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We propose a boundary element method for problems of time-harmonic acoustic scattering by multiple
obstacles in two dimensions, at least one of which is a convex polygon. By combining a hybrid
numerical-asymptotic (HNA) approximation space on the convex polygon with standard polynomial-
based approximation spaces on each of the other obstacles, we show that the number of degrees of
freedom required in the HNA space to maintain a given accuracy needs to grow only logarithmically
with respect to the frequency, as opposed to the (at least) linear growth required by standard polynomial-
based schemes. This method is thus most effective when the convex polygon is many wavelengths in
diameter and the small obstacles have a combined perimeter comparable to the problem wavelength.
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1. Introduction

Standard finite or boundary element methods (BEMs) for wave scattering problems, with piecewise
polynomial approximation spaces, typically require at least a fixed number of degrees of freedom
(DOFs) per wavelength to maintain accuracy as the frequency of the incident wave increases. This
dependence can lead to a requirement for an excessively large number of DOFs at high frequencies.

For certain geometries the hybrid numerical-asymptotic (HNA) approach (see, e.g., Chandler-
Wilde et al., 2012b, and the references therein) overcomes this restriction by absorbing the high-
frequency asymptotic behaviour into the approximation space. This is implemented via a BEM, which
is particularly effective as the high-frequency behaviour need only be captured on the surface of the
obstacle. When constructing an HNA method a key ingredient is an understanding of the high-frequency
asymptotics of the underlying physical problem. Such methods are well studied for strictly convex
smooth scatterers, see for example Bruno et al. (2004), Domínguez et al. (2007), Ecevit & Özen (2017),
Ecevit (2018) and Ecevit & Eruslu (2019), and the many references therein. This paper is instead
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1198 A. GIBBS ET AL.

concerned with HNA for polygonal scatterers, specifically extending this method to multiple obstacles.
We discuss the relevant literature in detail now.

In contrast with standard BEM, in which the number of DOFs required to accurately represent the
solution depends linearly on the frequency, the number of DOFs needed to achieve a given accuracy (for
scattering by a convex polygon in two dimensions) was shown to depend only logarithmically on the
frequency for the h-BEM version of HNA in Chandler-Wilde & Langdon (2007); this improved to the
hp-BEM version in Hewett et al. (2013). These ideas were extended, in Chandler-Wilde et al. (2015), to
a certain class of nonconvex polygons, with the high-frequency asymptotics arising from re-reflections
and partial illumination (shadowing) being fully captured by a careful choice of approximation space.
Similar ideas have been applied to penetrable obstacles in Groth et al. (2015, 2018) and to two- and
three-dimensional screens in Hewett et al. (2015) and Hargreaves et al. (2015), respectively. All of
these methods are, broadly speaking, for single obstacles and for plane wave incidence (although an
extension to other incident fields is discussed in Remark 3.9). In this paper we extend the HNA method
to a class of more general multiple scattering configurations. Although here we focus on the case
where at least one of the obstacles is a convex polygon, the ideas we present may be applied to the
same problem where this obstacle is (for example) strictly convex and smooth. The key ingredient
is that this obstacle be amenable, for the corresponding single scattering problem, to solution by an
HNA-BEM.

Problems of high-frequency scattering by one large relatively simple obstacle and one (or many)
small obstacle(s) are potentially of practical interest. An approach used in Lenoir et al. (2017)
and Bonnet et al. (2018) for such problems is to appeal to high-frequency asymptotics on the
large obstacle, via geometrical/physical optics approximation, and approximate the solution on (or
in some neighbourhood of) the small components using a standard BEM/FEM. This approximation
works well at sufficiently high frequencies, but ignores diffracted waves emanating from the large
obstacle, and so is not controllably accurate across all frequencies. Moreover, a geometrical optics
approach will include a ray-tracing algorithm, which typically requires that the multiple scattering
problem is solved iteratively, see Ecevit & Reitich (2009), Anand et al. (2010) and Geuzaine
et al. (2005). This involves reformulation as a Neumann series consisting entirely of operators on
a single scatterer. More generally, iterative approaches are common in multiple scattering problems
and work well for certain configurations. However, the iterative approach cannot be applied to all
such problems: the Neumann series will diverge for cases where the separation of the obstacles is
too small. A method that accelerates the rate of convergence in the Neumann series is presented in
Boubendir et al. (2017).

In this paper we present a method that is particularly effective for high-frequency time-harmonic
scattering by one large obstacle and one (or many) small obstacle(s). Specifically, since we use an
oscillatory basis on the large obstacle, this can be many wavelengths long. On the small obstacle(s)
we use a piecewise-polynomial basis, so the method is most effective when their combined perimeter
is comparable to one wavelength. In contrast to the other methods currently available for similar
problems, the method we present in this paper is controllably accurate and does not need to be
solved iteratively, while the only constraint on the separation of the obstacles is that they must be
O(λ) apart, where λ denotes wavelength; hence, the obstacles may be very close together at high
frequencies.

1.1 Outline of the paper

In Section 2 we describe in detail the class of multiple scattering problem we are aiming to solve.
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1199

In Section 3.1 we extend the representation on which the HNA-BEM for a single convex polygon
is based (Chandler-Wilde & Langdon, 2007; Hewett et al., 2013), to account for the contribution
to the solution from neighbouring scatterers. In particular, we derive a representation (3.10), which
decomposes the Neumann trace on the large obstacle into the sum of a physical optics term, the
diffracted waves and the contribution arising from interaction with the small obstacles. In Theorem 3.4
we bound the Helmholtz solution in the complement of the scatterers with bounding constant algebraic
in the wavenumber. We describe the singular behaviour of the envelope of the diffracted waves in
Theorem 3.7.

In Section 4.1 we construct an approximation space enriched with oscillatory basis functions,
designed to represent the solution on the large obstacle with a number of DOFs that does not need
to increase significantly as frequency grows. We also describe some potential advantages of using an
approximation space based on a single mesh, as opposed to the overlapping meshes of Chandler-Wilde
& Langdon (2007) and Hewett et al. (2013, 2015). In addition, in Section 4.2, we define a (standard)
piecewise-polynomial space on the small scatterer. Conditions for exponential convergence of the best
approximation in terms of polynomial degree on the large and small scatterers are given by Theorem 4.3
and Proposition 4.6, respectively.

In Section 5 a Galerkin method using this approximation space is outlined, alongside related error
estimates of the total field and far-field pattern. Numerical results for an implementation of this method
are presented in Section 6. While Theorem 5.2 ensures exponential convergence when the big scatterer
is a convex polygon, and the small scatterers are analytic Section 6 demonstrates that exponential
convergence is still possible when the small scatterers have corners.

Finally, in the appendix, we introduce an alternative boundary integral equation (BIE) formulation,
which is provably coercive under certain geometric constraints. This gives us explicit quasi-optimality
estimates, which when combined with results in earlier sections could be used to give explicit error
estimates for a certain class of multiple scattering configurations.

2. Problem statement

We consider the two-dimensional problem of time-harmonic acoustic scattering by Nγ + 1 sound-soft
scatterers, at least one of which is an NΓ -sided convex polygon. In addition to this convex polygon
we assume that the other Nγ obstacles are pairwise disjoint with Lipschitz piecewise-C1 boundary.

Denote the interior of the convex polygon by Ω ⊂ R
2 and its boundary by Γ := ∂Ω . We denote by

Γj the jth side of Γ , for j = 1, . . . ,NΓ . The bounded open set ω := ⋃Nγ

i=1 ωi ⊂ R
2 \ Ω represents

the collection of the Nγ other obstacles, which are denoted ωi, for i = 1, . . . ,Nγ . We denote the
combined Lipschitz boundary of these by γ := ∂ω. The unbounded exterior domain is denoted
D := R

2 \ (Ω ∪ ω), with boundary ∂D = Γ ∪ γ . The normal derivative operator (or Neumann trace)
is defined as ∂/∂n := n · ∇, in which n = (n1, n2) denotes the unit normal directed into D; we denote
also nj := n|Γj

and nγ := n|γ . We assume that the distance between Ω and ω is positive, so that ∂D is a
Lipschitz boundary. A simple example of a geometric configuration that fits inside of this framework is
depicted in Fig. 1. We note that throughout the paper, it is the quantities Γ and γ which are used most
frequently.

We aim to solve the following boundary value problem (BVP): given the incident plane wave

ui(x) := eikx·d, x ∈ R
2, (2.1)
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1200 A. GIBBS ET AL.

Fig. 1. Problem consisting of a convex four-sided polygon (hence NΓ = 4) and two other obstacles (hence Nγ = 2).

where k := 2π/λ > 0 denotes the wavenumber (for wavelength λ) and d ∈ R
2 is a unit direction vector,

determine the total field u ∈ C2(D) ∩ C(D̄) such that

Δu + k2u = 0 in D, (2.2)

u = 0 on ∂D = Γ ∪ γ (2.3)

and us := u − ui satisfies the Sommerfeld radiation condition (Colton & Kress, 2013, (3.62))(
∂

∂r
− ik

)
us(x) = o(r−1/2), as r := |x| → ∞. (2.4)

Problems for a broader class of incident field ui are discussed briefly in Remark 3.9.
The BVP (2.2)–(2.4) can be reformulated as a BIE. We denote the single layer potential Sk :

L2(∂D) → C2(D) by

Skϕ(x) :=
∫

∂D
Φk(x, y)ϕ(y) ds(y), x ∈ D, (2.5)

where Φk(x, y) := (i/4)H(1)
0 (k|x − y|) is the fundamental solution of (2.2), in which H(1)

0 denotes the
Hankel function of the first kind and order zero. If u satisfies the BVP (2.2)–(2.4) then ∂u/∂n ∈ L2(∂D)

and the following Green’s representation holds (see, e.g., Chandler-Wilde et al., 2012b, Theorem 2.43)

u = ui − Sk
∂u

∂n
in D. (2.6)

Definition 2.1 (Combined potential operator). The standard combined potential operator Ak,η :

L2(∂D) → L2(∂D) (see, e.g., Chandler-Wilde et al., 2012b; Colton & Kress, 2013) is defined by

Ak,η := 1

2
I + D′

k − iηSk,
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1201

where I is the identity operator, η ∈ R \ {0} is a coupling parameter,

Skϕ(x) :=
∫

∂D
Φk(x, y)ϕ(y) ds(y), x ∈ ∂D, ϕ ∈ L2(∂D),

denotes the single layer operator and

D′
kϕ(x) :=

∫
∂D

∂Φk(x, y)

∂n(x)
ϕ(y) ds(y), x ∈ ∂D, ϕ ∈ L2(∂D),

denotes the adjoint of the double-layer operator.

From (2.6), the BVP (2.2)–(2.3) can be reformulated as a BIE (Chandler-Wilde et al., 2012b, (2.69),
(2.114))

Ak,η
∂u

∂n
= fk,η, on ∂D, (2.7)

where the right-hand side data fk,η ∈ L2(∂D) is

fk,η =
(

∂

∂n
− iη

)
ui. (2.8)

It follows from Chandler-Wilde et al. (2012b, Theorem 2.27) that Ak,η is invertible. A standard
variational form of (2.7) is(

Ak,η
∂u

∂n
, w

)
L2(Γ ∪γ )

=
(

fk,η, w
)

L2(Γ ∪γ )
, for all w ∈ L2(Γ ∪ γ ), (2.9)

which can be approximated by a piecewise-polynomial Galerkin BEM. Our approach differs from this
in that: (i) we decompose the unknown ∂u/∂n into a known physical optics term, a diffracted term and
a term that expresses the leading order behaviour on Γ in terms of the solution on γ (see Section 3.1);
(ii) we approximate the diffracted term on Γ using an oscillatory basis (see Section 4.1). The use of
this basis is justified by the representation and regularity results in Section 3.3. This leads to a new
variational formulation that is equivalent to (2.9). This is shown in (4.16)–(4.17) with the resulting
Galerkin scheme given in equations 5.15.2.

2.1 Geometric assumptions

In related literature there appears to be no single consistent definition of the term polygon, so we shall
clarify a definition that is appropriate for this paper.

Definition 2.2 (Polygon). We say Υ ⊂ R
2 is a polygon if it is a bounded Lipschitz open set with a

boundary consisting of a finite number of straight line segments.

We note that Definition 2.2 permits multiple disconnected shapes, whereas other conventions in
related literature do not. As we impose that Ω is convex it cannot consist of disconnected components.
On the other hand, ω may consist of disconnected components. Many results that follow hold for a
subclass of polygons, which we define now (as in, e.g., Spence, 2014, Definition 1.1).
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1202 A. GIBBS ET AL.

Definition 2.3 (Nontrapping polygon). We say that a polygon Υ (in the sense of Definition 2.2) is
nontrapping if

(i) No three vertices of Υ are co-linear.

(ii) For a ball BR with radius R > 0 sufficiently large that Υ ⊂ BR there exists a T(R) < ∞ such that
all billiard trajectories that start inside of BR \ Υ at time T = 0 and miss the vertices of Υ will
leave BR by time T(R).

