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A WAVENUMBER INDEPENDENT BOUNDARY ELEMENT
METHOD FOR AN ACOUSTIC SCATTERING PROBLEM∗

S. LANGDON† AND S. N. CHANDLER-WILDE†

Abstract. In this paper we consider the impedance boundary value problem for the Helmholtz
equation in a half-plane with piecewise constant boundary data, a problem which models, for example,
outdoor sound propagation over inhomogeneous flat terrain. To achieve good approximation at high
frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary
element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance
and a special set of basis functions so that, on each element, the approximation space contains
polynomials (of degree ν) multiplied by traces of plane waves on the boundary. We prove stability

and convergence and show that the error in computing the total acoustic field is O(N−(ν+1) log1/2 N),
where the number of degrees of freedom is proportional to N logN . This error estimate is independent
of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level
of accuracy does not increase as the wavenumber tends to infinity.
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1. Introduction. High-frequency scattering problems are of enormous interest
to the mathematics, physics, and engineering communities, with applications to elec-
tromagnetic scattering, radar problems, high frequency acoustics, and geophysical
waves. Although these problems have a long pedigree, their numerical solution con-
tinues to pose considerable difficulties. Many problems of scattering of time-harmonic
acoustic or electromagnetic waves can be formulated as the Helmholtz equation

Δu + k2u = 0,(1.1)

in R
d\Ω, d = 2, 3, supplemented with appropriate boundary conditions. Here Ω is

the scattering object and k > 0 (the wavenumber) is an arbitrary positive constant,
proportional to the frequency of the incident wave.

Standard schemes for solving (1.1) become prohibitively expensive as k → ∞.
For standard boundary element or finite element schemes, where the approximation
space typically consists of piecewise polynomials, the number of degrees of freedom per
wavelength must remain fixed in order to maintain accuracy, with the rule of thumb
in the engineering literature a requirement for 6 to 10 elements per wavelength. Often
in applications this results in excessively large systems when the wavelength is small
compared to the size of the obstacle. These difficulties have been well documented;
see, for example, [44, 45]. For the finite element method the situation is arguably
worse in that additional pollution effects are known to be important [5, 33], these
being phase errors in wave propagation across the domain, so that the degrees of
freedom per wavelength need to increase somewhat to retain accuracy as k increases.

The development of more efficient numerical schemes for high frequency scatter-
ing problems has attracted much recent attention in the literature. In the case of
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boundary element methods, a great deal of effort has focused on the fast solution
of the large systems which arise, using preconditioned iterative methods (e.g., [22])
combined with fast multipole (e.g., [24, 25]) or fast Fourier transform based methods
(e.g., [9, 21]) to carry out the matrix-vector multiplications efficiently. The reduction
in the computing cost achieved by the use of these schemes increases the upper limit
on the frequency for which accurate results can be obtained in a reasonable time.
However, as the size of the system still grows at least linearly with k in two dimen-
sions (2D), quadratically in three dimensions (3D), this upper limit is not removed
altogether.

An increasingly popular approach in the literature for higher frequencies is to use
either a finite element or a boundary element method in which the approximation
space is enriched with plane wave or Bessel function solutions of (1.1), in order to
represent efficiently the highly oscillatory solution when k is large. This idea has been
applied to both finite element (e.g., [4, 13, 41, 29, 14, 43]) and boundary element
schemes [26, 1, 24, 44, 45, 20, 43, 27, 10, 46, 28]. Promising numerical results are
reported, but most of the papers are lacking in mathematical analysis, especially with
regard to how any error estimates depend on the wavenumber k. As the present paper
follows the same general approach of enriching the approximation space, we survey
this body of work in a little more detail.

The methods in this category fall approximately into three groups, distinguished
by how the enrichment is carried out. In one group the distinguishing feature is
that a large number of solutions of the Helmholtz equation are used to form the
approximation space. Most commonly the approximation space consists of standard
finite element basis functions multiplied by plane waves traveling in a large number
of directions, approximately uniformly distributed on the unit circle (in 2D) or sphere
(in 3D). This is the approach in the generalized finite element method of Babuška and
Melenk [4], the ultra weak variational formulation of Cessenat and Després [13, 14],
and the least squares method of Monk and Wang [41]; see also [43, 32, 37]. In
the boundary element context this approach is used in the microlocal discretization
method of de La Bourdonnaye et al. [26, 27] and in the work of Perrey-Debain et
al. [44, 45, 43, 46]. The theoretical analysis carried out (e.g., [4]) and computational
results (e.g., [43]) confirm that these methods converge very rapidly as the number
of plane wave directions used increases. Moreover, the computational results suggest
that to achieve a required accuracy, the number of degrees of freedom needed is
reduced by a large factor compared with conventional h-version finite or boundary
element methods. However, in the case of boundary element methods, while constants
of proportionality are reduced very significantly [44, 45, 43, 46], it is not clear that,
asymptotically, the number of degrees of freedom increases any less fast than linearly
with k for 2D problems, the same rate of increase as for conventional boundary element
methods.

At the other extreme, the second group of papers, using direct integral equation
methods, are distinguished by using only one solution of the Helmholtz equation to
enrich the approximation space, namely, the known incident field. This approach
amounts to applying conventional boundary element methods to the ratio of the total
field to the incident field, rather than to the total field directly. This simple idea,
employed for the impedance boundary value problem we consider in this paper in
[15], seems particularly appropriate in the case of smooth convex obstacles, as phys-
ical optics predicts that this ratio is approximately constant on the illuminated side
and approximately zero on the shadow side at high frequencies. This approach is
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used for smooth convex obstacles in 2D in [1], where a standard Galerkin boundary
element method with uniform mesh is applied to the ratio of the scattered field to
the incident field. In fact, this paper appears to be the first in which the dependence
of the error estimates on the wavenumber k is indicated. The error estimate stated
in [1] is that the relative error in the best approximation from a boundary element
space of piecewise polynomials of degree ≤ ν is O(hν)+O((hk1/3)ν+1). While clearly
better than the (at least) linear dependence on k of conventional boundary element
methods, the number of degrees of freedom needed to maintain accuracy is still pre-
dicted to grow like k1/3 as k increases, and moreover the analysis does not guarantee
that the Galerkin method solution is close to this best approximation in the limit as
k → ∞.

The method of [1] is applied in [24], where results for realistic 3D scatterers
are shown. This approach has also recently been applied in [10]. In this latter paper,
which focuses on 2D scattering by a sound-soft circular obstacle, the numerical scheme
is not completely defined. However, one of the main features of the numerical scheme
is that a coordinate stretching is carried out in a k-dependent neighborhood of the
shadow boundary (of length O(k−1/3)). The numerical results in [10, 11] for scattering
by a circle suggest that after this transformation, the slowly varying normal derivative
of the ratio of scattered to incident field can be approximated using Fourier series basis
functions in the L2 norm with a number of degrees of freedom which remains fixed
as the wavenumber k tends to infinity. The authors do not attempt to establish this
wavenumber independence theoretically by a rigorous error analysis.

The third group of papers is intermediate in approach between the first and second
groups, attempting to identify, by geometrical optics or geometrical theory of diffrac-
tion considerations or otherwise, the important wave propagation directions at high
frequency. They then incorporate the oscillatory part of this high-frequency asymp-
totics into the approximation space for the numerical solution. This is the approach
in the finite element method of Giladi and Keller [29] and in the boundary integral
equation method of Bruno, Geuzaine, and Reitich [12], our own recent work [20], and
the present paper. The paper [12], generalizing [10], considers specifically the case of
multiple scattering between two 2D convex obstacles and employs a Neumann series
approach, solving for each of the multiple scatters in turn, and factoring out a geo-
metric optics estimate of the main oscillatory behavior at each step. We remark that
the distinction between the second and third groups of papers is somewhat blurred
in that, arguably, for a smooth convex obstacle the only important wave direction to
include in the ansatz for the scattered field and its normal derivative on the boundary
is the incident wave direction.

The last two groups of papers have in common that, while the number of de-
grees of freedom may be reduced, very significantly, by incorporating the oscillatory
behavior of the solution, the work required to compute a typical matrix entry of the
linear system to be solved increases significantly. In particular, in boundary integral
equation based methods, a typical entry of the full system matrix corresponds to an
integration over a part of the boundary which is large in diameter compared to the
wavelength so that the integrand is highly oscillatory. The problem of efficient evalu-
ation of these integrals is tackled by the fast multipole method in [24]. In [10], ideas
from the method of stationary phase are used to reduce the support of the integrand,
and quadrature rules based on the trapezoidal rule, exponentially accurate for smooth
periodic functions, are employed. Numerical results using this approach for 2D scat-
tering by a circle are encouraging and appear to indicate a fixed computational cost as



WAVENUMBER INDEPENDENT BOUNDARY ELEMENT METHOD 2453

k tends to infinity. A somewhat similar approach for evaluating the integrals to that
of Bruno et al. [10] is employed for scattering by smooth 3D convex scatterers in [28].
We note that there has been considerable recent interest in the efficient evaluation of
highly oscillatory integrals for a variety of applications; see [34, 35] and the references
therein.

As an instance of the third group of papers, the authors and Ritter recently
proposed [20] a new high-frequency boundary element method for the specific problem
of 2D acoustic scattering by an inhomogeneous impedance plane. For this new scheme
it was shown [20] that the number of degrees of freedom needed to maintain accuracy
as k → ∞ grows only logarithmically with k. This appears to be the best theoretical
estimate to date for a numerical method for a scattering problem in terms of the
dependence on the wavenumber.

In this paper we will be concerned with the numerical solution of the same prob-
lem, proposing modifications of the numerical scheme of [20]. For our modified scheme
we are able to show, employing somewhat more elaborate arguments than those of [20],
that for a fixed number of degrees of freedom the error is bounded independently of
the wavenumber k. To our knowledge, this is the first such numerical analysis result
for any scattering problem.

