 2000.
- [8] E. P. Stephan, Boundary integral equations for screen problems in ℝ³, Integral Equations and Operator Theory 10 (1987), 236–257.
- [9] D. H. Werner and S. Ganguly, An overview of fractal antenna engineering research, IEEE Antenn. Propag. M., 45 (2003), 38–57.