Previous analyses of HNA methods (e.g., Hewett et al., 2013; Chandler-Wilde et al., 2015) have
instead relied upon convergence and regularity estimates for scattering obstacles, which are convex
or star-shaped (introduced formally in Definition A.2), a property not enjoyed by multiple scattering
configurations. However, for configurations that satisfy the conditions of Definition 2.3, bounds on the
Dirichlet-to-Neumann (DtN) maps are known (Baskin et al., 2016), which will provide an alternative
route to bounding the solution to (2.2)–(2.4) in Section 3.2.

In addition to the theory of Baskin et al. (2016) for nontrapping polygons, we shall consider a
certain class of trapping configurations, for which bounds on DtN maps were recently derived in
Chandler-Wilde et al. (2020), building on the earlier work of Galkowski et al. (2019) and Baskin et al.
(2016). These estimates will form a key component of our numerical analysis, in particular enabling us to
bound the solution to (2.2)–(2.4) in Section 3.2, and obtain best approximation on γ in Proposition 4.6.
A formal definition of these so-called (R0, R1) configurations will follow, but these may be loosely
interpreted as configurations Υ , which are star-shaped outside of some ball. There is a second ball
inside of the first, whose radius is sufficiently small, and inside of which some trapping may occur.

Definition 2.4 ((R0, R1) configuration). For 0 < R0 < R1 we say that a Lipschitz Υ is an (R0, R1)

configuration if there exists a χ ∈ C3[0, ∞), which satisfies

(i) χ(|x|) = 0 for 0 ≤ |x| ≤ R0, χ(|x|) = 1 for |x| ≥ R1, 0 < χ(|x|) < 1, for R0 ≤ |x| ≤ R1,

(ii) 0 ≤ χ ′(|x|) ≤ 4, for |x| > 0,

such that Z(x) · n(x) ≥ 0 for all x ∈ ∂Υ for which the normal n(x) is defined, where

Z(x) := (x1χ(x), x2), x = (x1, x2) ∈ R
2.

Naturally, one can rotate the coordinate system if required to ensure the above conditions hold. For
further explanation and examples of (R0, R1) configurations we refer to Chandler-Wilde et al. (2020,
Section 1.2.1).

3. Representation and regularity of solution on Γ

The structure of this section is as follows: in Section 3.1 we extend the single scattering HNA ansatz
of Chandler-Wilde & Langdon (2007, (3.5)) to a multiple scattering configuration, introducing a new
operator that accounts for the other obstacle(s). In Section 3.2 we bound the solution of the multiple
scattering problem in the domain D, a necessary component of the best approximation estimates that
follow. In Section 3.3 we show that the envelopes of the diffracted waves, which the HNA space is
designed to approximate, behave similarly to the single scattering problem (under very reasonable
assumptions). This means that the HNA space of Hewett et al. (2013) may be used on the convex
polygon in the multiple scattering approximation without any modification (though with a different
leading order term).
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1203

Fig. 2. Configuration with (at least) four scatterers. The relative upper half-plane Uj is the area above the line Γ ∞
j = Γ −

j ∪ Γj ∪
Γ +

j . Note the intersection of ω3 (the right-hand scatterer) with Γ +
j ⊂ Γ ∞

j ; nj points into ω3 ∩Uj while nγ3 points out of ω3 ∩Uj
and into D ∩ Uj.

3.1 The representation formula for the Neumann trace on Γ

As in Chandler-Wilde & Langdon (2007, Section 3), we will extend a single side Γj of Ω and solve
the resulting half-plane problem, to obtain an explicit representation for ∂u/∂n on Γj in terms of known
oscillatory functions on Γj and (in contrast to Chandler-Wilde & Langdon, 2007, Section 3) ∂u/∂n on
γ . This representation will form the ansatz used for the discretization. Throughout this section, when u
or us is restricted to Γ ∪γ , it is assumed that the exterior trace has been taken. Considering a single side
Γj of Ω , 1 ≤ j ≤ NΓ , define Γ +

j and Γ −
j as the infinite extensions of Γj, each as a straight half line in

the clockwise and anti-clockwise direction (about the interior Ω), respectively (see Fig. 2). Denote by
Uj the (open) half-plane with boundary Γ ∞

j := Γ −
j ∪ Γj ∪ Γ +

j , chosen such that Uj does not contain
Ω . We informally call Uj the upper half-plane relative to Γj. On Γ ∞

j the unit normal nj points into Uj.
Define the half-plane Dirichlet Green’s function

Gj(x, y) := Φk(x, y) − Φk (̃x
j, y), x 
= y,

where x̃j is the reflection of x across Γj. Formally, x = x̃j when x ∈ Γj, otherwise x̃j 
= x satisfies

dist({x}, Γ ∞
j ) = dist({̃xj}, Γ ∞

j ) = 1
2 |x − x̃j|. It follows that

∂Gj(x, y)

∂nj(y)
= 2

∂Φk(x, y)

∂nj(y)
and Gj(x, y) = 0, for y ∈ Γ ∞

j . (3.1)

We let BR be an open ball of radius R centred at the origin, with R chosen sufficiently large that Uj ∩ω ⊂
BR, i.e., all the scatterers in the relative upper half-plane lie inside the ball.
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1204 A. GIBBS ET AL.

Green’s second identity can now be applied to Gj(x, ·) and us= u − ui for x ∈ D ∩ Uj ∩ BR,
together with (3.1), to obtain

us(x) = 2
∫

Γ ∞
j ∩BR\ω

∂Φk(x, y)

∂nj(y)
us(y)ds(y)

+
∫

γ∩Uj

[
∂Gj(x, y)

∂nγ (y)
us(y) − Gj(x, y)

∂us(y)

∂nγ

]
ds(y)

−
∫

∂BR∩Uj

[
∂Gj(x, y)

∂r
us(y) − Gj(x, y)

∂us(y)

∂r

]
ds(y), (3.2)

where ∂/∂nj = nj · ∇ and ∂/∂nγ = nγ · ∇, nj and nγ are the unit normal vector fields pointing into
D ∩ Uj ∩ BR from Γ ∞

j ∩ BR \ ω and from γ ∩ Uj, respectively, and ∂/∂r = y
|y| · ∇ denotes the normal

derivative on ∂BR ∩ Uj pointing out of D ∩ Uj ∩ BR. As R → ∞ the third integral vanishes by the same
reasoning as in, e.g., Colton & Kress (2013, Theorem 2.4). The representation (3.2) then becomes

us(x) = 2
∫

Γ ∞
j \ω

∂Φk(x, y)

∂nj(y)
us(y)ds(y) +

∫
γ∩Uj

[
∂Gj(x, y)

∂nγ (y)
us(y) − Gj(x, y)

∂us(y)

∂nγ

]
ds(y), (3.3)

for x ∈ Uj \ ω.

We now apply Green’s second identity to ui and Gj(x, y) in Uj ∩ ω and obtain, for x ∈ D ∩ Uj,(∫
γ∩Uj

−
∫

Γ ∞
j ∩ω

)[
∂Gj(x, y)

∂n(y)
ui(y) − Gj(x, y)

∂ui

∂n
(y)

]
ds(y)

=
∫

Uj∩ω

[
ΔGj(x, y)ui(y) − Gj(x, y)Δui(y)

]
dV(y) = 0, (3.4)

as ui and Φk(x, ·) satisfy the Helmholtz equation (2.2) in ω for x ∈ D ∩ Uj. The sign of the boundary
integral differs on the two parts of ∂(Uj ∩ ω) = (γ ∩ Uj) ∪ (Γ ∞

j ∩ ω) because the normal derivative
∂/∂n involves the outward-pointing normal vector nγ on γ ∩ Uj and the inward-pointing normal nj on
Γ ∞

j ∩ ω, as depicted in Fig. 2.

We then use us = u − ui to expand the last term in (3.3): for x ∈ D ∩ Uj

∫
γ∩Uj

[
∂Gj(x, y)

∂nγ (y)
us(y) − Gj(x, y)

∂us(y)

∂nγ

]
ds(y)

=
∫

γ∩Uj

[
∂Gj(x, y)

∂nγ (y)

(
u(y)︸︷︷︸
=0

−ui(y)
) − Gj(x, y)

∂(u − ui)(y)

∂nγ

]
ds(y)

(3.4)= −
∫

γ∩Uj

Gj(x, y)
∂u(y)

∂nγ

ds(y) +
∫

Γ ∞
j ∩ω

[
−∂Gj(x, y)

∂nj(y)
ui(y) + Gj(x, y)

∂ui(y)

∂nγ

]
ds(y).
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1205

Substituting this expression in (3.3) and using again (3.1) we obtain a representation for us:

us(x) = 2
∫

Γ ∞
j \ω

∂Φk(x, y)

∂nj(y)
us(y) ds(y) −

∫
γ∩Uj

Gj(x, y)
∂u(y)

∂nγ

ds(y)

− 2
∫

Γ ∞
j ∩ω

∂Φk(x, y)

∂nj(y)
ui(y) ds(y), x ∈ D ∩ Uj. (3.5)

The final term will be nonzero only if Γ ∞
j ∩ ω 
= ∅, namely, in case one of the components of γ is Γ ∞

j
(see e.g., the component ω3 in Fig. 2).

This integral representation must be combined with one for ui to construct a useful representation
for ∂u/∂n on Γ . The half-plane representation of Chandler-Wilde (1997, Section 3) can be applied to
upward propagating plane waves. We consider first the case nj ·d ≥ 0, which means that Γj is in shadow,
from Chandler-Wilde & Langdon (2007, (3.3)):

ui(x) = 2
∫

Γ ∞
j

∂Φk(x, y)

∂nj(y)
ui(y) ds(y), x ∈ Uj.

Adding this to (3.5) and taking the Neumann trace on Γj we obtain a representation for the solution

∂u(x)

∂n
= 2

∫
Γ ∞

j \ω
∂2Φk(x, y)

∂nj(x)∂nj(y)
u(y) ds(y)

− 2
∫

γ∩Uj

∂Φk(x, y)

∂nj(x)

∂u(y)

∂nγ

ds(y), x ∈ Γj, nj · d ≥ 0. (3.6)

For a downward-propagating wave nj · d < 0, i.e., when Γj is illuminated by ui, we can apply the same

result to the lower half-plane R
2 \ Uj (where the direction of the normal is reversed)

ui(x) = −2
∫

Γ ∞
j

∂Φk(x, y)

∂nj(y)
ui(y) ds(y), x ∈ R

2 \ Uj.

Now define ur(x) := −ui(̃xj) for x ∈ Uj. Intuitively, ur may be considered the reflection of ui by a

sound-soft line at Γ ∞
j . It follows that ∂ur/∂nj = ∂ui/∂nj on Γ ∞

j and, for x ∈ Uj,

ur(x) = 2
∫

Γ ∞
j

∂Φk (̃x
j, y)

∂nj(y)
ui(y) ds(y) = −2

∫
Γ ∞

j

∂Φk(x, y)

∂nj(y)
ui(y) ds(y).

Rearranging this and adding ui gives

ui(x) = ui(x) + ur(x) + 2
∫

Γ ∞
j

∂Φk(x, y)

∂nj(y)
ui(y) ds(y).
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Summing with (3.5) and taking the Neumann trace gives the representation for ∂u/∂n on Γj:

∂u(x)

∂n
= 2

∂ui(x)

∂n
+ 2

∫
Γ ∞

j \ω
∂2Φk(x, y)

∂nj(x)∂nj(y)
u(y) ds(y)

− 2
∫

γ∩Uj

∂Φk(x, y)

∂nj(x)

∂u(y)

∂nγ

ds(y), x ∈ Γj, nj · d < 0, (3.7)

where we used again (3.1) and ∂ur/∂nj = ∂ui/∂nj on Γj.
The representation (3.6)–(3.7) may be viewed as a correction to the physical optics approximation

for a single scatterer, which is defined as

Ψ (x) :=
{

2∂ui(x)/∂n, x ∈ Γj ⊂ Γ : nj(x) · d < 0,
0, x ∈ Γj ⊂ Γ : nj(x) · d ≥ 0.

(3.8)

Specifically, this correction can be split into two parts. The first integral of (3.6) and (3.7) represents
the waves diffracted by the corners of Γ (diffraction is ignored by the physical optics approximation),
while the second integral represents the correction to the waves reflected by the sides of Γ , as a result
of the presence of ω. Unless the distance between the scatterers is sufficiently large it is reasonable
to expect the second correcting term to be not negligible; see Gibbs (2017, Lemma 4.2) for a precise
quantification of this fact.