The problem we will consider is one of acoustic scattering of an incident wave by a
planar surface with spatially varying acoustical surface impedance. This problem has
attracted much attention in the literature (see, for example, [17, 30, 31, 16, 21, 6, 48]),
both in its own right and also as a model of the scattering of an incident acoustic
or electromagnetic wave by an infinite rough surface [8, 47, 36, 7]. In the case in
which there is no variation in the acoustical properties of the surface or the incident
field in some fixed direction parallel to the surface, the problem is effectively two-
dimensional. Adopting Cartesian coordinates 0x1x2x3, let this direction be that of
the x3-axis and the surface be the plane x2 = 0. Assuming further that the incident
wave and scattered fields are time harmonic, the total acoustic field ut ∈ C(U)∩C2(U)
then satisfies (1.1) in U := {(x1, x2) ∈ R

2 : x2 > 0}, supplemented with the impedance
boundary condition

∂ut

∂x2
+ ikβut = f on Γ := {(x1, 0) : x1 ∈ R}(1.2)

with f ≡ 0, where k = ω/c > 0. Here ω = 2πμ, μ is the frequency of the incident
wave and c is the speed of sound in U . The acoustic pressure at time t, position
(x1, x2, x3), is then given by Re(e−iωtut(x)) for x = (x1, x2) ∈ U .

In outdoor sound propagation, the relative surface admittance β depends on the
frequency and the ground properties and is often assumed in modeling to be piecewise
constant and constant outside some finite interval [a, b] (see, for example, [17, 30, 31]),
with β taking a different value for each ground surface type (grassland, forest floor,
road pavement, etc. [3]). Thus, for some real numbers a = t0 < t1 < · · · < tn = b, the
relative surface admittance at (x1, 0) on Γ is given by

β(x1) =

{
βj , x1 ∈ (tj−1, tj ],
βc, x1 ∈ R\(t0, tn].

(1.3)

If the ground surface is to absorb rather than emit energy, the condition Reβ ≥ 0
must be satisfied. We assume throughout that, for some ε > 0,

Reβc ≥ ε, Reβj ≥ ε, |βc| ≤ ε−1, |βj | ≤ ε−1, j = 1, . . . , n.(1.4)
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Fig. 1.1. Acoustic scattering by an impedance boundary.

For simplicity of exposition, we restrict our attention to the case of plane wave
incidence, so that the incident field ui is given by ui(x) = exp[ik(x1 sin θ − x2 cos θ)],
where θ ∈ (−π/2, π/2) is the angle of incidence. The reflected or scattered part of the
wave field is u := ut − ui ∈ C(U) ∩C2(U), and this also satisfies (1.1) and (1.2) with

f(x1) := ikeikx1 sin θ(cos θ − β(x1)), x1 ∈ R.(1.5)

In Figure 1.1 we show scattering by a typical impedance plane. In this particular
example, the surface admittance β is given by

β(x1) =

{
0.505 − 0.3i, x1 ∈ (−5λ, 5λ],
1, x1 ∈ R\(−5λ, 5λ],

where λ = c/μ = 2π/k is the wavelength. There are discontinuities in impedance at
x1 = −5λ and at x1 = 5λ. The incident plane wave (θ = π/4 in this example) can
be seen in the top left and the scattered wave in the top right of Figure 1.1. This
scattered wave is a combination of reflected and diffracted rays. The diffracted rays,
propagating radially from the points (−5λ, 0) and (5λ, 0), can be seen more clearly in
the bottom right of Figure 1.1, where we have subtracted from the total field ut the
(known) total field in the case that β ≡ 1.

To achieve good approximations with a relatively low number of degrees of free-
dom, a boundary element method approach was used in [20] with ideas in the spirit
of the geometrical theory of diffraction (GTD) being used to identify and subtract off
the leading order behavior (namely, the incident and reflected rays) as k → ∞. The
remaining scattered wave (consisting of the rays diffracted at impedance discontinu-
ities as visible in the lower right corner of Figure 1.1) can then be expressed (on the
boundary Γ) as the product of the known oscillatory functions e±ikx1 and unknown
nonoscillatory functions denoted as f±

j . Rigorous bounds were established in [20] on
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the derivatives of the nonoscillatory functions f±
j both adjacent to and away from

discontinuities in impedance. Using these bounds a Galerkin method was developed,
using a graded mesh with elements very large compared to the wavelength away from
discontinuities in β, in order to take advantage of the smooth behavior of f±

j away
from these points, and a special set of basis functions so that on each element the
approximation space consists of polynomials (of degree ν) multiplied by e±ikx1 , so as
to obtain a piecewise polynomial representation of the nonoscillatory functions f±

j .
Using this approach, it was shown in [20] that the error in computing an approxima-

tion to ut|Γ on [a, b] in the L2 norm is O(logν+3/2(k(b−a))M−(ν+1)), where M is the
number of degrees of freedom.

In this paper we consider the same problem as in [20] and use a similar approach.
We again subtract off the leading order behavior as k → ∞ on each interval and
express the scattered wave as a product of oscillatory and nonoscillatory functions.
However, here (in section 2) we prove sharper bounds on the nonoscillatory functions
f±
j away from impedance discontinuities. Based on these bounds, in section 3 we

propose a Galerkin method similar to that in [20], but with a different approximation
space. As in [20] this consists of polynomials (of degree ν) multiplied by e±ikx1 , but
unlike in [20] the choice of whether to use e+ikx1 or e−ikx1 on each element is dictated
by how close the element is to each impedance discontinuity, and the graded mesh
is chosen differently so that when k is large compared to N we do not discretize
the entire domain. This is key to achieving a convergence rate independent of the
wavenumber.

In section 3 we present an error analysis for this new approach, and we show
that the error in computing an approximation to ut|Γ on [a, b] is O(N−(ν+1) log1/2

min(N, k(b−a))), in the L2 norm, using a number of degrees of freedom proportional
to N log min(N, k(b − a)). As min(N, k(b − a)) ≤ N , this error estimate shows that
the error is bounded independently of k for a fixed number of degrees of freedom.
We believe this to be the first proof for any scattering problem that, for a fixed
discretization, the error does not grow as the size (in terms of number of wavelengths)
of the scattering object to be discretized tends to infinity. Moreover, for fixed k, as
N → ∞ the extra logarithmic dependence on N of the error estimate and the number
of degrees of freedom disappears, and we retain the same asymptotic convergence rate
as in [20].

Whereas in [20] results were proved regarding only the approximation of ut|Γ,
here we also show, in Theorem 3.6, that the total acoustic field at any point x ∈ U
can be computed to a similar order of accuracy. In section 4 we discuss the practical
implementation of our approach, and we present some numerical results demonstrat-
ing that the theoretically predicted behavior is achieved. Finally in section 5 we
present some conclusions and discuss possible future extensions of the ideas presented
here.

2. Integral equation formulation and regularity of the solution. In the
rest of this paper, ν is the degree of the polynomial approximations used in the
Galerkin method described in section 3, and ε, in the range 0 < ε < 1, is the constant
in the bound (1.4). Throughout Cε, Cν , and Cε,ν denote constants depending only on
ε, ν, and both ε and ν, respectively, each not necessarily the same at each occurence.

We begin by stating the problem we wish to solve precisely and reformulating
it as an integral equation. For H ≥ 0, let UH := {(x1, x2) : x2 > H} and ΓH :=
{(x1, H) : x1 ∈ R}. To determine the scattered field u uniquely we impose the
radiation condition proposed in [16] that, for some H > 0, u can be written in the



2456 S. LANGDON AND S. N. CHANDLER-WILDE

half plane UH as the double layer potential

u(x) =

∫
ΓH

∂H
(1)
0 (k|x− y|)

∂y2
φ(y) ds(y), x ∈ UH ,(2.1)

for some density φ ∈ L∞(ΓH), where H
(1)
0 is the Hankel function of the first kind of

order zero. The boundary value problem that we wish to solve for u is thus as follows.
Boundary value problem. Given k > 0 (the wavenumber), θ ∈ (−π/2, π/2)

(the angle of incidence) and β given by (1.3), find u ∈ C(U) ∩ C2(U) such that
(i) u is bounded in the horizontal strip U\UH for every H > 0;
(ii) u satisfies the Helmholtz equation (1.1) in U ;
(iii) u satisfies the impedance boundary condition (1.2) on Γ (in the weak sense

explained in [16]), with f ∈ L∞(Γ) given by (1.5);
(iv) u satisfies the radiation condition (2.1), for some H > 0 and φ ∈ L∞(ΓH).
For β∗ ∈ C with Reβ∗ > 0 let Gβ∗(x, y) denote the Green’s function for the

above problem in the case of constant relative surface impedance, which satisfies (1.2),
with β ≡ β∗ and f ≡ 0, and the standard Sommerfeld radiation and boundedness
conditions. Explicit representations and efficient calculation methods for Gβ∗ are
discussed in [18]. We shall require later the following bounds on Gβ∗ [20, (2.9),
(2.10)], which hold provided Reβ∗ ≥ ε and |β∗| ≤ ε−1:

|Gβ∗(x, y)| ≤ Cε(1 + kx2)

(k|x− y|)3/2 , x ∈ U, y ∈ Γ, x 	= y,(2.2)

|Gβ∗(x, y)| ≤ Cε(1 − log(k|x− y|)), x ∈ U, y ∈ Γ, 0 < k|x− y| ≤ 1.(2.3)

The following result is shown in [20].
Theorem 2.1. If u satisfies the above boundary value problem, then

u(x) =

∫
Γ

Gβ∗(x, y)(ik(β(y) − β∗)u(y) − f(y)) ds(y), x ∈ U.(2.4)

Conversely, if u|Γ ∈ BC(Γ) (the space of bounded and continuous functions on Γ)
and u satisfies (2.4), for some β∗ with Reβ∗ > 0, then u satisfies the above boundary
value problem. Moreover, (2.4) has exactly one solution with u|Γ ∈ BC(Γ), and hence
the boundary value problem has exactly one solution.