We now write more explicitly the integral representation (3.6)–(3.7) in terms of the parametrizations
of the segments Γj and of their extensions Γ ∞

j . From the standard properties of Bessel functions (see,

e.g., DLMF (2019, Section 10)) we have that for x ∈ Γj, y ∈ Γ ±
j \ ω,

∂2Φk(x, y)

∂n(x)∂n(y)
= iH(1)

1 (k|x − y|)
4|x − y| = ik2

4
eik|x−y|μ(k|x − y|), where μ(z) := e−iz H(1)

1 (z)

z
,

see Chandler-Wilde & Langdon (2007, (3.6)). To make use of this identity we parametrize Γ by

xΓ (s) = Pj + s − L̃j−1

Lj
(Pj+1 − Pj), s ∈ [̃Lj−1, L̃j), j = 1, . . . ,NΓ , (3.9)

where Lj is the length of the jth side, Pj is the jth corner of Γ and L̃j := ∑j
�=1 L� is the arc length up

to the (j + 1)th corner, with PNΓ +1 := P1. We will also denote by LΓ := L̃NΓ
the total length of Γ .

Similarly, we parametrize Γ −
j ∪ Γj ∪ Γ +

j by

yj(s) = Pj + s − L̃j−1

Lj
(Pj+1 − Pj), s ∈ R, j = 1, . . . ,NΓ .
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We use (3.6)–(3.7) to represent the solution on a single side Γj, extending the ansatz of Chandler-Wilde
& Langdon (2007) and Hewett et al. (2013) to multiple scattering problems

∂u

∂n

(
xΓ (s)

) = Ψ
(
xΓ (s)

) + v+
j (s − L̃j−1)e

iks + v−
j (̃Lj − s)e−iks + Gγ�Γ j

[
∂u

∂n

∣∣∣∣ γ

]
(xΓ (s)),

s ∈
[̃
Lj−1, L̃j

]
, j = 1, . . . ,NΓ ; (3.10)

we shall now discuss each term in the ansatz separately. Here Ψ is the physical optics approximation
(3.8), with the envelopes of the diffracted waves on each side defined by

v+
j (s) := ik2

2

∫
(0,∞)\Z+

j

μ
(
k(s + t)

)
eik(t−L̃j−1)u

(
yj(̃Lj−1 − t)

)
dt, s ∈ [0, Lj], (3.11)

v−
j (s) := ik2

2

∫
(0,∞)\Z−

j

μ
(
k(s + t)

)
eik(̃Lj+t)u

(
yj(̃Lj + t)

)
dt, s ∈ [0, Lj], (3.12)

where Z+
j := {t ∈ R : yj(̃Lj−1 − t) ∈ γ } and Z−

j := {t ∈ R : yj(̃Lj + t) ∈ γ } are used to exclude from the
integral the points inside ω (as is the case for ω3 of Fig. 2), to remain consistent with (3.6)–(3.7). The
interaction operator Gγ�Γ j

: L2(γ ) → L2(Γj) used in (3.10) is based on the final term of (3.6)–(3.7)
and is defined by

Gγ�Γ j
ϕ(x) := −2

∫
γ∩Uj

∂Φk(x, y)

∂nj(x)
ϕ(y) ds(y), x ∈ Γj ⊂ Γ , (3.13)

for ϕ ∈ L2(γ ). We extend this definition to Gγ�Γ : L2(γ ) → L2(Γ ) as

Gγ�Γ ϕ := Gγ�Γ j
ϕ on Γj for j = 1, . . . ,NΓ , and ϕ ∈ L2(γ ). (3.14)

Remark 3.1 The ansatz (3.10) is an extension of Chandler-Wilde & Langdon (2007, (3.9)) and Hewett
et al. (2013, (3.2)), with an additional term that relates the solution on Γ to the solution on γ . It is
important to note that this additional term is not the only term influenced by the presence of γ and that
one cannot solve for v± on a single scatterer and then add the Gγ�Γ [∂u/∂n|γ ] term. The reason for this

is clear from (3.11)–(3.12): even if Z±
j were of measure zero, so that the equations for (3.11)–(3.12) were

identical to the case of a single scatterer, the integral contains u, which depends on the configuration ∂D.
Intuitively, this makes sense; diffracted waves emanating from the corners of Γ will also be influenced
by the presence of additional scatterers.

Many of the bounds that follow are explicit only in k or the parameters that determine meshwidth
or polynomial degree of an approximation space. Henceforth, we will use A � B to mean A ≤ CB,
where C is a constant that depends only on the geometry of Υ . To gauge the size of the contribution
to the reflected waves on Γ arising from the presence of ω, we require the following bound on the
operator Gγ�Γ .
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1208 A. GIBBS ET AL.

Lemma 3.2 For ∂D = Γ ∪ γ with Γ and γ disjoint, we have the following bound on the interaction
operator Gγ�Γ defined in (3.14), given k0 > 0:

‖Gγ�Γ ‖L2(γ )�L2(Γ ) ≤ CG(k) �
√

k, for k ≥ k0,

where

CG(k) :=
√

LΓ Lγ k

2π dist(Γ , γ )
+

√
LΓ Lγ

π dist(Γ , γ )
, (3.15)

where LΓ and Lγ denote the perimeters of Ω and ω, respectively.

Proof. For 0 
= ϕ ∈ L2(γ ), using the Cauchy–Schwarz inequality, we can write

‖Gγ�Γ ϕ‖L2(Γ )

‖ϕ‖L2(γ )

= 1

‖ϕ‖L2(γ )

⎛⎝NΓ∑
j=1

∫
Γj

∣∣∣∣∣2
∫

γ∩Uj

∂Φk(x, y)

∂nj(x)
ϕ(y) ds(y)

∣∣∣∣∣ 2 ds(x)

⎞⎠1/2

≤ 2

‖ϕ‖L2(γ )

(∫
Γ

∥∥∥∥∂Φk(x, ·)
∂n(x)

∥∥∥∥2

L2(γ )

‖ϕ‖2
L2(γ )

ds(x)

)1/2

= 2

(∫
Γ

∫
γ

∣∣∣∣∂Φk(x, y)

∂n(x)

∣∣∣∣ 2 ds(y)ds(x)

)1/2

≤ 2

(∫
Γ

ds
∫

γ

ds

)1/2

sup
x∈Γ ,y∈γ

∣∣∣∣∂Φk(x, y)

∂n(x)

∣∣∣∣ .

The result follows from H(1)
0

′
(z) = −H(1)

1 (z) and Chandler-Wilde et al. (2009, (1.23)), which states that

|H(1)
1 (z)| ≤ √

2/(πz) + 2/(πz) for z > 0. �
As intuition would suggest Lemma 3.2 confirms that the norm of the interaction operator (3.14)

decreases as the obstacles move further apart, i.e., as the interaction between them decreases.

3.2 Estimates of the L∞ norm of the Helmholtz solution in D

A value that will feature in many of the estimates for this method is

umax(k) := ‖u‖L∞(D). (3.16)

The dependence of umax(k) on the wavenumber k is of key importance, as umax(k) appears as a
multiplicative constant in the hp best approximation result derived in Section 5, alongside a term that
decreases exponentially with p. To show exponential convergence of the method, we therefore require
that umax(k) grows at most algebraically with k. To explore this dependence we will make use of the
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1209

current best available bounds on the DtN map (see, e.g., Chandler-Wilde et al., 2012b, Section 2.7)
for multiple obstacle configurations. Recently in Chandler-Wilde et al. (2020) such bounds have been
developed for (R0, R1) configurations (of Definition 2.4), enabling our analysis to cover a much broader
range of configurations. To relate these to estimates for (3.16) we require the following continuity bound
for the single layer potential.

Lemma 3.3 For a domain D with bounded Lipschitz boundary ∂D, given k0 > 0, the following bound
on the single layer potential (2.5) holds

‖Sk‖L2(∂D)�L∞(D) � k−1/2 log1/2(1 + k diam (∂D)), k ≥ k0. (3.17)

Proof. It is straightforward to show (see, e.g., Hewett et al., 2013, Lemma 4.1) that

∥∥Sk

∥∥
L2(∂D)→L∞(D)

≤ ess sup
p∈D

∥∥Φk(p, ·)∥∥L2(∂D)
. (3.18)

We shall exploit the Lipschitz property of ∂D, by defining a finite set of Lipschitz graphs, which
describe its geometry, and bounding the right-hand side of (3.18) in terms of the coordinates describing
these graphs. Let {Wj}, j = 1, . . . , N, be a finite open cover of ∂D as in the definition of a Lipschitz
domain (see, e.g., McLean, 2000, 3.28). Assume without loss of generality that each Wj ∩ ∂D is
connected. Each Wj ∩ ∂D is part of the graph of a Lipschitz real function �j in rotated Cartesian
coordinates, which we denote (xj, yj). The boundary ∂D can thus be decomposed into ND arcs αj

(with disjoint relative interiors) that are the graph of �j : [aj, bj] → R, i.e., αj = {(xj, yj) ∈ R
2 :

aj ≤ xj ≤ bj, yj = �j(xj)} ⊂ Wj ∩ ∂D, and ∂D = ⋃ND
j=1 αj. Denote by C� a constant that

bounds above the Lipschitz constant of every Lipschitz graph function �j. Fix any p ∈ R
2. For each

j = 1, . . . , ND denote by (px,j, py,j) the coordinates of p in the (xj, yj) coordinate system. We have
max{|aj − px,j|, |bj − px,j|} ≤ maxq∈∂D |p − q|.

Now we have established the necessary notation, we decompose the integral in the L2(∂D) norm
on the right-hand side of (3.18) into the regions contained within the open sets Wj, each with its own
Lipschitz graph αj:

∥∥Φk(p, ·)∥∥2
L2(∂D)

=
ND∑
j=1

∫
αj

|Φk(p, y)|2 ds(y)

= 1

16

ND∑
j=1

∫
αj

∣∣∣H(1)
0

(
k|p − y|)∣∣∣2 ds(y)

= 1

16

ND∑
j=1

∫ bj

aj

∣∣∣H(1)
0

(
k
√(

xj − px,j

)2 + (
f (xj) − py,j

)2
)∣∣∣2√1 + |�′

j(xj)|2 dxj.
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Now we may appeal to the monotonicity of |H(1)
0 | and bound the variation of the mapping to the

Lipschitz graph �′ by the constant C� to obtain

∥∥Φk(p, ·)∥∥2
L2(∂D)

≤
√

1 + C2
�

16

ND∑
j=1

∫ bj

aj

∣∣∣H(1)
0

(
k|xj − px,j|

)∣∣∣2dxj

= 1

k

√
1 + C2

�

16

ND∑
j=1

∫ k(bj−px,j)

k(aj−px,j)

∣∣∣H(1)
0 (|s|)

∣∣∣2ds,

where we have changed integration variables to simplify the integrand in the second step. Since bj−aj ≤
RD := diam(∂D) we can bound further

∥∥Φk(p, ·)∥∥2
L2(∂D)

≤1

k

√
1 + C2

�

16

ND∑
j=1

∫ k(aj−px,j+RD)

k(aj−px,j)

∣∣∣H(1)
0 (|s|)

∣∣∣2ds

≤1

k

√
1 + C2

�

16

ND∑
j=1

(∫
(k(aj−px,j),k(aj−px,j+RD))∩(−1,1)

∣∣∣H(1)
0 (|s|)

∣∣∣2ds (3.19)

+
∫

(k(aj−px,j),k(aj−px,j+RD))\(−1,1)

∣∣∣H(1)
0 (|s|)

∣∣∣2ds

)
. (3.20)

We have split the integrals in order to bound the Hankel function, using |H(1)
0 (z)| ≤ ĉ(1 + |log|z||) if

0 < |z| ≤ 1 with (3.19), and |H(1)
0 (z)| ≤ ĉ|z|−1/2 if |z| > 1, by e.g., Hewett et al. (2013, p. 638) (with

value ĉ ≈ 2.09) with (3.20). The integral (3.19) is therefore bounded above by

2ĉ2
∫ 1

0
(1 + |log s|)2 = 10ĉ2, (3.21)

where we have used
∫ t

(1 − log s)2 d s = t(log2 t − 4 log t + 5)+constant in the final step. The second
integral (3.20) is maximized either when (i) k(aj − px,j) = 1 or when (ii) k(aj − px,j) = −kRD/2. In case
(i) the integral is bounded above by

ĉ2
∫ 1+kRD

1
s−1 ds = ĉ2 log(1 + kRD)

and in case (ii) it is bounded above by

2ĉ2
∫ kRD/2

1
s−1 ds = 2ĉ2 log(kRD/2),
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so in either case, (3.20) is bounded above by 2ĉ2 log(1 + kRD). Combining this with (3.21) yields

∥∥Φk(p, ·)∥∥2
L2(∂D)

≤ 1

k
NDĉ2

√
1 + C2

�

8

(
5 + log(1 + kRD)

)
.

This gives the explicit form of the simplified estimate in our claim, proving the assertion. �
Using this result we can say more about the k-dependence of umax(k), for a large class of multiple

scattering configurations of interest.

Theorem 3.4 Suppose that u satisfies the BVP (2.2)–(2.4), with plane wave incidence (2.1). Then
given k0> 0 independent of k the following bounds hold:

1. If Υ = Ω ∪ ω is a nontrapping polygon (in the sense of Definition 2.3),

umax(k) � k1/2 log1/2(1 + k diam(∂D)), for k ≥ k0.

2. Otherwise, if Υ = Ω ∪ ω is an (R0, R1) domain (in the sense of Definition 2.4),

umax(k) � k5/2 log1/2(1 + k diam(∂D)), for k ≥ k0,

where umax(k) is as in (3.16).

Proof. We write the BVP (2.2)–(2.4) for the scattered field us, with Dirichlet data us = −ui on the
boundary ∂D, in terms of the DtN map PDtN (see, e.g., Chandler-Wilde et al., 2012b, Section 2.7) as
∂us/∂n = −PDtNτ+ui, where τ+ denotes the exterior Dirichlet trace. The representation (2.6) gives

us = −Sk

(
∂

∂n
− PDtNτ+

)
ui, in D.

This, together with |∂ui/∂n| ≤ k|ui| (which follows immediately from (2.1)), enables us to bound us as

‖us‖L∞(D) ≤ ‖Sk‖L2(∂D)�L∞(D)

(
1 + ‖PDtN‖H1

k (∂D)�L2(∂D)

)
‖ui‖H1

k (∂D), (3.22)

where ‖ · ‖H1
k (∂D) denotes the k-weighted norm of the Sobolev space H1(∂D)

‖ϕ‖H1
k (∂D) :=

(∫
∂D

k2|ϕ|2 + |∇Sϕ|2dV

)1/2

(3.23)

and ∇S denotes the surface gradient operator on ∂D (defined in (A.2)). By the triangle inequality we
have umax(k) ≤ ‖ui‖L∞(D) + ‖us‖L∞(D), and from Lemma 3.3 we can bound ‖Sk‖L2(∂D)�L∞(D). Hence,
we may write, for k ≥ k0,

umax(k) � ‖ui‖L∞(D) + k−1/2 log1/2(1 + k diam(∂D))‖PDtN‖H1
k (∂D)�L2(∂D) ‖ui‖H1

k (∂D). (3.24)
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1212 A. GIBBS ET AL.

For the DtN maps we may use Baskin et al. (2016, Theorem 1.4) for the nontrapping polygon case (i)
‖PDtN‖H1

k (∂D)�L2(∂D) � 1, while the (R0, R1) obstacle case (ii) ‖PDtN‖H1
k (∂D)�L2(∂D) � k2 follows by

Chandler-Wilde et al. (2020, Theorem 1.8). It remains to bound the incident field ui at the boundary and
in the domain. For plane wave incidence it follows by the definitions (3.23) and (2.1) that ‖ui‖H1

k (∂D) ≤
2
√|Γ |k and ‖ui‖L∞(D) = 1. The result follows by combining these bounds on ui with the components

of (3.24). �
Theorem 3.4 is a generalization of Hewett et al. (2013, Theorem 4.3), which bounds umax(k) for

star-shaped polygons. Although more general Theorem 3.4 differs from Hewett et al. (2013, Theorem
4.3) in that it is not fully explicit in terms of the geometric parameters of Υ . We do not expect such a
bound to hold for the most general configurations and incident fields, since it was shown in Betcke et al.
(2011, Theorem 2.8) that there exist multiple obstacle configurations for which ‖A−1

k,η‖L2(∂D)�L2(∂D) is
bounded below by a term which grows exponentially with k, in which case umax(k) would grow similarly.
In particular, though Theorem 3.4(i) is immediately applicable to the case of polygons, which are
nonconvex, nonstar-shaped and nontrapping, considered in Chandler-Wilde et al. (2015) (see Definition
3.1 therein), for which the stronger result umax(k) = O(1) for k → ∞ was conjectured, in the (then)
absence of any available algebraic bounds. The bound of Theorem 3.4 is sufficient to guarantee algebraic
growth of umax(k) in k and therefore exponential convergence of HNA-BEM for such polygons.

The following assumption generalizes Theorem 3.4 to all configurations of interest.

Assumption 3.5 For the solution u of the BVP (2.2)–(2.4) we assume that there exist β ≥ 0, k0 > 0
and Cu > 0, independent of k, such that

umax(k) ≤ Cukβ for k ≥ k0,

that is umax(k) of (3.16) has at most algebraic dependence on the wavenumber k.

Clearly, Assumption 3.5 holds for configurations satisfying the conditions of Theorem 3.4 (see
Remark 5.3 for more details).

3.3 Analyticity and bounds for the envelope functions v±
j

Additional notation is required for the estimates that follow. Denote by Ωj the exterior angle at the
corner Pj of Ω (see Fig. 3 for an illustrative example). Since Ω is a convex polygon Ωj ∈ (π , 2π)

for all j = 1, . . . ,NΓ . Let c∗ > 0 be a constant such that kLj ≥ c∗ for all j = 1, . . . ,NΓ (e.g.,
c∗ = minj=1,...,NΓ

{kLj}).
We now aim to show, as in Hewett et al. (2013) where only one (convex polygonal) scatterer Ω is

present, that the functions v±
j are complex-analytic and, moreover, that they can be approximated much

more efficiently than ∂u/∂n|Γ . We update this to the multiple scattering configuration by adapting the
intermediate results of Hewett et al. (2013, Section 3). We first consider the solution behaviour near the
corners.

Lemma 3.6 (Solution behaviour near the corners). Suppose that u satisfies the BVP (2.2)–(2.4) and
x ∈ D satisfies r := |x − Pj| ∈ (0, 1/k], and r < dist(Pj, γ ). Then there exists a constant C > 0,
depending only on ∂D and c∗, such that (with umax(k) as in (3.16)),

|u(x)| ≤ C(kr)π/Ωj umax(k).
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Fig. 3. A convex polygon with the parameters introduced in Section 3.3.

Proof. Follows identical arguments to Hewett et al. (2013, Lemma 3.5), with the slight modification to
the definition Rj := min{Lj−1, Lj, π/(2k), dist(Pj, γ )}, which ensures only areas close to the corner Pj
inside D are considered. �

Now we may bound the singular behaviour of the diffracted envelopes v±
j , which will enable us to

choose a suitable approximation space for the numerical method.

Theorem 3.7 Suppose that u is a solution of the BVP (2.2)–(2.4) and that cr ∈ (0, 1] is chosen
such that dist({Pj : j = 1, . . . ,NΓ }, γ ) > cr/k. Then the diffracted wave envelope components v±

j for
j = 1, . . . ,NΓ , of the boundary representation (3.10), are analytic in the right complex half-plane
Re[s] > 0, where they satisfy the bounds

|v±
j (s)| ≤

{
C±

j umax(k)
(
k|ks|−δ±

j + k(k|s| + cr)
−1
)
, 0 < |s| ≤ 1/k,

C±
j umax(k)k|ks|−1/2, |s| > 1/k,

where δ+
j , δ−

j ∈ (0, 1/2) are given by δ+
j := 1−π/Ωj and δ−

j := 1−π/Ωj+1. The constant C+
j depends

only on c∗, cr and Ωj, while the constant C−
j depends only on c∗, cr and Ωj+1.

Proof. The analyticity of the functions v±
j (s) in Re[s] > 0 follows from their definition (3.11)–(3.12)

and the analyticity of μ(s) in the same set, which is shown in Hewett et al. (2013, Lemma 3.4). The
estimate of |v±

j (s)| for |s| > 1/k follows as in the proof of Hewett et al. (2013, Theorem 3.2). Here we

show for v+
j , the proof for v−

j follows similar arguments. For |s| ≤ 1/k, the definition (3.11)–(3.12) of

v+
j gives

|v+
j (s)| ≤ k2

2

∫
(0,cr/k)

∣∣μ(k(s + t)
)∣∣∣∣u(yj(̃Lj−1 − t)

)∣∣dt

+ k2

2

∫
(cr/k,∞)\Z+

j

∣∣μ(k(s + t)
)∣∣∣∣u(yj(̃Lj−1 − t)

)∣∣dt.
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Since cr ≤ 1 and, thanks to Lemma 3.6, the first integral is bounded as in the proof of Hewett et al.

(2013, Theorem 3.2), leading to the term umax(k)k|ks|−δ±
j in the assertion. Using the bound on μ from

Hewett et al. (2013, Lemma 3.4) we control the second integral as

k2

2

∫
(cr/k,∞)\Z+

j

∣∣μ(k(s + t)
)∣∣∣∣u(yj(̃Lj−1 − t)

)∣∣ dt

≤ Cumax(k)k
2
∫ ∞

cr/k

∣∣k(s + t)
∣∣−3/2

(∣∣k(s + t)
∣∣−1/2 + (π/2)1/2

)
dt

≤ Cumax(k)k
2
(

k−2(|s| + cr/k)−1 + k−3/2(|s| + cr/k)−1/2
)

= Cumax(k)k
(
(k|s| + cr)

−1 + (k|s| + cr)
−1/2

)
.

The bound in the assertion follows by noting that k|s| + cr < 2. �
The constant cr is small when the scatterers are close together, relative to the wavelength of the

problem. Thus, the terms containing cr in the bound of Theorem 3.7 control the effect of the separation
between Ω and ω on the singular behaviour of v±

j . However, the method we present is designed for
high-frequency problems, and to maintain cr = O(1) as k increases, the separation of the scatterers
is allowed to decrease inversely proportional to k. Hence, for the configurations that we consider of
practical interest in the high-frequency regime, the condition (3.8) in the following corollary will hold.

Corollary 3.8 Suppose that the conditions of Lemma 3.6 hold, with the additional constraint that the
separation condition

dist(Γ , γ ) ≥ 1/k, (3.25)

is satisfied. It then follows that the first bound of Theorem 3.7 can be simplified to

|v±
j (s)| ≤ C±

j umax(k)k|ks|−δ±
j , for 0 < |s| ≤ 1/k, j = 1, . . . ,NΓ .

Proof. If the separation condition (3.25) holds, we can choose cr = 1 in Theorem 3.7, from

which (k|s| + cr)
−1 ≤ 1. The term k(k|s| + cr)

−1 is therefore dominated by the term k|ks|δ±
j for

0 < |s| ≤ 1/k. �
The separation condition (3.25) aligns the bounds of Theorem 3.7 with the well-studied single

scattering HNA configurations of Hewett et al. (2013, Theorem 5.2). Hence, all best approximation
results for the single scattering case may be applied to the approximation on Γ in the multiple scattering
problems we consider here.

Remark 3.9 The result of Theorem 3.7 may be extended to an incident wave of source-type, for
example the point source emanating from s ∈ D, ui(x) = H(1)

0 (k|x − s|). This requires that the position
of the source point s is separated by a distance of at least 1/k from Ω (similar to the separation condition
(3.25)), see Gibbs (2017, Section 3.2) for details.
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4. hp approximation space

We will combine two approximation spaces: the HNA-BEM space on Γ and a standard hp-BEM space
on γ . Hereafter, using the parametrization of the boundaries Γ and γ , we identify L2(Γj) with L2(0, Lj),

and L2(γ ) with L2(0, Lγ ).

4.1 HNA-BEM approximation on Γ

As in previous HNA methods, on Γ we approximate only the diffracted waves

vΓ (s) := 1

k

(
v+

j (s − L̃j−1)e
iks + v−

j (̃Lj − s)e−iks
)

, s ∈
[̃
Lj−1, L̃j

]
, j = 1, . . . ,NΓ , (4.1)

where v±
j are as in (3.11)–(3.12), and broadly speaking this is done using basis elements of the form

vΓ (s) ≈
(

P+
j (s − L̃j−1)e

iks + P−
j (̃Lj − s)e−iks

)
, s ∈

[̃
Lj−1, L̃j

]
, j = 1, . . . ,NΓ ,

where P±
j are piecewise polynomials on a graded mesh. There are two well-studied classes of hp

approximation space we may use to do this. Both spaces consist of piecewise polynomials multiplied
by oscillatory functions oscillating in both directions along the surface of Γ , and both spaces are
constructed on meshes graded towards the singularities at the corners of Γ . We briefly describe these
approximation spaces here:

1. The overlapping-mesh space, used in original HNA methods for single scatterers, this discrete space
is the sum of two subspaces, each constructed on a separate mesh graded in opposite directions. On
Γj the subspace on the mesh graded towards L̃j−1 is used to approximate v+

j (s − L̃j−1)e
iks and the

subspace on the mesh graded towards L̃j is used to approximate v−
j (̃Lj − s)e−iks. Details can be

found in Hewett et al. (2013, Section 5).

2. The single-mesh space, constructed on a single mesh graded towards both edges. This space can
easily be implemented by adapting a standard BEM code, as the mesh is of a more standard type.
However, care must be taken close to the corners of Γ : certain elements must be removed from the
approximation space to ensure the discrete system does not become too ill-conditioned. We will
define this space shortly.