We denote the (known) solution of the above boundary value problem in the
special case β ≡ β∗ by uβ∗ and the corresponding total field by ut

β∗ := ui+uβ∗ . Then it
is easily seen [20] that uβ∗ is the plane wave uβ∗(x) = Rβ∗(θ) exp[ik(x1 sin θ+x2 cos θ)],
where Rβ∗(θ) := (cos θ − β∗)/(cos θ + β∗) is a reflection coefficient. Moreover, it is
shown rigorously in [20] that ut satisfies

ut(x) = ut
β∗(x) + ik

∫
Γ

Gβ∗(x, y)(β(y) − β∗)ut(y) ds(y), x ∈ U.(2.5)

We note that the approximate and numerical solution of this integral equation has
been extensively studied; see, for example, [42, 30, 17, 21, 20].

To make explicit the dependence on the wavenumber k in the results we obtain, it
is useful to introduce new, dimensionless variables. Thus, define φ(s) := ut((s/k, 0)),
ψβ∗(s) := ut

β∗((s/k, 0)), and κβ∗(s) := Gβ∗((s/k, 0), (0, 0)), s ∈ R. Then (2.5) re-
stricted to Γ is the following second kind boundary integral equation for φ:

φ(s) = ψβ∗(s) + i

∫ ∞

−∞
κβ∗(s− t)(β(t/k) − β∗)φ(t) dt, s ∈ R.(2.6)
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It is the main concern in the remainder of the paper to solve this equation nu-
merically in the case when β∗ = βc. Clearly,

ψβ∗(s) = (1 + Rβ∗(θ))eis sin θ,(2.7)

and it is shown in [20], using the representation for Gβ∗ in [18], that

κβ∗(s) =
i

2
H

(1)
0 (|s|) +

β∗2ei|s|

π

∫ ∞

0

t−1/2e−|s|t

(t− 2i)1/2(t2 − 2it− β∗2)
dt + Cβ∗ei|s|(1−â+)(2.8)

= ei|s|κ̌β∗(s), s ∈ R\{0},(2.9)

where â± := 1 ∓ (1 − β∗2)
1
2 , with Re{(1 − β∗2)1/2} ≥ 0,

Cβ∗ :=

⎧⎪⎪⎨
⎪⎪⎩

β∗

(1−β∗2)1/2 , Imβ∗ < 0,Re(â+) < 0,

β∗

2(1−β∗2)1/2 , Imβ∗ < 0,Re(â+) = 0,

0, otherwise,

and

κ̌β∗(s) :=
1

π

∫ ∞

0

r
1
2 (r − 2i)

1
2

r2 − 2ir − β∗2 e−r|s| dr + Cβ∗e−i|s|â+ , s ∈ R\{0}.(2.10)

Clearly the only dependence on k in the known terms in (2.6) is in the impedance
function β(t/k). We shall see shortly that the oscillating part of κβ∗(s) is contained
in the factor ei|s| in (2.9), κ̌β∗(s) becoming increasingly smooth as s → ±∞.

In view of (1.3), if we set β∗ = βc in (2.6), the interval of integration reduces to
the finite interval [ã, b̃], where ã := ka = kt0, b̃ := kb = ktn. Explicitly, (2.6) becomes

φ(s) = ψβc(s) + i

∫ b̃

ã

κβc(s− t)(β(t/k) − βc)φ(t) dt, s ∈ R,(2.11)

with ψβc
and κβc

given by (2.7) and (2.8), respectively, with β∗ = βc. This integral
equation is studied, in the case βc = 1, in [16]. From [16, Theorem 4.17] it follows
that

‖φ‖∞ ≤ Cε‖ψ1‖∞ = Cε|1 + R1(θ)| ≤ Cε cos θ.(2.12)

As in [20], and as discussed in the introduction, our numerical scheme for solv-
ing (2.11) is based on a consideration of the contribution of the reflected and diffracted
ray paths in the spirit of the GTD. In particular, to leading order as k → ∞, on the
interval (tj−1, tj) it seems reasonable to suppose that the total field φ ≈ ψβj

, the
total field there would be if the whole boundary had the admittance βj of the in-
terval (tj−1, tj), given explicitly by (2.7) with β∗ = βj . In fact, for s 	= t̃j := ktj ,
j = 0, . . . , n, it follows from theorem 2.3 below that φ(s) → Ψ(s) as k → ∞, where

Ψ(s) :=

{
ψβj

(s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

ψβc(s), s ∈ R\(t̃0, t̃n].
(2.13)

In our numerical scheme we compute the difference between φ and Ψ, i.e.,

Φ(s) := φ(s) − Ψ(s), s ∈ R,(2.14)
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which may be thought of as the correction to the leading order field due to scattering
from impedance discontinuities. Clearly, from (2.11) we have that

Φ = Ψβc

β + Kβc

β Φ,(2.15)

where Ψβc

β ∈ L∞(R) is given by Ψβc

β := ψβc
− Ψ + Kβc

β Ψ, and

Kβc

β χ(s) := i

∫ b̃

ã

κβc
(s− t)(β(t/k) − βc)χ(t) dt.

Equation (2.15) will be the integral equation that we solve numerically. By setting
β∗ = βj in (2.6) we obtain explicit expressions for Φ on each subinterval, namely,

Φ(s) = eisf+
j (s− t̃j−1) + e−isf−

j (t̃j − s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,(2.16)

where for j = 1, . . . , n, f+
j , f−

j ∈ C[0,∞) are defined by

f+
j (r) :=

∫ t̃j−1

−∞
κ̌βj (r + t̃j−1 − t)e−iti(β(t/k) − βj)φ(t) dt,(2.17)

f−
j (r) :=

∫ ∞

t̃j

κ̌βj
(t− t̃j + r)eiti(β(t/k) − βj)φ(t) dt(2.18)

with κ̌βj given by (2.10) with β∗ = βj . Similarly, from (2.11),

Φ(s) =

{
eisf+

n+1(s− t̃n), s > t̃n,

e−isf−
0 (t̃0 − s), s < t̃0,

(2.19)

where f+
n+1, f

−
0 are given by (2.17), (2.18), respectively, with β0 := βc and βn+1 := βc.

The first term in (2.16) can be viewed as an explicit summation of all the diffracted
rays scattered at the discontinuity in impedance at tj−1 which travel from left to
right along (tj−1, tj). Similarly, the other term in (2.16) is the contribution to the
diffracted field diffracted by the discontinuity at tj . In the remainder of this section,
so as to design an efficient discretisation for Φ, we investigate in detail the behavior

of the integrals f±
j . As a first step, we prove the following bounds on |κ̌(m)

β∗ (s)|, for
m = 0, 1, . . ., s ∈ (0,∞), which were stated without proof in [20].

Lemma 2.2. Suppose that Reβ∗ ≥ ε, |β∗| ≤ ε−1 hold for some ε > 0. Then, for
m = 0, 1, . . . , there exist constants cm, dependent only on m and ε, such that

|κ̌(m)
β∗ (s)| ≤

{
cm(1 + | log s|), m = 0,
cms−m, m ≥ 1,

for 0 < s ≤ 1,

|κ̌(m)
β∗ (s)| ≤ cms−

3
2−m for s > 1.

Proof. Throughout the proof, cm is a constant dependent only on m and ε, not
necessarily the same at each occurrence. Let

F (z) :=
z1/2(z − 2i)1/2

z2 − 2iz − β∗2 =
z1/2(z − 2i)1/2

(z − iâ+)(z − iâ−)
, z ∈ C,(2.20)

where Re z1/2,Re (z−2i)1/2 ≥ 0, and â± = 1∓
√

1 − β∗2, as before, with Re
√

1 − β∗2

≥ 0. Then F (z) has simple poles at z = iâ+ (which may lie near the real axis if Reâ+ is
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small) and z = iâ− (which cannot lie near the real axis as Reâ− ≥ 1). Recalling (2.10)
we then have, at least provided Reâ+ 	= 0 or Imâ+ > 0, so that the pole at iâ+ does
not lie on the positive real axis,

|κ̌(m)
β∗ (s)| ≤ 1

π

∣∣∣∣
∫ ∞

0

F (r)rme−rs dr

∣∣∣∣ +
∣∣Cβ∗ âm+ eImâ+s

∣∣ , s > 0.(2.21)

Now, since Reβ∗ ≥ ε, it is easy to see that Imâ+ = 0 if and only if β∗ ∈ [ε, 1],
and in this case Reâ+ ≥ 1 −

√
1 − ε2 = ε2/(1 +

√
1 − ε2) > ε2/2. We thus define

Sε := {β∗ : Reβ∗ ≥ ε, |β∗| ≤ ε−1,Reâ+ ≤ ε2/4}. Then Sε is closed and bounded, and

|Imâ+| and |
√

1 − β∗2| are both continuous and nonzero on Sε. Thus, for some η > 0,

|Imâ+| ≥ η and

∣∣∣∣
√

1 − β∗2

∣∣∣∣ ≥ η(2.22)

for all β∗ ∈ Sε.
Next, we note that if Reâ+ > 0, then Cβ∗ = 0, while if Reâ+ ≤ 0, then β∗ ∈ Sε,

so that (2.22) holds. Moreover, if Cβ∗ 	= 0, then Imβ∗ < 0, and so Imâ+ < 0. Since
also |â±| ≤ 1 +

√
1 + ε−2, we see that∣∣Cβ∗ âm+ eImâ+s

∣∣ ≤ cme−ηs, s > 0.

We turn to bounding the first term on the right-hand side of (2.21). To do this
we consider the two cases |Reâ+| > ε2/4 and |Reâ+| ≤ ε2/4 separately.

First, suppose |Reâ+| > ε2/4. Then

|F (r)| ≤ Cεr
1/2, r > 0,(2.23)

and thus ∣∣∣∣
∫ ∞

0

F (r)rme−rs dr

∣∣∣∣ ≤ Cε

∫ ∞

0

rm+1/2e−rs dr ≤ cms−m−3/2, s > 0.(2.24)

This bound suffices when s > 1, but for 0 < s ≤ 1 we need a sharper bound.
We proceed by establishing bounds on the mth derivatives of the first two terms

on the right-hand side of (2.8) for 0 < s ≤ 1. It can easily be deduced from the
power series representations defining the Bessel functions that there exist constants
Cj , j = 0, . . . , such that, for 0 < z ≤ 1,

|H(1)
0 (z)| ≤ C0(1 + | log z|),(2.25) ∣∣∣∣ dmdzm

H
(1)
0 (z)

∣∣∣∣ ≤ Cmz−m, m = 1, 2, . . . .(2.26)

Next note that, for 0 < s ≤ 1, the mth derivative of the second term in (2.8) has
absolute value not more than∣∣∣∣β∗2

π

∫ ∞

0

(i − t)me−stt−1/2 dt

(t− 2i)1/2(t2 − 2it− β∗2)

∣∣∣∣ ≤ ε−2

π

∫ ∞

0

(1 + t2)m/2e−stt−1/2 dt

(t2 + 4)1/4 |(t− iâ+)(t− iâ−)|(2.27)

≤ Cε

[∫ 1

0

t−1/2 dt +

∫ ∞

1

tm−1e−st dt

]
(2.28)

≤
{

Cε(1 − log s), m = 0,
cms−m, m = 1, 2, . . . .

(2.29)
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Combining (2.25), (2.26), and (2.29) and recalling (2.9) the result follows.
Now we consider the case 0 ≤ Reâ+ ≤ ε2/4. (The proof for the case −ε2/4 ≤

Reâ+ < 0 is similar.) As β ∈ Sε, (2.22) holds. If Imâ+ > 0, then the bounds (2.23)
and (2.28) hold and we proceed as above. If Imâ+ < 0, however, F (z) has a pole
at z = iâ+ with Re(iâ+) > η, 0 ≤ Im(iâ+) ≤ ε2/4. To bound the integrals on
the left-hand side of (2.24) and (2.27) in this case, uniformly in β∗, we first deform
the path of integration. Define Γε to be the semicircle, center (−Imâ+, 0), radius
η̃ := min(1/2, η), lying in the lower half plane. (Note that by (2.22), Rez > η/2 for
z ∈ Γε.) Let γε = [0,−Imâ+ − η/2]∪ [−Imâ+ + η/2,∞). Then, by Cauchy’s theorem,
it follows from (2.21) that, for Reâ+ > 0,

|κ̌(m)
β∗ (s)| ≤ 1

π

∣∣∣∣
∫
γε

F (r)rme−rs dr +

∫
Γε

F (r)rme−rs dr

∣∣∣∣ , s > 0.(2.30)

By continuity arguments, taking the limit Reâ+ → 0+ in (2.30), equation (2.30) holds
also for Reâ+ = 0. For r ∈ γε the bound (2.23) holds, and so the integral over γε is
bounded by the right-hand side of (2.24). Further,∣∣∣∣

∫
Γε

F (r)rme−rs dr

∣∣∣∣ ≤ πη

2
max
r∈Γε

|F (r)rme−rs| ≤ cme−ηs/2,

so we obtain the required bound for s ≥ 1. To obtain the desired bound for 0 < s ≤ 1
we proceed as in the case |Reâ+| > ε2/4, but deforming the path of integration as
above to bound the left-hand side of (2.27).

The following result is a slight sharpening of [20, Theorem 2.6], obtained by com-
bining the bounds in Lemma 2.2 and (2.12) with the representations (2.17) and (2.18).

Theorem 2.3. Suppose (1.4) holds for some ε > 0. Then, for r > 0, j = 1, . . . , n,
m = 0, 1, . . ., there exist constants cm, dependent only on m and ε, such that∣∣∣f±

j

(m)
(r)

∣∣∣ ≤ cm cos θEm(r),

where

Em(r) =

⎧⎨
⎩

1, m = 0,
1 − log r, m = 1,
r1−m, m ≥ 2,

for 0 < r ≤ 1,

Em(r) = r−
1
2−m for r > 1.

Remark. Using the identical argument it can easily be shown that |f+
n+1

(m)
(r)|,

|f−
0

(m)
(r)| ≤ cm cos θEm(r), r > 0, for m = 0, 1, . . ., where cm is the same constant

as in Theorem 2.3.
To prove the main result of this section, a sharper bound on |f±

j (r)| when r > 1
(Theorem 2.6), we require the bounds in the following two lemmas.

Lemma 2.4. Suppose p < −1 and q ≤ 0. Then there exists a constant C,
independent of r, such that, for r ≥ 1,∫ ∞

0

(t + r)p(1 + t)q dt ≤
{

Crp+q+1, q 	= −1,
Crp log(1 + r), q = −1.
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Proof. ∫ ∞

0

(t + r)p(1 + t)q dt ≤ rp
∫ r

0

(1 + t)q dt + rq
∫ ∞

r

(t + r)p dt,

and the result follows.
Lemma 2.5. Suppose q ≤ 0. Then there exists a constant C, independent of r

and D, such that, for r ≥ 1 and D > 0,

∫ 2D

0

(s + r)−3/2(1 + 2D − s)q ds ≤

⎧⎨
⎩

Cr−3/2, q < −1,
Cr−3/2 log(1 + r), q = −1,
Cr−1/2+q, −1 < q ≤ 0.

Proof. Splitting the integration range as [0, 2D] = [0, D] ∪ [D, 2D], and making
the change of variable t := 2D − s, we see that∫ 2D

0

(s + r)−3/2(1 + 2D − s)q ds ≤ IA + IB ,

where

IA := (1 + D)q
∫ D

0

(s + r)−3/2 ds, IB := (D + r)−3/2

∫ D

0

(1 + t)q dt.

Further,

IA =
2D(1 + D)q

r1/2(D + r)1/2((D + r)1/2 + r1/2)

≤ 2(1 + D)q+1

r1/2(D + r)
≤

{
2r−3/2, q ≤ −1,
2r−1/2+q, −1 < q ≤ 0.

(2.31)

For q 	= −1, IB = (1 + q)−1(D + r)−3/2((1 + D)q+1 − 1). Thus

|1 + q|IB ≤
{

r−3/2, q < −1,
r−1/2+q, −1 < q ≤ 0.

To bound IB in the case that q = −1 we need to consider the cases r ≥ D and r < D
separately. For r ≥ D,

IB = (D + r)−3/2 log(1 + D) ≤ r−3/2 log(1 + r).

For r < D we split the range of integration as [0, D] = [0, r] ∪ [r,D] and note that

(D + r)−3/2

∫ r

0

(1 + t)−1 dt ≤ r−3/2 log(1 + r),

(D + r)−3/2

∫ D

r

(1 + t)−1 dt ≤ (D − r)

(D + r)3/2(1 + r)
≤ r−3/2.

This completes the proof.
We are now ready to prove the main result of this section, the following sharper

bound on |f±
j (r)| when r > 1, on which the design of our numerical scheme is based.

Theorem 2.6. Suppose (1.4) holds for some ε > 0. Then for r > 1, j = 0, . . . , n,

∣∣f+
j+1(r)

∣∣ , ∣∣f−
j (r)

∣∣ ≤ Cε
r−3/2n3

cos θ
.
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Proof. First we consider f−
j (r). Recalling (2.14), for j = 0, . . . , n, f−

j (r) =
I1(r) + I2(r), where

I1(r) :=

∫ ∞

t̃j

κ̌βj (t− t̃j + r)eiti(β(t/k) − βj)Ψ(t) dt,

I2(r) :=

∫ ∞

t̃j

κ̌βj (t− t̃j + r)eiti(β(t/k) − βj)Φ(t) dt.

We begin by establishing a bound on I1. Recalling (2.13) and (2.7),

I1(r) =

n∑
m=j+1

i(βm − βj)

∫ t̃m

t̃m−1

κ̌βj (t− t̃j + r)(1 + Rβm(θ))eit(sin θ+1) dt

+ i(βc − βj)

∫ ∞

t̃n

κ̌βj
(t− t̃j + r)(1 + Rβc

(θ))eit(sin θ+1) dt.

Integrating by parts,

I1(r) =

n∑
m=j+1

(βm − βj)(1 + Rβm(θ))

sin θ + 1

([
κ̌βj

(t− t̃j + r)eit(sin θ+1)
]t̃m
t̃m−1

−
∫ t̃m

t̃m−1

κ̌′
βj

(t− t̃j + r)eit(sin θ+1) dt

)

+
(βc − βj)(1 + Rβc(θ))

sin θ + 1

([
κ̌βj

(t− t̃j + r)eit(sin θ+1)
]∞
t̃n

−
∫ ∞

t̃n

κ̌′
βj

(t− t̃j + r)eit(sin θ+1) dt

)
.

Now from Lemma 2.2, for r > 1,∣∣κ̌βj (t̃m − t̃j + r)
∣∣ ≤ Cε(t̃m − t̃j + r)−3/2 ≤ Cεr

−3/2, m = j, . . . , n.