A range of numerical experiments comparing both approximation spaces for collocation HNA-BEM
can be found in Parolin (2015). For either choice of mesh we denote by nj the number of grading layers
and by pj the maximum polynomial degree on the jth side (in terms of the notation of Chandler-Wilde &

Langdon, 2007 and Hewett et al., 2013, we choose pj = p+
j = p−

j , nj = nj
+ = nj− for simplicity). We

denote by σ > 0 the grading parameter, so that the smallest mesh element of Γj (touching the corners
of Γj) has length Ljσ

nj .
The single-mesh space has been described in the theses of Gibbs (2017) and Parolin (2015), and is

used for the numerical experiments in Section 6; we define it here for convenience.

Definition 4.1 Given L > 0, n ∈ N and a grading parameter σ ∈ (0, 1/2), we denote by Mn(0, L) =
{x0, . . . , x2n+1} the symmetric geometrically graded mesh on [0, L] with n layers in each direction, whose
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1216 A. GIBBS ET AL.

Fig. 4. The single-mesh space of Definition 4.1 on a segment [0, L].

2n + 2 meshpoints xi are defined by

x0 := 0,

xi := Lσ n−i+1, for i = 1, . . . , n,

xi := L(1 − σ i−n), for i = n + 1, . . . , 2n,

x2n+1 := L.

For a vector p = (p1, . . . , pn+1) ∈ (N0)
n+1 we denote by Pp,n the space of piecewise polynomials on

Mn(0, L) with degree vector p, i.e.,

Pp,n(0, L) :=
{

ρ ∈ L2(0, L) : ρ|(xi−1,xi)
and ρ|(x2n+1−i,x2n−i+2)

are polynomials of degree at most pi for i = 1, . . . , n + 1

}
.

We first define two spaces for each side Γj, j = 1, . . . ,NΓ , using nj ∈ N to determine the degree of
mesh grading and the vectors pj to determine the polynomial degree on each mesh element:

V+
j :=

{
v ∈ L2(0, LΓ ) : v|(̃Lj−1,̃Lj)

(s) = ρ̃(s − L̃j−1)e
iks, ρ̃ ∈ Ppj,nj

(0, Lj), ρ|(0,LΓ )\(̃Lj−1,̃Lj)
= 0

}
,

V−
j :=

{
v ∈ L2(0, LΓ ) : v|(̃Lj−1,̃Lj)

(s) = ρ̃(̃Lj − s)e−iks, ρ̃ ∈ Ppj,nj
(0, Lj), ρ|(0,LΓ )\(̃Lj−1,̃Lj)

= 0
}

.

As is explained in Remark 4.2, to avoid ill-conditioning of the discrete system we must remove certain
basis functions supported on the elements within a given distance from the corners:

Ṽj := span
({

v ∈ V−
j : v|[̃Lj−1,̃Lj−1+x̃nj ]

= 0
}

∪
{

v ∈ V+
j : v|[̃Lj−x̃nj ,̃Lj] = 0

})
,

where

x̃nj
:= max

{
xi ∈ Mnj

(0, Lj) such that xi ≤ αj
2π

k

}
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and αj is a parameter chosen such that 0 < αj < Ljk/(4π), bounded independently of k and pj, used to
fine-tune the space. Put simply there are two basis functions on (large) elements sufficiently far from the
corners, and one basis element on (small) elements close to the corners. The parameter αj determines
what is meant by sufficiently far. Hence, the single-mesh approximation space with dimension NΓ is
defined as

VHNA
NΓ

(Γ ) := span
NΓ⋃
j=1

Ṽj.

Remark 4.2 (Why basis elements of the single-mesh space are removed). Since the mesh is strongly
graded to approximate the singularities of v±

j , some of its elements are much smaller than the wavelength

of the problem, thus on these elements e±iks are roughly constant and the functions of V+
j supported on

these elements are numerically indistinguishable from those on V−
j , leading to an ill-conditioned discrete

system of Galerkin equations set in V+
j ∪ V−

j . To avoid this, in these elements, we maintain only one
of these two contributions. Intuitively, αj can be thought of as the value such that in all mesh elements

with distance from one of the segment endpoints smaller than αj, the space Ṽj supports polynomials

multiplied with only one of the waves e±iks. As the parameter αj increases, fewer DOFs are used and
the conditioning of the discrete system is improved, but the accuracy of the method is reduced; hence,
care must be taken when selecting αj.

In much of what follows the choice of single- or overlapping-mesh HNA space is irrelevant; hence,
we shall use VHNA

NΓ
(Γ ) to denote either, but will make clear the cases for which the choice is significant.

For the overlapping-mesh space best approximation estimates were derived in Hewett et al. (2013,
Theorem 5.4). The following result from Gibbs (2017, Corollary 2.11) compares the best approximation
of the single-mesh and overlapping-mesh spaces, on Γ .

Theorem 4.3 Suppose that the obstacles Ω and ω are sufficiently far apart so that the separation
condition (3.25) holds. Let VHNA

NΓ
(Γ ) be an HNA space as above, cj > 0 be such that the polynomial

degrees pj and the numbers of layers nj satisfy

nj ≥ cjpj, for j = 1, . . . ,NΓ , (4.2)

and denote pΓ := minj{pj}. Then we have the following best approximation estimate for the diffracted
wave vΓ (of (4.1)):

inf
wNΓ

∈VHNA
NΓ

(Γ )

‖vΓ − wNΓ
‖L2(Γ ) ≤ CΓ k−1/2umax(k)J(k)e−pΓ τΓ ,

where CΓ is a constant independent of k and

J(k) :=
{

(1 + kL∗)1/2−δ∗ + log1/2(2 + kL∗), VHNA
NΓ

(Γ ) overlapping-mesh,

(1 + kL∗)1/2−δ∗ + log1/2(2 + kL∗) + √
k(kI∗)−δ∗ , VHNA

NΓ
(Γ ) single-mesh,

with I∗ and τΓ independent of nj, pj, k (both are defined precisely in Gibbs, 2017, Corollary 2.11),

δ∗ := minj,±{δ±
j } (with δ±

j as in Theorem 3.7), while L∗ := maxj Lj the length of the longest side of Ω .
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1218 A. GIBBS ET AL.

For the single-mesh space, it follows that CΓ = maxj{Cj} for Cj of Gibbs (2017, Theorem 2.9). For the
overlapping-mesh space, CΓ is equal to the constant C4 of Hewett et al. (2013, Theorem 5.5).

Theorem 4.3 shows that we obtain exponential convergence of the best approximation to v±
with respect to pΓ , which controls both polynomial degree and mesh grading (via (4.2)), across all
wavenumbers k. To maintain accuracy as k increases one needs to increase pΓ in proportion to log k,
and hence the total number of DOFs (which is proportional to p2

Γ ) in proportion to log2 k.

Remark 4.4 It is shown in Hewett et al. (2011, Theorem A.3) for the overlapping-mesh HNA space
that it is possible to reduce the number of DOFs on Γ , while maintaining exponential convergence,
by reducing the polynomial degree in the smaller mesh elements, as is standard in hp schemes. For
example, given a polynomial degree pj > 1, we can define for each side Γj, j = 1, . . . ,NΓ , a degree
vector pj by

(pj)i :=
{

pj −
⌊

nj+1−i
nj

pj

⌋
, 1 ≤ i ≤ nj,

pj, i = nj + 1,

where nj is as in Definition 4.1 of the single-mesh space. This may be applied to either the single or
overlapping mesh and results in a linear reduction of polynomial degree on mesh elements closer to the
corners of Γj. Numerical experiments in Section 6 suggest that exponential convergence is maintained
for the single-mesh HNA space if the DOFs are reduced in this way, although we do not prove this here.

4.2 Standard hp-BEM approximation on γ

If Assumption 3.5 holds, as is the case in the configurations of Theorem 3.4, it follows from
Theorem 4.3 that it is sufficient for the number of DOFs in VHNA

NΓ
(Γ ) to grow logarithmically with k,

to accurately approximate v±. However, this tells us nothing about the DOFs required on γ . To account
for the contribution from γ we parametrize xγ : [0, Lγ ] → γ and construct an appropriate (depending

on the geometry of ω) Nγ -dimensional approximation space Vhp
Nγ

(γ ) ⊂ L2(0, Lγ ) for

vγ (s) := 1

k

∂u

∂n

(
xγ (s)

)
, s ∈ [0, Lγ ]. (4.3)

While a representation analogous to (3.10) holds on γ when ω is a convex polygon, this approach is not
suitable for the present multiple scattering approximation. If such a representation were used on multiple
polygons the system to solve would need to be written as a Neumann series and solved iteratively. This
alternative approach is outlined briefly in Gibbs (2017, Section 4.4.1). Instead, we approximate the
full solution vγ , rather than any of its individual components as listed in (3.10). An advantage of the
approach in this paper is that the only restriction imposed on γ is that it must be Lipschitz and piecewise
analytic. The disadvantage is that the number of DOFs required to approximate the solution on γ has
to increase with frequency to maintain accuracy, as is typical of standard hp-schemes. For all k such
that |γ | is small compared with the wavelength 2π/k, one would not expect this increase in DOFs to be
significant. Here, we take Vhp

Nγ
(γ ) to be a standard hp-BEM approximation space consisting of piecewise

polynomials to approximate vγ , with mesh and degree vector dependent on the geometry of ω.
We now aim to bound the approximation of the solution on γ , in terms of key parameters, for the

case where γ is analytic. This will enable us to quantify the k-dependence of our method, which we
expect to be mild when |γ | is small compared with the wavelength. A range of tools were developed in
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Löhndorf & Melenk (2011) for hp-BEM approximations for problems of scattering by analytic surfaces,
provided bounds on A−1

k,η are available. For this we are able to use recently developed theory of (R0, R1)

configurations (of Definition 2.4) for which we have from Chandler-Wilde et al. (2020, (1.28)): if
η = O(k) then given k0 > 0,

‖A−1
k,η‖L2(Γ ∪γ )�L2(Γ ∪γ ) � k2, for k ≥ k0. (4.4)

In the class of problems we consider the total boundary Γ ∪γ is not analytic because Γ is the boundary
of a polygon. Therefore, we could not apply the theory of Löhndorf & Melenk (2011) to a standard hp
approximation on Γ ∪ γ . However, in our method the standard hp approximation is only on γ , which in
this section we will restrict to be analytic; Theorem 4.3 provides a best approximation estimate for the
HNA space on the polygon Γ . As we shall see this is sufficient to get a best approximation estimate for
vγ in the standard hp space Vhp

Nγ
(γ ). The main idea is to consider an equivalent problem of scattering by

(only) the obstacle ω, with the contribution from Ω absorbed into the incident field. We can rewrite the
representation (2.6)

u(x) = ui(x) −
∫

Γ

Φk(x, y)
∂u

∂n
(y)ds(y) −

∫
γ

Φk(x, y)
∂u

∂n
(y)ds(y), x ∈ D,

separating the contribution from the convex polygon Γ . To construct an equivalent problem we consider
the additional component of the incident field to be the contribution from Γ :

ui
Γ (x) := −

∫
Γ

Φk(x, y)
∂u

∂n
(y)ds(y) = −

∫
Γ

Φk(x, y)A−1
k,η fk,η(y)ds(y), x ∈ Tγ , (4.5)

where Tγ is a tubular neighbourhood of γ , i.e., for some ε > 0 we have

Tγ := {x ∈ R
2| dist(x, γ ) < ε},

with ε chosen such that dist(Tγ , Γ ) > 0. Our equivalent problem is therefore scattering of ui +ui
Γ by ω,

in Tγ . It is straightforward to see that the solution to this equivalent problem is the same as the solution
to the BVP (2.2)–(2.4) (restricted to Tγ ). To use the hp theory developed in Löhndorf & Melenk (2011)
we must show that the solution to our scattering problem is in the space of Löhndorf & Melenk (2011,
Definition 1.1):

U(ψ , ξ , Tγ \ γ ) := {‖∇nϕ‖L2(Tγ \γ ) ≤ ξnψ(k) max{n + 1, |k|}n, ∀ n ∈ N0} (4.6)

for some ξ independent of k, h, p and

|∇nu(x)|2 :=
∑

α∈N2
0:|α|=n

n!

α!
|Dαu(x)|2. (4.7)

A prerequisite for u ∈ U(ψ , ξ , Tγ \ γ ) is that the incident field to our equivalent problem ui + ui
Γ is also

in U(ψ , ξ , Tγ \ γ ), possibly for different parameters ψ and ξ .
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Lemma 4.5 If Ω ∪ ω is an (R0, R1) configuration then

ui
Γ ∈ U(ψ , 1, Tγ ),

where ψ(k) := Ck7/2 log1/2(k diam(Γ ) + 1) with C > 0 a constant independent of k.