Thus, noting that |1+Rβm(θ)| = |2 cos θ/(cos θ+βm)| ≤ 2 cos θ/ε and |βm−βj | ≤ 2/ε,
and using Lemma 2.2 again to bound κ̌′

βj
, we have, for r > 1,

|I1(r)| ≤ Cε
(n + 1 − j) cos θ

sin θ + 1

[
r−3/2 +

∫ ∞

t̃j

∣∣∣κ̌′
βj

(t− t̃j + r)
∣∣∣ dt

]

≤ Cε
r−3/2n cos θ

sin θ + 1
.(2.32)

We next bound I2. Recalling (2.16) and (2.19),

|I2(r)| ≤
2

ε

⎛
⎝J+

∞ +

n∑
m=j+1

(J+
m + J−

m)

⎞
⎠ ,(2.33)

where

J+
m :=

∫ t̃m

t̃m−1

|κ̌βj
(t− t̃j + r)||f+

m(t− t̃m−1)|dt,(2.34)

J−
m :=

∫ t̃m

t̃m−1

|κ̌βj (t− t̃j + r)||f−
m(t̃m − t)|dt,(2.35)

J+
∞ :=

∫ ∞

t̃n

|κ̌βj (t− t̃j + r)||f+
n+1(t− t̃n)|dt.(2.36)
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First we bound J+
∞. Applying Lemma 2.2 and Theorem 2.3, and noting the remark

after Theorem 2.3, for r > 1,

J+
∞ ≤ Cε cos θ

∫ ∞

t̃n

(t− t̃n + r)−3/2(1 + t− t̃n)−1/2 dt ≤ Cεr
−1 cos θ,

making the change of variables s = t − t̃n and using Lemma 2.4 with p = −3/2 and
q = −1/2. Arguing similarly, J+

m ≤ Cεr
−1 cos θ. To bound J−

m, again using Lemma 2.2
and Theorem 2.3 we have

J−
m ≤ Cε cos θ

∫ t̃m

t̃m−1

(t− t̃m−1 + r)−3/2(1 + t̃m − t)−1/2 dt ≤ Cεr
−1 cos θ,

making the change of variables s = t − t̃m−1 and using Lemma 2.5 with D = (t̃m −
t̃m−1)/2 and q = −1/2. Thus, recalling (2.33), |I2(r)| ≤ Cεr

−1n cos θ.
So far in the argument we have shown that, for r > 1, j = 0, . . . , n,

|f−
j (r)| ≤ |I1(r)| + |I2(r)| ≤ Cεr

−1n cos θ

(
r−1/2

1 + sin θ
+ 1

)
.(2.37)

Proceeding in a similar way, we can show that, for r > 1, j = 1, . . . , n + 1,

|f+
j (r)| ≤ Cεr

−1n cos θ

(
r−1/2

1 − sin θ
+ 1

)
.(2.38)

Next, starting from (2.33)–(2.36), we can use (2.37) and (2.38) to establish sharper
bounds on I2 and hence a sharper bound on f−

j . Using (2.38) in (2.36), we have for
r > 1 that

J+
∞ ≤ Cεn cos θ

∫ ∞

t̃n

(t− t̃n + r)−3/2(1 + t− t̃n)−1

(
1 +

(1 + t− t̃n)−1/2

1 − sin θ

)
dt

≤ Cεr
−3/2n cos θ(log(1 + r) + (1 − sin θ)−1),(2.39)

making the change of variable s = t − t̃n and using Lemma 2.4 with p = −3/2 and
q = −1,−3/2. Arguing similarly, we can show that

J+
m ≤ Cεr

−3/2n cos θ(log(1 + r) + (1 − sin θ)−1), m = j + 1, . . . , n,(2.40)

and, using (2.37) and Lemma 2.2,

J−
m ≤ Cεn cos θ

∫ t̃m

t̃m−1

(t− t̃m−1 + r)−3/2(1 + t̃m − t)−1

(
1 +

(1 + t̃m − t)−1/2

1 + sin θ

)
dt

≤ Cεr
−3/2n cos θ(log(1 + r) + (1 + sin θ)−1),

where again we make the change of variable s = t − t̃m−1 and use Lemma 2.5 with
D := (t̃m − t̃m−1)/2 and q = −1,−3/2. Combining this with (2.39) and (2.40),

|I2(r)| ≤ Cεr
−3/2n2 cos θ(log(1 + r) + (1 − sin2 θ)−1) ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.

Thus

|f−
j (r)| ≤ |I1| + |I2| ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.(2.41)
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In a similar way it can be proved that

|f+
j (r)| ≤ Cε

r−3/2 log(1 + r)n2

cos θ
.(2.42)

To obtain sharper bounds still on f±
j , removing the dependence on log r in (2.41),

(2.42), we note that it follows from (2.41) and (2.42) that∫ ∞

0

|f±
j (r)|dr ≤ Cε

n2

cos θ
.

Using this bound and the bounds in Lemma 2.2 in (2.34)–(2.36), we see that

J±
m ≤ Cεr

−3/2

∫ ∞

0

|f±
m(s)|ds ≤ Cε

r−3/2n2

cos θ
,

and an identical bound holds on J+
∞. Hence, recalling (2.33),

|I2(r)| ≤ Cε
r−3/2n3

cos θ
,

and combining this with (2.32) the desired bound on f−
j (r) follows. The desired

bound on f+
j (r) follows similarly.

3. Galerkin method and error analysis. Our aim now is to design a numer-
ical method for the solution of (2.15), supported by a full error analysis, for which the
error bounds are independent of the parameter k(b− a). To achieve this we will work
in L2(R), and to that end we introduce the operator Q : L∞(R) → L2(R) defined by

Qχ(s) :=

{
χ(s), s ∈ [ã, b̃] = [t̃0, t̃n],

0, s ∈ R\[ã, b̃].

Writing Φ∗ := QΦ, and noting that Kβc

β Φ = Kβc

β Φ∗, it follows from (2.15) that

Φ∗ −QKβc

β Φ∗ = QΨβc

β ,(3.1)

where Φ∗ and QΨβc

β are both in L2(R).

Existence and boundedness of (I −QKβc

β )−1 : L2(R) → L2(R) are shown in [20],

where it is also shown that the unique solution Φ∗ = (I − QKβc

β )−1QΨβc

β of (3.1)

satisfies ‖Φ∗‖2 ≤ C1‖QΨβc

β ‖2 with C1 = Reβc/(Reβc − ‖β − βc‖∞) if

|βj − βc| < Reβc, j = 1, . . . , n,(3.2)

and C1 unspecified but dependent only on ε and βc if (3.2) does not hold.
To approximate the solution Φ∗ = QΦ of (3.1) we use a Galerkin method, similar

to that in [20], but with the approximation space chosen in a different way so as to
take advantage of our stronger bound on Φ (Theorem 2.6), in order to remove the
dependence of the error estimates on k(b− a). As in [20], on each interval (t̃j−1, t̃j),
we approximate f+

j (s− t̃j−1) and f−
j (t̃j − s) in (2.16) by conventional piecewise poly-

nomial approximations, rather than approximating Φ itself. This makes sense since,
as quantified by Theorems 2.3 and 2.6, the functions f+

j (s− t̃j−1) and f−
j (t̃j − s) are
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smooth (their higher order derivatives are small) away from t̃j−1 and t̃j , respectively.
To approximate f+

j (s− t̃j−1) and f−
j (t̃j − s) we use piecewise polynomials of a fixed

degree ν ≥ 0 on a graded mesh, the mesh grading adapted in an optimal way to the

bounds on f±
j

(m)
in Theorems 2.3 and 2.6.

To begin, we define a graded mesh on a general interval [0, A], for A > 1, with
more mesh points near 0 and less near A. This mesh is identical to that defined in
[20, Definition 3.1]; the difference here is in how we choose the value of A when we
apply this mesh to the discretization of each interval [t̃j−1, t̃j ]. Whereas in [20], A
was chosen as a function of t̃j − t̃j−1 and the functions f±

j were approximated over

the whole interval [t̃j−1, t̃j ], here we choose A as a function of N , a positive integer,
where the size of N also determines the density of the mesh on [0, A]. A judicious
choice of A = A(N), as described below, allows us to discretize only a subsection of
the interval [t̃j−1, t̃j ], near to t̃j−1 and t̃j , and to approximate f±

j by zero away from
these points without harming the overall accuracy of our scheme. This is the key to
achieving error estimates independent of k(b− a).

The mesh we use also has similarities to that used in [40] for solving (1.1) in the
case k = iτ , τ > 0, τ large, where a similar idea of only discretizing a subsection of
the boundary as k → ∞ was used to establish error bounds independent of τ .

Definition 3.1. For A > 1 and N = 2, 3, . . . , the mesh ΛN,A = {y0, . . . , yN+NA
}

consists of the points yi = (i/N)q, i = 0, . . . , N , where q = 1+2ν/3, together with the
points yN+j = Aj/NA , j = 1, . . . , NA, where NA = �N∗�, the smallest integer ≥ N∗,
and N∗ := − logA/[q log(1 − 1/N)].

The mesh ΛN,A is a composite mesh with a polynomial grading on [0, 1] and a
geometric grading on [1, A]. The definition of NA ensures a smooth transition between
the two parts of the mesh. Precisely, the definition of N∗ is such that, in the case
NA = N∗, it holds that yN+1/yN = yN/yN−1, so that yN−1 and yN are points in
both the polynomial and the geometric parts of the mesh. It is shown in [20] that the
total number of subintervals N + NA of the mesh on [0, A] satisfies

N + NA <

(
3

2
+

logA

q

)
N.(3.3)

Let ΠA,N,ν := {σ : σ|[yj−1,yj ] is a polynomial of degree ≤ ν, j = 1, . . . , N + NA},
and let P ∗

N be the orthogonal projection operator from L2(0, A) to ΠA,N,ν , so that

setting p = P ∗
Nf minimizes ‖f − p‖2,(0,A) = {

∫ A

0
|f(t) − p(t)|2 dt}1/2 over all p ∈

ΠA,N,ν . The mesh ΛN,A is designed to approximately minimize ‖f−P ∗
Nf‖2,(0,A), over

all meshes with the same number of points, when f ∈ C∞(0,∞) with |f (ν+1)(s)| =
Eν+1(s), s > 0, where Eν+1 is defined as in Theorem 2.3. It achieves this by ensuring
that ‖f − P ∗

Nf‖2,(yj−1,yj) is approximately constant for j = 1, . . . , N + NA, i.e., by
equidistributing the approximation error over the intervals of the mesh, as shown in
the proof of the following result in [20].

Theorem 3.2. Suppose that f ∈ C∞(0,∞) and |f ′(s)| ≤ E1(s), |f (ν+1)(s)| ≤
Eν+1(s), s > 0. Then

‖f − P ∗
Nf‖2,(0,A) ≤ Cν

1 + log1/2 A

Nν+1
.

To form our approximation space on [ã, b̃] = [t̃0, t̃n], we begin by defining

Aj := min

{
α
n3Nν+1

cos θ
, t̃j − t̃j−1

}
,(3.4)
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where α ≥ 1 is an absolute constant which will be determined experimentally and
whose value will not effect the asymptotic convergence rates. The reason for our
choice of Aj will become apparent shortly, in the proof of Theorem 3.3. Clearly
Aj is bounded independently of k(b − a). As we are primarily concerned with the
high-frequency problem, we assume for simplicity that Aj ≥ 1, j = 1, . . . , n, but
remark that in the case Aj < 1 for any value of j then we can define ΛN,Aj

to be an
appropriate subset of the points yi, and this will give similar approximation properties
to those achieved using ΛN,Aj when Aj ≥ 1. For j = 1, . . . , n we define the two meshes

Ω+
j := t̃j−1 + ΛN,Aj , Ω−

j := t̃j − ΛN,Aj . Letting e±(s) := e±is, s ∈ R, we then define
VΩ+

j
,ν := {σe+ : σ ∈ ΠΩ+

j
,ν}, VΩ−

j
,ν := {σe− : σ ∈ ΠΩ−

j
,ν}, for j = 1, . . . , n, where

ΠΩ+
j
,ν := {σ ∈ L2(R) : σ|(t̃j−1+ym−1,t̃j−1+ym) is a polynomial of degree ≤ ν, for

m = 1, . . . , N + NAj , and σ|
R\[t̃j−1,t̃j−1+Aj ]

= 0},
ΠΩ−

j
,ν := {σ ∈ L2(R) : σ|(t̃j−ym,t̃j−ym−1)

is a polynomial of degree ≤ ν, for

m = 1, . . . , N + NAj , and σ|
R\[t̃j−Aj ,t̃j ]

= 0},

and y0, . . . , yNAj
are the points of the mesh ΛN,Aj . Our approximation space is then

VΩ,ν , the linear span of
⋃

j=1,...,n{VΩ+
j
,ν ∪ VΩ−

j
,ν}.

Let (·, ·) denote the usual inner product on L2(R), (χ1, χ2) :=
∫∞
−∞ χ1(s)χ2(s) ds,

χ1, χ2 ∈ L2(R). Then our Galerkin method approximation, ΦN ∈ VΩ,ν , is defined by

(ΦN , ρ) = (Ψβc

β , ρ) + (Kβc

β ΦN , ρ) for all ρ ∈ VΩ,ν ;(3.5)

equivalently,

ΦN − PNKβc

β ΦN = PNQΨβc

β ,(3.6)

where PN : L2(R) → VΩ,ν is the operator of orthogonal projection onto VΩ,ν . Equation
(3.5) can be written explicitly as a system of MN linear algebraic equations, where
MN , the dimension of VΩ,ν , i.e., the number of degrees of freedom, is given by

MN = 2(ν + 1)

n∑
j=1

(N + NAj ).(3.7)

By (3.3) and (3.4), where Ā := (A1 . . . An)1/n ≤ (A1 + · · · + An)/n,

MN < (ν + 1)Nn

[
3+

2 log Ā

q

]
≤ (ν + 1)Nn

[
3+

2

q
log min

(
αn3Nν+1

cos θ
,
k(b− a)

n

)]
.

Using an argument similar to that for the Galerkin method in [20], it can be
shown that, provided (3.2) holds, (3.6) is uniquely solvable and

‖(I − PNKβc

β )−1‖ ≤ Reβc

Reβc − ‖β − βc‖∞
,(3.8)

and thus

‖Φ∗ − ΦN‖2 ≤ Reβc

Reβc − ‖β − βc‖∞
‖Φ∗ − PNΦ∗‖2.(3.9)
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There is also a description in [20] of how one can perturb the original problem in such
a way that the condition (3.2) on β is forced to hold, and the solution of the perturbed
problem is arbitrarily close in an arbitrarily large bounded region to the solution of
the original problem. In any case, numerical results in [38] suggest that the Galerkin
scheme we propose is stable and convergent even when (3.2) does not hold. In this
case the bound (3.9) does not apply, however.

It remains to bound ‖Φ∗−PNΦ∗‖2, showing that our approximation space is well
adapted to approximate Φ∗. We introduce P+

N and P−
N , the orthogonal projection

operators from L2(R) onto ΠΩ+,ν and ΠΩ−,ν , respectively, where ΠΩ±,ν denotes the
linear span of

⋃
j=1,...,n ΠΩ±

j
,ν . We also define

f+(s) :=

{
f+
j (s− t̃j−1), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

0, s ∈ R\(t̃0, t̃n],

f−(s) :=

{
f−
j (t̃j − s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

0, s ∈ R\(t̃0, t̃n].

Then we have the following error estimate.
Theorem 3.3. If (1.4) holds for some ε > 0, then

‖f+ − P+
N f+‖2 ≤ Cε,ν

n1/2

Nν+1

(
1 + log1/2

(
min

(
α
n3Nν+1

cos θ
, k(b− a)

)))
,

where α is the constant in (3.4), and the identical bound holds on ‖f− − P−
N f−‖2.

Proof. We prove the result for ‖f+ − P+
N f+‖2, the bound on ‖f− − P−

N f−‖2 can
be proved in a similar way. Recalling (3.4),

‖f+ − P+
N f+‖2

2 = ‖f+ − P+
N f+‖2

2,(ã,b̃)

=

n∑
j=1

[
‖f+ − P+

N f+‖2
2,(t̃j−1,t̃j−1+Aj)

+ ‖f+ − P+
N f+‖2

2,(t̃j−1+Aj ,t̃j)

]
.

Now, by Theorems 2.3 and 3.2,

‖f+ − P+
N f+‖2,(t̃j−1,t̃j−1+Aj)

≤ Cε,ν cos θ
1 + log1/2 Aj

Nν+1
.

If αn3Nν+1/ cos θ ≥ t̃j − t̃j−1, then Aj = t̃j − t̃j−1, in which case

‖f+ − P+
N f+‖2,(t̃j−1+Aj ,t̃j)

= 0.

If αn3Nν+1/ cos θ < t̃j − t̃j−1, then Aj = αn3Nν+1/ cos θ, and then, recalling the
definition of ΠΩ+,ν and Theorem 2.6,

‖f+ − P+
N f+‖2

2,(t̃j−1+Aj ,t̃j)
= ‖f+‖2

2,(t̃j−1+Aj ,t̃j)
≤ Cε

n6

cos2 θ

∫ ∞

Aj

s−3 ds

= Cε
n6

2 cos2 θ
A−2

j =
Cε

2α2
N−2(ν+1),

and recalling that α ≥ 1 the result follows.
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To use the above error estimate, note from (2.16) that Φ∗ = e+f+ + e−f−. But
e+P

+
N f+ + e−P

−
N f− ∈ VΩ,ν , and PNΦ∗ is the best approximation to Φ∗ in VΩ,ν . So

‖Φ∗ − PNΦ∗‖2 ≤ ‖Φ∗ − (e+P
+
N f+ + e−P

−
N f−)‖2

= ‖e+(f+ − P+
N f+) + e−(f− − P−

N f−)‖2

≤ ‖e+‖∞‖f+ − P+
N f+‖2 + ‖e−‖∞‖f− − P−

N f−‖2.

Applying Theorem 3.3 we obtain the following result.
Theorem 3.4. If (1.4) holds for some ε > 0, then

‖Φ∗ − PNΦ∗‖2 ≤ Cε,ν
n1/2

Nν+1

(
1 + log1/2

(
min

(
α
n3Nν+1

cos θ
, k(b− a)

)))
,

where α is the constant in (3.4).
Combining this result with the stability bound (3.9) we obtain our final error

estimate for the approximation of Φ by ΦN .
Theorem 3.5. If (1.4) holds for some ε > 0, and (3.2) is satisfied, then

‖Φ−ΦN‖2,(ã,b̃) = ‖Φ∗−ΦN‖2 ≤ Cε,νn
1/2(1 + log1/2(min(αn3Nν+1/ cos θ, k(b− a))))

(Reβc − ‖β − βc‖∞)Nν+1
,

where α is the constant in (3.4). Further, the number of degrees of freedom MN

satisfies

MN ≤ CνNn

[
1 + log min

(
αn3Nν+1

cos θ
,
k(b− a)

n

)]
.

We finish by considering the computation of an approximation to ut throughout
the upper half plane U , once the Galerkin solution ΦN has been computed. Re-
calling (2.13) and (2.14) we define φN ∈ L2(ã, b̃), an approximation to φ on (ã, b̃),
by

φN (s) := ΦN (s) + ψβj (s), s ∈ (t̃j−1, t̃j ], j = 1, . . . , n,

where ψβj is given explicitly by (2.7). Then, recalling that ut((y1, 0)) = φ(ky1),
we define an approximation to ut by replacing ut(y) by its approximation φN (ky1)
in (2.5), to give the approximation ut

N defined by

ut
N (x) := ut

βc
(x) + ik

∫ b

a

Gβc(x, (y1, 0))(β(y1) − βc)φN (ky1) dy1.(3.10)

From (2.2) and (2.3), and using properties of standard single-layer potentials [23],
it follows that ut

N ∈ C2(U) ∩ C(U) and satisfies the Helmholtz equation (1.1) in U .
Further, from Theorem 3.5 we deduce the following error estimate.