Proof. Throughout the proof we let C denote an arbitrary constant independent of k and n. It follows
from standard mapping properties of the single-layer operator (e.g., Chandler-Wilde et al., 2012b,
Theorem 2.15(i)) that ui

Γ ∈ H1(ω), where ω is a bounded open subset of R2 containing Ω ∪ ω. We
may therefore bound using Melenk (2012, Theorem B.6), choosing zero forcing term to obtain

‖ui
Γ ‖Hn+2(Tγ ) ≤ Ckn+2‖ui

Γ ‖L2(ω), for k ≥ k0, n ∈ N0, (4.8)

given k0 > 0, where ω is a bounded open set compactly containing Tγ and Ω . From (4.7) we see that
the norm is the sum of n + 1 terms; hence,

‖∇nui
Γ ‖2

L2(Tγ )
≤ (n + 1)! ‖ui

Γ ‖2
Hn+2(Tγ )

, (4.9)

≤ C(n + 1)nkn+2‖ui
Γ ‖2

L2(ω)
, for k ≥ k0, n ∈ N0, (4.10)

given k0 > 0, which follows by combining with (4.8) and (n + 1)! ≤ (n + 1)n. We now bound ui
Γ in

terms of known quantities,

‖ui
Γ ‖L2(ω) ≤ |ω|1/2‖Sk‖L2(Γ )�L∞(ω)‖A−1

k,η‖L2(Γ )�L2(Γ )‖fk,η‖L2(Γ ).

We may bound these norms using Lemma 3.17, (4.4) and (2.8) (choosing η = O(k)) to obtain

‖ui
Γ ‖L2(ω) ≤ Ck5/2 log1/2(k diam(Γ ) + 1). (4.11)

Finally, we can combine the bound (4.11) with (4.10) to obtain

‖∇nui
Γ ‖L2(Tγ ) ≤ Ck7/2 log1/2(k diam(Γ ) + 1) max{n + 1, k}n, for k ≥ k0, n ∈ N0,

proving the assertion. �
Now we have shown sufficient conditions on the growth of the derivatives of ui

Γ , we are ready to
obtain best approximation estimates on γ .

Proposition 4.6 Suppose Υ = Ω ∪ ω is an (R0, R1) configuration (in the sense of Definition 2.4)

and ω has an analytic boundary γ . If Vhp
Nγ

(γ ) is constructed on a quasi-uniform mesh (in the sense of
Löhndorf & Melenk (2011, §1)) with kh/pγ � 1, where h and pγ denote maximum mesh width and
polynomial degree, respectively, then, given positive constants k0, ζ independent of k, pγ and h, we have
the following best approximation estimate:

inf
wNγ ∈Vhp

Nγ
(γ )

‖vγ − wNγ
‖L2(γ ) ≤ Cγ (k)e−τγ (k)pγ , for k ≥ k0,
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where

τγ (k) = log

(
min

{
ζpγ

kh
,
ζ + h

h

})
and Cγ (k) := Ck8 log(k diam(Γ ) + 1), (4.12)

with C > 0 a constant independent of k, pγ and h.

Proof. By Lemma 4.5 we have that ui
Γ ∈ U(ψ , 1, Tγ \ γ ), and it is straightforward to see that

ui ∈ U(1, 1, Tγ \ γ ). Choosing

g1 := − iη

k
(ui + ui

Γ ), g2 := ui + ui
Γ , in Tγ ∩ D,

with g1 = g2 = 0, otherwise, we have that g1, g2 ∈ U(ψ , 1, Tγ \ γ ). Noting again (4.4) we may
appeal to Löhndorf & Melenk (2011, Lemma 2.6) to deduce that the solution u of the BVP (2.2)–(2.4)
(which is the same as the solution to the equivalent problem of scattering by ui + ui

Γ ) is in the space
U(ψ∗, 1, Tγ \ γ ), for all k ≥ k0 given k0 > 0, where

ψ∗(k) := ψ(k)(1 + k5/2‖A−1
k,η‖L2(Γ ∪γ )�L2(Γ ∪γ )) ≤ Ck8 log(k diam(Γ ) + 1), for k ≥ k0.

Hence, the best approximation estimate of Löhndorf & Melenk (2011, Lemma 3.16) may be applied to

u/Cγ (k) ∈ U(1, 1, Tγ \ γ ), for k ≥ k0

(noting Löhndorf & Melenk (2011, Definition 3.3)), yielding the best approximation result after
rescaling by Cγ (k). �

We do not expect the above result to be sharp; however, to the best knowledge of the authors, it is the
only hp-BEM estimate currently available for such a configuration. We now generalize Proposition 4.6
in the form of an assumption, which states that we observe exponential convergence to the solution
∂u/∂n in Vhp

Nγ
(γ ). It follows immediately from Proposition 4.6 that this assumption holds for analytic

γ , under appropriate conditions. For the case of polygonal γ the numerical experiments of Section 6
suggest the assumption also holds, provided that we fix Nγ = O(k).

Assumption 4.7 Denoting by vγ the restriction to γ of the solution of the BIE (2.7), we assume that
the sequence of approximation spaces (

Vhp
Nγ

(γ )
)

Nγ ∈N

is such that

inf
wNγ ∈Vhp

Nγ
(γ )

‖vγ − wNγ
‖L2(γ ) ≤ Cγ (k)e−τγ (k)pγ ,

where the positive constants Cγ (k) and τγ (k) may depend on k and pγ is the polynomial degree of the

space Vhp
Nγ

(γ ).
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4.3 Combined approximation space on Γ ∪ γ

The approximation space is based on the representation of the Neumann trace

∂u

∂n
=
{

Ψ + kvΓ + kGγ�Γ vγ , on Γ ,
kvγ , on γ ,

(4.13)

where vΓ and vγ are the unknowns that we solve for using the approximation spaces of Section 4.1 and
Section 4.2, while Ψ denotes the physical optics approximation (3.8) and Gγ�Γ denotes the interaction
operator (3.13). Hence, the approximation lies in the space

VHNA∗
N (Γ , γ ) := VHNA

NΓ
(Γ ) × Vhp

Nγ
(γ ), (4.14)

where the total number of DOFs is N = NΓ + Nγ . For problems of one large polygon and one (or

many) small polygon(s), the single-mesh HNA space VHNA
NΓ

(Γ ) is particularly practical, as only a small

modification is required to implement both this and a standard hp-BEM space on Vhp
Nγ

(γ ).
The following notation will be used to describe the problem in block operator form.

Definition 4.8 (Operator restriction). For the operator Ak,η : L2(∂D) → L2(∂D) (of Definition 2.1)

and relatively open X, Y ⊂ ∂D, we define the operator AY�X : L2(Y) → L2(X) by

AY�Xϕ :=
(
Ak,η ◦ QYϕ

)
|X , ϕ ∈ L2(Y),

where QY : L2(Y) → L2(∂D) is the zero-extension operator, such that (QYϕ)|Y = ϕ and (QYϕ)|∂D\Y =
0. For the case of the identity operator IX�X : L2(X) → L2(X) we simplify the notation by writing IX .

Inserting (4.13) into the BIE (2.7) we can write the problem to solve in block form: find v ∈ L2(Γ )×
L2(γ ) such that

A�G�v =
[

f |Γ − AΓ �Γ Ψ

f |γ − AΓ �γ Ψ

]
, (4.15)

where

A� :=
[ AΓ �Γ Aγ�Γ

AΓ �γ Aγ�γ

]
and G� := k

[ IΓ Gγ�Γ

0 Iγ

]
.

Stated in a variational form equivalent to (2.9) our problem is as follows: find v ∈ L2(Γ ∪ γ ) such
that(
AΓ �Γ

[
v| Γ

]
, w|Γ

)
L2(Γ )

+
(

[Aγ�Γ +AΓ �Γ Gγ�Γ ]
[

v| γ

]
, w|Γ

[
v
∣∣
γ

])
L2(Γ )

=1

k

(
f −AΓ �Γ Ψ , w|Γ

)
L2(Γ )

,

(4.16)(
AΓ �γ

[
v| Γ

]
, w|γ

)
L2(γ )

+
(

[Aγ�γ + AΓ �γGγ�Γ ]
[

v| γ

]
, w|γ

)
L2(γ )

= 1

k

(
f − AΓ �γ Ψ , w|γ

)
L2(γ )

,

(4.17)

for all w ∈ L2(Γ ∪ γ ). This problem forms the basis of our Galerkin method.
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5. Galerkin method

In this section we derive error bounds for the approximation of equation (4.15) by the Galerkin method
on the discrete space VHNA∗

N (Γ , γ ) (defined in (4.14)). Under certain assumptions we will show that
exponential convergence is achieved. We intend to approximate the unknown components of the solution
on Γ and γ , that is

vN :=
(

vNΓ

Γ

v
Nγ
γ

)
≈
(

vΓ

vγ

)
=: v,

where v is the solution to (4.15). Recall (from Section 4.3) that we use an HNA approximation space
VHNA

NΓ
(Γ ) (single- or overlapping-mesh) on Γ , with a standard hp-approximation space Vhp

Nγ
(γ ) on γ .

The discrete problem to solve is: find vN ∈ VHNA∗
N (Γ , γ ) such that

(
AΓ �Γ vNΓ

Γ , wN
Γ

)
L2(Γ )

+
(

[Aγ�Γ + AΓ �Γ Gγ�Γ ]v
Nγ
γ , wN

Γ

)
L2(Γ )

= 1

k

(
f − AΓ �Γ Ψ , wN

Γ

)
L2(Γ )

, (5.1)(
AΓ �γ vNΓ

Γ , wN
γ

)
L2(γ )

+
(

[Aγ�γ + AΓ �γGγ�Γ ]v
Nγ
γ , wN

γ

)
L2(γ )

= 1

k

(
f − AΓ �γ Ψ , wN

γ

)
L2(γ )

, (5.2)

for all (wN
Γ , wN

γ ) ∈ VHNA∗
N (Γ , γ ). To implement the Galerkin method we choose suitable bases ΛΓ and

Λγ , with

span ΛΓ = VHNA
NΓ

(Γ ) and span Λγ = Vhp
Nγ

(γ ).

To determine vN we seek a ∈ C
N that solves the block matrix system Ba = b, where

B :=

ϕ∈ΛΓ ϕ∈Λγ⎡⎢⎣
(
AΓ �Γ ϕ, φ

)
L2(Γ )

(
[Aγ�Γ + AΓ �Γ Gγ→Γ ]ϕ, φ

)
L2(Γ )(

AΓ �γ ϕ, φ
)

L2(γ )

(
[Aγ�γ + AΓ �γGγ�Γ ]ϕ, φ

)
L2(γ )

⎤⎥⎦ φ∈ΛΓ

φ∈Λγ

(5.3)

and

b := 1

k

⎡⎣ (
f − AΓ �Γ Ψ , φ

)
L2(Γ )(

f − AΓ �γ Ψ , φ
)

L2(γ )

⎤⎦ φ∈ΛΓ

φ∈Λγ

. (5.4)

For further details on implementation see Remark 6.1.
For the remainder of the section we present approximation estimates of quantities of practical

interest. We assume that as N increases, so do NΓ and Nγ , such that the following convergence
conditions hold:

lim
N�∞ inf

wN∈VHNA∗
N (Γ ,γ )

‖w − wN
Γ ‖L2(0,LΓ ) = 0 for all w ∈ C∞(0, LΓ ), (5.5)

lim
N�∞ inf

wN∈VHNA∗
N (Γ ,γ )

‖w − wN
γi
‖L2(0,Lγi )

= 0 for all w ∈ C∞(0, Lγi
), (5.6)
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for i = 1, . . .Nγ , where wN := (wN
Γ , wN

γ1
, . . . , wN

γNγ
). If Vhp

Nγ
(γ ) is a standard hp-BEM space then (5.6)

holds. It follows by identical arguments to Chandler-Wilde & Langdon (2007, Theorem 5.1) and the
definition of the single- and overlapping-mesh spaces (see Section 4) that Condition (5.5) holds. We
present a lemma concerning the stability of the system (5.1)–(5.2).

Lemma 5.1 (Stability of discrete system). Suppose the convergence conditions (5.5)–(5.6) hold. Then
there exist positive constants Cq(k) and N0(k) such that for N ≥ N0 the solution vN of (5.1)–(5.2) exists.
Moreover,

‖v − vN‖L2(∂D) ≤ Cq(k) min
wN∈VHNA∗

N (Γ ,γ )

‖v − wN‖L2(∂D), for N ≥ N0(k).

Proof. First, we show that A� is a compact perturbation of an operator that is Fredholm of zero
index. We have from Chandler-Wilde & Langdon (2007, p. 620) that AΓ �Γ is a compact perturbation
of a Fredholm operator (of index zero), and the same arguments can be applied to each Aγi�γi

for
i = 1, . . .Nγ . As the kernels of AΓ �γ i

, Aγi�Γ and Aγi�γ�
for i 
= � are continuous for i = 1, . . . ,Nγ ,

these operators are also compact; hence, Ak,η is a compact perturbation of a coercive Fredholm of zero
index operator.