Theorem 3.6. If (1.4) holds for some ε > 0, and (3.2) is satisfied, then

|ut(x) − ut
N (x)| ≤ Cε,νn

1/2(1 + log1/2(min(αn3Nν+1/ cos θ, k(b− a))))

(Reβc − ‖β − βc‖∞)Nν+1

for x ∈ U , where α is the constant in (3.4).
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Proof. Subtracting (3.10) from (2.5) and using the Cauchy–Schwarz inequality
and the definitions of Φ∗ and φN , we see that

|ut(x) − ut
N (x)| =

∣∣∣∣∣
∫ b̃

ã

Gβc(x, (t/k, 0))(β(t/k) − βc)(Φ(t) − ΦN (t)) dt

∣∣∣∣∣
≤ ‖β − βc‖∞

{∫ ∞

−∞
|Gβc

(x, (t/k, 0))|2 dt

}1/2

‖Φ − ΦN‖2,(ã,b̃).

Now, defining H = kx2 and using (2.2) we see that for H ≥ 1/2 it holds that∫ ∞

−∞
|Gβc(x, (t/k, 0))|2 dt ≤ Cε(1 + H)2

∫ ∞

−∞

dt

(t2 + H2)3/2

= 2Cε
(1 + H)2

H2

∫ ∞

0

ds

(1 + s2)3/2
≤ Cε

∫ ∞

0

ds

(1 + s2)3/2
.

Using (2.2) and (2.3) we see that, for 0 ≤ H < 1/2,

∫ ∞

−∞
|Gβc(x, (t/k, 0))|2 dt ≤ Cε

(∫ ∞

√
1−H2

(1 + H)2dt

(t2 + H2)3/2
+

∫ √
1−H2

0

(
1 − 1

2
log(t2 + H2)

)
dt

)

≤ Cε

(
9

4

∫ ∞

√
3/2

dt

t3
+

∫ 1

0

(1 − log t) dt

)
.

Thus |ut(x) − ut
N (x)| ≤ Cε‖Φ − ΦN‖2,(ã,b̃), and the result follows from

Theorem 3.5.

4. Implementation and numerical results. We restrict our attention in this
section to the case ν = 0. The implementation of the scheme is similar for higher
values of ν. Recalling (3.5), the equation we wish to solve is

(ΦN , ρ) − (Kβc

β ΦN , ρ) = (Ψβc

β , ρ) for all ρ ∈ VΩ,0.(4.1)

Writing ΦN as a linear combination of basis functions of VΩ,0, we have ΦN (s) =∑MN

j=1 vjρj(s), where MN is given by (3.7) and ρj is the jth basis function, defined by

ρj(s) :=
eisχ[s+

j̃
,s+

j̃−1
)(s)

(s+

j̃
− s+

j̃−1
)1/2

, j = j̃ + 2

p−1∑
m=1

(N + NAm
), j̃ = 1, . . . , N + NAp

,

ρj(s) :=
e−isχ[s−

j̃
,s−

j̃−1
)(s)

(s−
j̃
− s−

j̃−1
)1/2

, j = j̃+N+NAp +2

p−1∑
m=1

(N + NAm), j̃ = 1, . . . , N + NAp ,

for p = 1, . . . , n, where s+
l ∈ Ω+

p , s−l ∈ Ω−
p for l = 0, . . . , N +NAp , and χ[s1,s2) denotes

the characteristic function of the interval [s1, s2). Equation (4.1) then becomes the
linear system

MN∑
j=1

vj((ρj , ρm) − (Kβc

β ρj , ρm)) = (Ψβc

β , ρm), m = 1, . . . ,MN .(4.2)

If k is large compared to N , then, from the definition of Aj in (3.4), it is clear
that the two meshes Ω+

j and Ω−
j will not overlap. In this case the basis functions ρj ,
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j = 1, . . . ,MN , form an orthonormal basis for VΩ,ν (this is not true for the Galerkin
method described in [20]), and hence the condition number of our linear system (4.2)
will be bounded by (see, e.g., [2, section 3.6.3])

‖(I − PNKβc

β )‖2‖(I − PNKβc

β )−1‖2 ≤ (1 + ‖Kβc

β ‖2)

(
Reβc

Reβc − ‖β − βc‖∞

)

≤
(

1 +
‖β − βc‖∞

Reβc

)(
Reβc

Reβc − ‖β − βc‖∞

)

=
Reβc + ‖β − βc‖∞
Reβc − ‖β − βc‖∞

,(4.3)

where we have used (3.8) (under the assumption that (3.2) holds) and the facts that

‖Kβc

β ‖2 ≤ ‖β − βc‖∞/Reβc (see, e.g., [20, (3.2)]) and ‖PN‖2 = 1. The fact that
we can establish such a bound on the condition number of our linear system is in
direct contrast to some other schemes in the literature where the approximation space
consists of plane wave basis functions, e.g., [41, 44, 45], where serious difficulties due
to ill-conditioning have been reported.

To evaluate the coefficients (Kβc

β ρj , ρm) and (Ψβc

β , ρm) of (4.2) we must compute
some integrals numerically. The exact formulas are given in [38], but note that after
some integrations are carried out analytically, the most difficult of these take the
forms ∫ ∞

0

(i − r)F (r)

r(r − 2i)
dr,

∫ ∞

0

(1 − ers)F (r)

r2
dr,

∫ ∞

0

(1 − ers)F (r)

r(r − 2i)
dr,

where s < 0 and F (r) is given by (2.20). These integrals are similar in difficulty to in-
tegral representations for the Green’s function Gβ∗ , for which very efficient numerical
schemes are proposed in [18]. The integrands are not oscillatory and the coefficients
do not become more difficult to evaluate as k → ∞.

As a numerical example, we take θ = π/4, n = 1, and

β(s) =

{
0.505 − 0.3i, s ∈ [−mλ,mλ],

1, s /∈ [−mλ,mλ],

for m = 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 5120, where k = 1 and
λ = 2π is the wavelength. This experiment is equivalent to fixing the interval [a, b] =
[t0, t1] and decreasing the wavelength. The assumption (3.2) is satisfied, so that
Theorem 3.5 holds. For each value of m, we compute ΦN with ν = 0, α = 25

√
2

(so that αn3/ cos θ =
√

2α = 50, this value chosen experimentally) and N = 2, 4,
8, 16, 32, 64. For the purpose of computing errors, we take the “exact” solution
(Φ∗) to be the solution computed with

√
2α = 1000 and N = 128. Whereas for the

scheme of [20] the number of degrees of freedom needed to maintain accuracy increases
logarithmically with respect to k(b− a) as k(b− a) → ∞, here the number needed to
maintain accuracy remains bounded as k(b− a) → ∞, as we shall see below.

In Figure 4.1 we plot |Φ∗| and |Φ2| for m = 10. Noting the logarithmic scales on
the plots, it is clear that |Φ∗| is highly peaked near the discontinuities in impedance.
Recalling that Φ is a correction term, namely, the difference between the true solution
and the solution that there would be if the impedance were constant everywhere, the
reason for this is clear. On the plot of |Φ2| we also show the two grids Ω+

1 and Ω−
1 . For
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Fig. 4.1. Plot of |Φ∗| and |Φ2|, m = 10, so that b− a = 20λ.
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Fig. 4.2. Plot of |ΦN |, N = 2, 4, 8, 16, 32, 64 for m = 160, so that b− a = 320λ.

s/λ less than about −6 and for s/λ greater than about 6 the grids do not overlap, and
on these regions Φ2(s) = eis× (piecewise constants) and Φ2(s) = e−is× (piecewise
constants), respectively. Thus |Φ2(s)| is piecewise constant where the grids do not
overlap, and this can be clearly seen in Figure 4.1. Where the grids overlap, (roughly
between s/λ = −6 and s/λ = 6) the oscillatory nature of Φ2(s) is more apparent.

In Figure 4.2 we plot |ΦN | for m = 160 and for N = 2, 4, 8, 16, 32, 64. Again
noting the logarithmic scales on each plot, |ΦN | is highly peaked near the impedance
discontinuities, much more so than for m = 10. As N increases so we discretize a larger
part of the domain [−mλ,mλ], as well as having a finer mesh near the discontinuities
in impedance at −mλ, mλ. For N = 2, 4, 8, 16 the piecewise constant approximation
can be clearly seen, as the grids Ω+

1 and Ω−
1 do not overlap. For N = 32 the grids

overlap between about sλ = −100 and sλ = 100. For N = 64, each grid covers the
whole domain [−mλ,mλ].
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Fig. 4.3. Plot of |Φ∗| and |Φ∗ − ΦN |, N = 4, 16, 64 for m = 5120, so that b− a = 10240λ.

Table 4.1

‖Φ∗ − ΦN‖2/‖Φ∗‖2 for m = 10, 160, and 5120, and increasing N .

(b− a)/λ N MN ‖Φ∗ − ΦN‖2/‖Φ∗‖2 EOC COND

20 2 18 1.635 × 10−1 1.1 1.8
4 42 7.393 × 10−2 1.1 2.6
8 90 3.525 × 10−2 1.0 8.1

16 182 1.773 × 10−2 1.0 94.0
32 370 8.875 × 10−3 1.0 625.5
64 742 4.557 × 10−3 2551.6

320 2 18 1.647 × 10−1 1.2 1.8
4 46 7.399 × 10−2 1.0 2.0
8 106 3.622 × 10−2 1.0 2.0

16 240 1.790 × 10−2 1.0 2.1
32 530 8.662 × 10−3 0.9 2.1
64 1094 4.537 × 10−3 92.7

10240 2 18 1.639 × 10−1 1.2 1.8
4 46 6.918 × 10−2 0.8 2.0
8 106 3.881 × 10−2 1.2 2.0

16 240 1.751 × 10−2 1.1 2.1
32 530 8.076 × 10−3 0.8 2.1
64 1154 4.579 × 10−3 2.1

In Figure 4.3 we plot |Φ∗| and |Φ∗ − ΦN | for m = 5120 and for N = 4, 16 and
64. In this case the interval [−mλ,mλ] is over 10,000 wavelengths long, and so even
for N = 64 the grids Ω+

1 and Ω−
1 do not overlap. As m increases, so |Φ∗| becomes

even more peaked, and the benefit of clustering the grid points around the impedance
discontinuities becomes even more apparent.

For m = 10, 160, and 5120 the relative L2 errors ‖Φ∗ − ΦN‖2/‖Φ∗‖2 are shown
in Table 4.1. (All L2 norms are computed by approximating by discrete L2 norms,
sampling at 100,000 evenly spaced points in the relevant interval for the function
whose norm is to be evaluated.) The estimated order of convergence is given by

EOC := log2

(
‖Φ∗ − ΦN‖2

‖Φ∗ − Φ2N‖2

)
.
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Table 4.2

‖Φ∗ − Φ16‖2/‖Φ∗‖2 for increasing interval length.

(b− a)/λ MN ‖Φ∗ − Φ16‖2/‖Φ∗‖2 ‖Φ∗ − Φ16‖2 COND

10 162 1.746 × 10−2 7.936 × 10−3 181.5
20 182 1.773 × 10−2 8.059 × 10−3 94.0
40 204 1.775 × 10−2 8.068 × 10−3 24.7
80 226 1.766 × 10−2 8.027 × 10−3 8.2

160 240 1.761 × 10−2 8.000 × 10−3 2.1
320 240 1.790 × 10−2 8.122 × 10−3 2.1
640 240 1.749 × 10−2 7.916 × 10−3 2.1

1280 240 1.650 × 10−2 7.435 × 10−3 2.1
2560 240 1.616 × 10−2 7.216 × 10−3 2.1
5120 240 1.556 × 10−2 6.831 × 10−3 2.1

10240 240 1.751 × 10−2 7.433 × 10−3 2.1

For this example, Theorem 3.5 predicts that

‖Φ∗ − ΦN‖2 ≤ C

N
(1 + log1/2(min(

√
2αN, 2mλ))),

so that we expect EOC ≈ 1, and this is what we see. For each value of m, the number
of degrees of freedom MN increases approximately in proportion to N logN as N
increases until the two grids Ω+

1 and Ω−
1 each cover the whole domain [−mλ,mλ]

(i.e., until
√

2αN ≥ 2mλ), after which MN increases only proportionally to N as N
increases further. For m = 10, the whole domain is covered by the grids for N = 4;
for m = 160 this occurs for N = 64 but for m = 5120 the two grids do not overlap
even for N = 64. The condition numbers for the matrix of the linear system (4.2)
(denoted by COND) satisfy the bound (4.3), which predicts that COND ≤ 3.75 if the
grids do not overlap, i.e., if N ≤ 16 for m = 160, for all values of N when m = 5120.
For N ≤ 32 the number of degrees of freedom is the same for m = 160 and m = 5120,
and yet the relative L2 error is almost the same for the two cases b − a = 320λ and
b− a = 10240λ.

In Table 4.2 we fix N = 16 and show ‖Φ∗ − Φ16‖2/‖Φ∗‖2 and also ‖Φ∗ − Φ16‖2

for increasing values of m = (b − a)/2λ. As m increases, the number of degrees
of freedom increases logarithmically for those values of m for which

√
2αN ≥ 2mλ,

i.e., for m ≤ 40, but as m increases further for m ≥ 80 the number of degrees of
freedom remains constant, and yet both the relative and the actual L2 error also
remain roughly constant as m grows. For m = 5120 the interval is of length greater
than 10,000 wavelengths, and yet we achieve almost 1% relative error with only 240
degrees of freedom. As in Table 4.1, the condition number of the linear system (4.2)
is bounded by (4.3), so that COND ≤ 3.75, when m is sufficiently large that the grids
Ω+

1 and Ω−
1 do not overlap, i.e., for m ≥ 160.

In the last figure and table we show numerical computations of the total field
above the boundary, i.e., ut

N (x) given by (3.10). We note that computing ut
N (x)

requires, for each point x, the computation of the highly oscillatory integral (3.10),
which is evaluated here using accurate but slow “black box” techniques. In the future
it is hoped that more efficient quadrature schemes can be developed, taking advantage
of the fact that the oscillatory parts of both Gβc and φN are known explicitly. We
note that Iserles [34, 35] has recently proposed and analyzed Filon-type quadrature
methods appropriate for the efficient evaluation of highly oscillatory integrals, which
we expect may be appropriate.
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Fig. 4.4. |ut(x)| (on the y-axis) against x1/λ (on the x-axis) for x = (x1, λ), x1 ∈ [−2mλ, 2mλ],
plotted for m = 5 (plot (i)), m = 10 (plot (ii)), m = 20 (plot (iii)), m = 40 (plot (iv)), m = 80 (plot
(v)), and m = 160 (plot (vi)).

Table 4.3

|ut(x) − ut
N (x)| for m = 10 and m = 160, and increasing N .

x = (mλ/2, λ) x = (mλ, λ)

m N |ut(x) − ut
N (x)| EOC |ut(x) − ut

N (x)| EOC

10 2 3.894 × 10−4 1.5 1.108 × 10−4 1.3
4 1.421 × 10−4 2.5 4.514 × 10−5 3.5
8 2.432 × 10−5 1.0 4.068 × 10−6 0.2

16 1.183 × 10−5 2.7 3.448 × 10−6 0.8
32 1.841 × 10−6 1.0 2.014 × 10−6 1.1
64 9.350 × 10−7 9.108 × 10−7

160 2 1.059 × 10−4 2.0 5.278 × 10−4 2.6
4 2.572 × 10−5 0.4 8.790 × 10−5 2.8
8 1.978 × 10−5 0.0 1.283 × 10−5 0.3

16 1.981 × 10−5 2.1 1.060 × 10−5 0.8
32 4.474 × 10−6 0.9 6.029 × 10−6 3.4
64 2.431 × 10−6 5.634 × 10−7

In Figure 4.4 we plot |ut
128(x)| for x = (x1, λ), x1 ∈ [−2mλ, 2mλ], i.e., the absolute

value of the total acoustic field one wavelength above the plane, as computed with√
2α = 1000 and N = 128, for m = 5 (plot (i)), m = 10 (plot (ii)), m = 20 (plot (iii)),

m = 40 (plot (iv)), m = 80 (plot (v)), and m = 160 (plot (vi)). In each plot the x-axis
represents x1/λ and the y-axis represents |ut(x)|. One can clearly see that the wave
diffracted from the impedance discontinuities at x = (−mλ, 0) and x = (mλ, 0) is a
significant component of the total field only within a small number of wavelengths
of the impedance discontinuities. Figure 1.1 shows a surface plot of the incident,
scattered and total wave fields up to 10 wavelengths above the plane for this same
example with m = 5.

We also computed ut
N (x) for x = (mλ/2, λ) and x = (mλ, λ) for m = 10 and

m = 160 and for
√

2α = 50, N = 2, 4, 8, 16, 32, and 64. Taking the values for
α = 500

√
2, N = 128 to be the “exact” values, the errors are shown in Table 4.3. The
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estimated order of convergence is calculated as

EOC := log2

(
|ut(x) − ut

N |
|ut(x) − ut

2N |

)
,

and from Theorem 3.6 we would expect EOC ≈ 1. The convergence rate is rather
irregular, but broadly speaking it is at least as good as expected, and the actual and
relative errors are both very small. At every point x it holds that 0.7 < |ut(x)| < 0.9.

Further numerical results for θ ≈ π/2, i.e., grazing incidence, can be found in [39].

5. Conclusions and discussion. In this paper we have presented a Galerkin
boundary element method for an acoustic scattering problem, and we have demon-
strated, via both an a priori error analysis and numerical examples, that the number
of degrees of freedom required for an accurate solution is bounded independently of
the wavenumber. Our numerical method and analysis are for a specific scattering
problem, namely the 2D problem of scattering by an unbounded flat surface with
piecewise constant surface impedance, this problem being important in the theory of
outdoor noise propagation and in an electromagnetic context.

As we discussed in our review of the literature, our method is an instance of
the general idea of expressing the solution of the scattering problem as a finite sum
of known oscillatory terms (given by the leading order behavior of the solution as
k → ∞) multiplied by unknown more slowly oscillating terms, these smoother com-
ponents much more suitable for approximation by standard finite element functions
than the original solution. Our results add to the evidence of the theory and numeri-
cal experiments of other authors [1, 29, 24, 10, 12] that this general methodology has
promise for a range of scattering problems.

Specifically, we anticipate that many of the details of our numerical scheme and
analysis will be applicable to other interesting scattering problems. This is clearest in
the case of 2D acoustic scattering by a convex polygon, in the case that a homogeneous
Dirichlet condition or an impedance boundary condition with constant impedance
holds on each side. For this problem we expect that the behavior of the total field
on each side of the polygon (after subtraction of the leading order high frequency
asymptotics given by physical optics) will be very similar to the behavior quantified
in Theorems 2.3 and 2.6. Thus the same mesh may be applicable and much of the
same analysis. For more discussion of scattering by a 2D polygon see [20, section 6],
[19].

Moreover, we expect that our mesh design will be relevant more generally, at
least for representing certain components of the total field. In the case of three-
dimensional scattering by convex polyhedra it seems to us likely that the mesh we
propose will be useful in representing the variation of edge scattered waves in the
direction perpendicular to the edge. In the case of 2D convex curvilinear polygons
something close to the mesh we use on each interval [tj−1, tj ] may be appropriate
on each side of the polygon, especially at higher frequencies when our mesh becomes
more localized near the ends of the intervals just as the waves diffracted by the corners
become more localized near the corners.
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ticipated in the 2003 Programme Computational Challenges in Partial Differential
Equations at the Isaac Newton Institute, Cambridge, UK.
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