Let PN be the orthogonal projection operator from L2(Γ ) × L2(γ ) onto VHNA∗
N (Γ , γ ). Given the

convergence condition (5.5) it follows by the density of C∞(0, LΓ ) in L2(0, LΓ ) for j = 1, . . . ,NΓ

that we have convergence of the best approximation to any L2(0, LΓ ) function in VHNA
NΓ

(Γ ). Similar
arguments follow for convergence on γ , by the convergence condition (5.6). Then Chandler-Wilde &
Langdon (2007, Theorem 5.2) shows the existence of a solution to the discrete problem (5.1)–(5.2), for
N sufficiently large, via a bound on

‖(I + PNK)−1‖L2(∂D)�L2(∂D) =: Cq < ∞, (5.7)

where

K := A�G� − I with I :=
[
IΓ 0
0 Iγ

]
.

To show that our method converges to the true solution we proceed as in Chandler-Wilde & Langdon
(2007, Theorem 5.3), noting that

PN(I + K)v = PN

[
f |Γ − AΓ �Γ Ψ

f |γ − AΓ �γ Ψ

]
,

which we combine with (4.15) to obtain

vN + PNKvN = PN(I + K)v.

Rearranging and adding v to both sides yields

(I + PNK)(v − vN) = (I − PN)v;
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hence, we can bound

∥∥v − vN

∥∥
L2(∂D)�L2(∂D)

≤
∥∥∥(I + PNK)−1

∥∥∥
L2(∂D)�L2(∂D)

∥∥v − PNv
∥∥

L2(∂D)�L2(∂D)

and the bound follows from the definition of PN and (5.7). �
For our operator Ak,η there is little that can be said about the constants Cq(k) and N0(k) for the

scattering configurations considered in this paper. In the appendix we introduce an alternative BIE
formulation, which is coercive provided that |γ | is of the order of one wavelength. For this coercive
formulation N0(k) = 1 and Cq(k) can be made explicit.

Recalling that we are actually approximating the (dimensionless) diffracted waves on Γ and the
(dimensionless) Neumann trace of the solution on γ , the full approximation to the Neumann trace
follows by inserting vN into (4.13) and is denoted

νN :=
{

Ψ + kvNΓ

Γ + kGγ�Γ v
Nγ
γ , on Γ ,

kv
Nγ
γ , on γ .

(5.8)

The following theorem can be used to determine the error of the full approximation.

Theorem 5.2 Suppose that

1. the separation condition (3.25) holds,

2. the convergence conditions (5.5)–(5.6) hold,

3. Assumption 4.7 (exponential convergence of Vhp
Nγ

(γ )) holds,

4. Assumption 3.5 (algebraic growth of the solution of the BVP (2.2)–(2.4)) holds.

Then we have the following bound on the error of the approximation (5.8) to the solution ∂u/∂n:

∥∥∥∥ ∂u

∂n
− νN

∥∥∥∥
L2(∂D)

≤ Cq(k)k
(

CuCΓ kβ−1/2J(k)e−τΓ pΓ + [
1 + CG(k)

]
Cγ (k)e−τγ (k)pγ

)
,

for N ≥ N0, where

1. N0 and Cq are as in Lemma 5.1,

2. CG as in Lemma 3.2,

3. Cu and β are the constants from Assumption 3.5,

4. pΓ , J(k), CΓ and τΓ are as in Theorem 4.3,

5. pγ , Cγ and τγ are as in Assumption 4.7.
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Proof. First, we focus on the best approximation of ∂u/∂n by an element w = (wΓ , wγ ) of

VHNA∗
N (Γ , γ ). By the definition (4.13) we have

inf
w∈VHNA∗

N (Γ ,γ )

(∥∥∥∥ ∂u

∂n
− (

Ψ + kw|Γ + kGγ�Γ w|γ
)∥∥∥∥

L2(Γ )

+
∥∥∥∥ ∂u

∂n
− kw|γ

∥∥∥∥
L2(γ )

)

= k inf
w∈VHNA∗

N (Γ ,γ )

(∥∥∥[vΓ − w|Γ ] + Gγ�Γ [vγ − w|γ ]
∥∥∥2

L2(Γ )
+
∥∥∥vγ − w|γ

∥∥∥2

L2(γ )

)1/2

≤ k inf
w∈VHNA∗

N (Γ ,γ )

(∥∥vΓ − w|Γ
∥∥

L2(Γ )
+
[

1 +
∥∥∥Gγ�Γ

∥∥∥
L2(γ )�L2(Γ )

] ∥∥∥vγ − w|γ
∥∥∥

L2(γ )

)
.

Applying Lemma 5.1 and recalling the definition (4.14) of VHNA∗
N (Γ , γ ), we can write

∥∥∂u/∂n − νN

∥∥
L2(∂D)

≤ Cq(k)

× k

⎛⎝ inf
wΓ ∈VHNA

NΓ
(Γ )

‖vΓ − wΓ ‖L2(Γ ) + inf
wγ ∈Vhp

Nγ
(γ )

[
1 + ‖Gγ�Γ ‖L2(γ )�L2(Γ )

]
‖vγ − wγ ‖L2(γ )

⎞⎠ .

The assertion follows by combining this inequality with Lemma 3.2, Assumption 3.5, Theorem 4.3 and
Assumption 4.7. �

For a fixed frequency, Theorem 5.2 suggests that the proposed method is well suited to problems
for which Ω is a convex polygon, and ω has a size parameter much smaller than Ω . This is because
the number of DOFs required to maintain accuracy in the approximation space on Γ grows only
logarithmically with k. The method will hence be particularly effective if ω has a size parameter of
the order of one wavelength, since in this case the oscillations on γ are resolved while NΓ does not
need to be large to account for high frequencies due to the (almost) frequency independence of the
approximation on Γ .

Remark 5.3 (Dependencies of parameters of Theorem 5.2). In the following situations the bounding
constants of Theorem 5.2 can be made either fully explicit or k-explicit.

1. The terms CΓ , τΓ and J(k) are fully explicit given k, the geometry of Ω and the parameters of
VHNA

NΓ
(Γ ). This follows from the separation condition (3.25).

2. In the appendix we present an alternative BIE, which is coercive, under certain geometric
restrictions. In such a case Cq(k) is known and N0(k) = 1.

3. By Theorem 3.4 if Ω ∪ ω is a nontrapping polygon (in the sense of Definition 2.3) then we can
choose β = 1/2 + ε for any ε > 0.

4. If Υ is an (R0, R1) configuration then by Theorem 3.4 we obtain β = 5/2 + ε for ε > 0.

Furthermore, if γ is also analytic and Vhp
Nγ

(γ ) satisfies the conditions of Proposition 4.6, we have

Cγ (k) = Ck8 log(k diam(Γ ) + 1), and τγ is given by (4.12).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/2/1197/5874885 by U
niversity of R

eading user on 27 M
ay 2021



HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1227

An approximation uN to the solution u of the BVP (2.2)–(2.3) in D is obtained by combining νN
with the representation formula (2.6),

uN(x) := ui(x) −
∫ LΓ

0
Φ
(
x, yΓ (s)

) (
Ψ
(
yΓ (s)

) + kvNΓ

Γ (s) + k[Gγ�Γ v
Nγ
γ ](s)

)
ds

− k
∫ Lγ

0
Φ
(

x, yγ (s)
)

v
Nγ
γ (s) ds, for x ∈ D. (5.9)

Here the parametrization yΓ is as in (3.9) and yγ as in Section 4.2. Expanding further, we can extend
the definition of Gγ�Γ to a parametrized form by

(
Gγ�Γ v

Nγ
γ

)
(s) :=

∫ Lγ

0
χγ (s, t)

∂Φk(yΓ (s), yγ (t))

∂n(yΓ (s))
v

Nγ
γ (t) dt, s ∈ [0, LΓ ],

where the indicator function

χγ (s, t) :=
{

1, yΓ (s) ∈ Γj and yγ (t) ∈ Uj,
0, otherwise,

is used to ensure the path of integration remains inside the relative upper half-plane Uj.

Corollary 5.4 Assume conditions (i)–(iv) of Theorem 5.2 hold. Then given k0 > 0, the HNA-BEM
approximation to the BVP (2.2)–(2.4) satisfies the error bound

‖u − uN‖L∞(D) �Cq(k)k
1/2 log−1/2(1 + k diam(∂D))

×
(

CuCΓ kβ−1/2J(k)e−τΓ pΓ + [
1 + CG(k)

]
Cγ (k)e−τγ (k)pγ

)
,

for N ≥ N0 and k ≥ k0. The terms in the bound are as in Theorem 5.2.

Proof. The result follows from the representation (2.5), the bounds on ‖Sk‖L2(∂D)�L∞(D) given in
Lemma 3.3, Theorem 5.2 and

‖u − uN‖L∞(D) =
∥∥∥∥Sk

(
∂u

∂n
− νN

)∥∥∥∥
L∞(D)

≤ ‖Sk‖L2(∂D)�L∞(D)

∥∥∥∥ ∂u

∂n
− νN

∥∥∥∥
L2(∂D)

.

�
A quantity of practical interest is the far-field pattern of the scattered field us, which describes the

distribution of energy of the scattered field us (of a solution to the BVP (2.2)–(2.4)) far away from Ω∪ω.
We can represent the asymptotic behaviour of the scattered field (as in Hewett et al. (2013, §6)) by

us(x) ∼ u∞(θ)
ei(kr+π/4)

2
√

2πkr
, for x = r(cos θ , sin θ), as r → ∞,
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1228 A. GIBBS ET AL.

where the term u∞(θ) denotes the far-field pattern at observation angle θ ∈ [0, 2π), which we can
represent via the solution to the BIE (2.7):

u∞(θ) := −
∫

∂D
e−ik[y1 cos θ+y2 sin θ] ∂u

∂n
(y) ds(y), θ ∈ [0, 2π), y = (y1, y2). (5.10)

We may define an approximation u∞
N to the far-field pattern u∞ by inserting νN into (5.10) in place of

∂u/∂n.

Corollary 5.5 Under the assumption of Theorem 5.2 the far-field pattern u∞
N computed from the

HNA-BEM solution approximates u∞ with the error bound

‖u∞ − u∞
N ‖L∞(0,2π)

≤ Cq(k)k
√

LΓ + Lγ

(
CuCΓ kβ−1/2J(k)e−τΓ pΓ + [

1 + CG(k)
]

Cγ (k)e−τγ (k)pγ

)
.

The terms in the bound are as in Theorem 5.2.

Proof. We have

|u∞(θ) − u∞
N (θ)| ≤

∫
∂D

∣∣∣∣ ∂u

∂n
− νN

∣∣∣∣ ds ≤ (LΓ + Lγ )1/2
∥∥∥∥ ∂u

∂n
− νN

∥∥∥∥
L2(∂D)

and the result follows by Theorem 5.2. �

6. Numerical results

Here we present numerical results for the solution of the discrete problem (5.1)–(5.2). Experiments
were run over a range of wavenumbers k ∈ {20, 40, 80, 160}, incident angles d and maximal polynomial
degrees p ∈ {1, . . . , 8}, for three scattering configurations, which we shall refer to as Experiments 1,
2 and 3. Each configuration consists of an equilateral triangle Ω with perimeter LΓ = 6π and some
small scatterer(s) ω. In Experiment 1 (Section 6.1) ω consists of a single small triangular scatterer with
perimeter Lγ = 3π/5, with the obstacles separated by a fixed distance of dist(Γ , γ ) = √

3π/5, as in
Fig. 5(b). In Experiment 2 (Section 6.2) we reduce the distance between the obstacles in proportion to
the problem wavelength. In Experiment 3 (Section 6.3) ω consists of two disjoint triangular scatterers.

In terms of observed error each value of d tested gave very similar results; hence, we focus here on
the case d = (1, 1)/

√
2, which allows some re-reflections between the obstacles and partial illumination

of Γ , see Figs 5(b), 7(b) and 8(b).
We now describe the approximation parameters common to all three experiments. To construct the

approximation space VHNA∗
N (Γ , γ ) we first choose VHNA

NΓ
(Γ ) to be the single-mesh approximation space

of Section 4 with pj = p for each side j = 1, . . . ,NΓ = 3, reducing the polynomial degree close to the
corners of Γ in accordance with Remark 4.4; hence, p now refers to the polynomial degree on the largest
mesh elements. We also remove basis elements close to the corners of the mesh on Γ in accordance with
Remark 4.2, choosing αj = max{(1 + p)/4, 2}, to improve conditioning of the discrete system (5.3).
A grading parameter of σ = 0.15 is used (as in Hewett et al., 2013, where the rationale for this choice is
discussed), with nj = 2p layers on each graded mesh, for j = 1, 2, 3 (hence, we may choose the constant
from Theorem 4.3 as cj = 2).
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HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1229

Fig. 5. (a) Convergence in L2(∂D) and (b) the real component of the domain approximation for Experiment 1 (Section 6.1) with
k = 20, LΓ = 6π , Lγ = 3π/5, d = (1, 1)/

√
2, N = 1122.

Theorem 4.3 ensures that we will observe exponential convergence on Γ if the polynomial degree
is consistent across the mesh, and Proposition 4.6 ensures that we observe exponential convergence
on γ , if γ is analytic. In these numerical experiments we test problems where these two conditions
are not met and, encouragingly, still observe exponential convergence. As hypothesized by Remark 4.4
and Assumption 4.7 our experiments suggest that our method converges exponentially under conditions
much broader than those guaranteed by our theory.

For the standard hp-BEM space Vhp
Nγ

(γ ) we use the same parameters pγ = p, σ and cj to grade
towards the corners of γ , so the construction of the mesh on γ is much the same as on Γ . The key
difference is that on γ every mesh element is sufficiently subdivided to resolve the oscillations. The
polynomial degree pj is decreased on smaller elements, as on Γ , in accordance with Remark 4.2.

Figures 5(a), 7(a) and 8(a) show L2 convergence on the boundary ∂D = Γ ∪ γ , as p increases, for
different values of k. The markers correspond to the increasing polynomial degree p = 1, . . . , 7 and the
horizontal axis represents the total number of DOFs N, which depends on both p and k. The reference
solution, denoted νN∗ , is computed with p = 8. Additional checks were performed against a high-order
standard BEM approximation to validate the reference solution. In each experiment that follows the
increased number of oscillations appears to be handled by the increase in Nγ for each k (here NΓ remains
roughly fixed as k increases, and Nγ increases less than linearly with k), with exponential convergence
in p observed in each case, as predicted by Theorem 5.2 (for analytic γ ). Given exponential convergence
in L2(∂D), Corollaries 5.4 and 5.5 are sufficient to guarantee exponential point-wise convergence of the
domain approximation (5.9) and the far-field approximation (5.10).

Remark 6.1 (Quadrature). The integrals in (5.3) and (5.4) and the L2 norms used to estimate the error
in Figs 5(a), 7(a) and 8(a) may be oscillatory and singular. In particular, care must be taken when
evaluating the triple integral

(
AΓ �γGγ�Γ v, w

)
L2(γ )

, which contains a singular oscillatory integrand on
elements for which Gγ�Γ v is supported. Standard composite quadrature routines require a large number
of weights and nodes. Hence, at higher frequencies, oscillatory quadrature rules should be used (see
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Fig. 6. The real component of the solution on the scatterer boundaries Γ (a) and γ (b) for the configuration in Figure 5(b),
with k = 40.

Deaño et al., 2018 for a review of such methods), while singular integrals should be computed using a
suitable quadrature rule (e.g. Huybrechs & Cools, 2009).

6.1 Experiment 1

The configuration tested consists of an equilateral triangle Ω with perimeter LΓ = 6π and a single
small triangular scatterer with perimeter Lγ = 3π/5, with the obstacles separated by a fixed distance

of dist(Γ , γ ) = √
3π/5. The configuration can be seen in 5(b), which shows the real part of the

approximation in the domain (5.9) for p = 8.
It follows that there are exactly k wavelengths on each side of Γ and k/10 on each side of γ .

Experiments were run for k ∈ {20, 40, 80, 160} (so the number of wavelengths across the perimeter ∂D
ranges from 66 to 528). In Fig. 6 we show the real part of the solution vN , (N = 1122) on Γ and γ , for
k = 40. On Γ the first side (s/(2π) ∈ [0, 1]) is the side in shadow, and the third side (s/(2π) ∈ [2, 3])
is the illuminated side on the right in Fig. 5(b). On these two sides the effect of the presence of ω is
negligible. However, on the middle side (s/(2π) ∈ [1, 2]), the effect of ω can clearly be seen.

For a fixed number of DOFs N the L2(∂D) error is approximately the same for each k. For each
value of k tested we achieve approximately 1% relative error with approximately 1000 DOFs. For
k = 160 the combined boundary Γ ∪ γ is 528 wavelengths long, corresponding to approximately
two DOFs per wavelength. This illustrates why the method is particularly well suited to problems with
one large polygon (for which the high-frequency asymptotics are well understood), and one (or many)
small nearby obstacle(s) on which the high-frequency asymptotics do not need to be known.

6.2 Experiment 2

Now we test the accuracy of our method as the separation (between the large and small obstacle) shrinks
with increasing frequency, keeping all other parameters the same as in Experiment 1 (Section 6.1). We
choose the separation to be

dist(Γ , γ ) = 3π/k, (6.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/41/2/1197/5874885 by U
niversity of R

eading user on 27 M
ay 2021



HIGH-FREQUENCY BEM FOR MULTIPLE OBSTACLES 1231

Fig. 7. (a) Convergence in L2(∂D) and (b) the real component of the domain approximation for Experiment 2 (Section 6.2) with
k = 20, LΓ = 6π , Lγ = 3π/5, d = (1, 1)/

√
2, N = 1122.

as is depicted for k = 20 in Fig. 7(b). Note the decrease in distance when compared with Fig. 5(b).
Despite the obstacles becoming very close together, with a separation of just 3π/160 < 0.06 at

the highest frequency tested, we observe reassuringly similar L2(∂D) convergence rates (Fig. 5(a))
to Experiment 1 (Fig. 5(a)). This should not be unexpected, given that (6.1) satisfies the separation
condition (3.25). Upon closer inspection the L2(∂D) error is actually smaller when the obstacles are
closer together, notably the final (p = 7) data points for k = 40, 80, 160.

This experiment demonstrates that our method can be applied to high-frequency problems in which
the obstacles are very close together. This is particularly encouraging when compared with iterative
approaches for multiple scattering, which break down when the obstacles are too close together (as
discussed in Section 1).

6.3 Experiment 3

Finally, we apply our method to a problem where the small obstacle consists of two small disjoint
triangles ωγ = ω1 ∪ ω2. Here we take ω1 to be the smaller triangle from Experiment 1 (Section 6.1),
translated by (0, 1/2), and we take ω2 is the smaller triangle from Experiment 1 flipped horizontally and
translated by (0, −1/2). A key difference when compared with the previous two experiments is that this
configuration will induce parabolic trapping. As with the previous experiments we have dist(Γ , γ ) =√

3π/5, although now Lγ = 6π/5. A consequence of this is that there will be twice as many DOFs in the

standard basis Vhp
Nγ

(γ ) than were required for the previous experiments; however, with this adjustment
we observe similar convergence rates (see Fig 8(a)). Figure 8(b) shows the configuration and the real
part of the domain approximation (5.9) for p = 8 and k = 20.

It is clear from Fig. 8(b) that the amplitude reaches four times that of the incoming wave, in the
region of trapping between the three triangles. The results of this experiment confirm that our method
can be extended to configurations of one large obstacle and multiple small obstacles, and is therefore
well suited for efficient modelling of a wide range of trapping phenomena.
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Fig. 8. (a) Convergence in L2(∂D) and (b) real part of domain approximation for Experiment 3 (Section 6.3), with k = 20,
LΓ = 6π , Lγ = 6π/5, d = (1, 1)/

√
2, N = 1656.

7. Conclusions and further work

For a particular class of multiple scattering configurations we have presented a numerical method
that offers a significant reduction in DOFs required at high frequencies, when compared to standard
methods. In particular, our method is most effective when one obstacle is much larger than the others.
The theoretical estimates presented in Section 5 rely on a small number of reasonable assumptions,
which we prove to hold under certain conditions. However, the numerical results of Section 6 show
exponential convergence and stability with respect to the wavenumber in the broader setting where the
small obstacle γ is not analytic.

As suggested in Remark 6.1 sophisticated quadrature rules are required in conjunction with the
proposed method, but these rules can be difficult to implement for oscillatory and singular double
and triple integrals. Alternatively, the approximation space of Section 4.3 may be implemented as a
collocation BEM (following the approach of Gibbs et al., 2019), which would reduce the dimension of
each integral by one, making for easier implementation of oscillatory and singular quadrature rules.

The approach detailed in this paper requires at least one (ideally the largest) of the scatterers to be a
convex polygon, but extension of this approach to a far broader class of configurations is possible. The
key requirement is that the high-frequency asymptotics are understood on Ω , which with further work
could instead be, e.g., a two-dimensional screen (Hewett et al., 2015), a nonconvex obstacle (Chandler-
Wilde et al., 2015) or a penetrable obstacle (Groth et al., 2018). Such extensions would not be trivial;
however, we believe the framework established in this paper lays appropriate groundwork.

In Chandler-Wilde et al. (2012a) the HNA method is extended from Dirichlet to impedance boundary
conditions. By combining such an extension with the approach taken in the present paper HNA methods
may be designed for multiple obstacles with impedance (or Neumann) boundary conditions.

A final area for future work is the case where Γ ∪γ is connected, such that Γ represents the surface
of an obstacle on which an HNA basis can be used, while γ is the component for which we cannot
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absorb the high-frequency asymptotics into the approximation space. This extension would require more
sophisticated bounds on the operator defined by (3.14).
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Appendix A. A coercive multiple scattering formulation

In Section 5 it was noted that there exists a boundary integral formulation of the BVP (2.2)–(2.4), which
is coercive (sometimes called V-elliptic), provided |γ | is of the order of one wavelength. With a coercive
formulation it follows by the Lax–Milgram theorem that the corresponding discrete problem (equivalent
to (5.3)–(5.4)) is well posed, on any finite dimensional subspace of L2(Γ ∪ γ ). We now present this
formulation.

For problems of scattering by a single star-shaped obstacle, it was shown in Spence et al. (2011) that
the star-combined formulation is coercive for problems on a single star-shaped obstacle. In the thesis
Gibbs (2017) this formulation was extended to the constellation combined formulation, where it was
shown to be coercive for certain configurations consisting of multiple star-shaped obstacles. We present
a version with sharper bounds here, specializing the coercivity result to the case of one large obstacle Ω

and one or many small obstacles ω. We begin by formally defining the configurations of interest:

Definition A.1 (Star and constellation shaped). A bounded open set Υ with boundary ∂Υ is star-
shaped if there exists xc ∈ Υ and a Lipschitz continuous g : S1 → R, where S1 := {x̂ ∈ R

2 : |x̂| = 1},
such that g(x̂) > 0 for all x̂ ∈ S1 with

∂Υ = {xc + g(x̂)(x̂ − xc) : x̂ ∈ S1}.
Intuitively, this may be interpreted as the following: given any x ∈ Υ one can draw a straight line from
xc to x, without leaving Υ .

We say a domain is constellation shaped if it can be represented as the finite union of multiple star-
shaped, pairwise disjoint obstacles. In such a case for each star-shaped component we denote the above
xc parameter by xc

i , where i is the index of that component.

We will use the integral operator

∇SSkϕ(x) :=
∫

∂Υ

∇SΦk(x, y)ϕ(y)ds(y), for ϕ ∈ L2(∂Υ ), x ∈ ∂Υ , (A.1)

with the surface gradient operator of the fundamental solution as its kernel:

∇SΦk(x, y) := ∇Φk(x, y) − n(x)
∂Φk(x, y)

∂n(x)
, (A.2)

where Φk is as in (2.5). Now we define our new BIE:

Definition A.2 (Constellation-combined formulation). For a constellation-shaped domain Υ with
boundary ∂Υ = ∪NΥ

i=1∂Υi, with ∂Υi the boundary of each star-shaped component, we define the
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constellation-combined operator Ak : L2(∂Υ ) → L2(∂Υ ) as

Ak := (Z · n)

(
1

2
I + D′

k

)
+ Z · ∇SSk − iη̂Sk,

where Z(x) = x − xc
i (with xc

i ∈ Υi chosen as xc for each star-shaped component in Definition A.1)
on ∂Υi, for i = 1, . . . , NΥ and η̂(x) := k|Z(x)| + i/2. This operator yields an alternative BIE to (2.7),
namely

Ak
∂u

∂n
= fk, on ∂Υ ,

where the right-hand side data is

fk := (
Z · ∇ − iη̂

)
ui, on ∂Υ .

Invertibility of Ak follows by Chandler-Wilde et al. (2012b, Theorem 2.41) and is shown in Gibbs
(2017, Theorem 5.6). For single star-shaped obstacles the following is the key result of Spence
et al. (2011).

Theorem A.3 Suppose Υ is star shaped and Ak is defined as in Definition A.2. Then the following
coercivity result holds:∣∣∣(Akϕ, ϕ

)
L2(∂Υ )

∣∣∣ ≥ α∂Υ ‖ϕ‖2
L2(∂Υ )

, for all ϕ ∈ L2(∂Υ ), (A.3)

where

α∂Υ := 1

2
ess inf

x∈∂Υ
(x · n(x)) > 0.

In the thesis of Gibbs (2017), the above result was extended to configurations of multiple star-
shaped obstacles, under additional geometric constraints. These essentially required the obstacles to be
sufficiently far apart, when compared with the wavelength and combined perimeter of the configuration.
One way to interpret this is by decomposing Ak into block operator form (as in (4.15)), where each off-
diagonal block corresponds to the interaction between two disjoint obstacles, and the diagonal blocks
correspond to self interactions. It follows by Theorem A.3 that the diagonal operators will be coercive
in a constellation-shaped domain. If the interaction between the obstacles is sufficiently small then any
contribution from the off-diagonal terms will be small, and the full block operator will be coercive. It
follows from (A.2) that the kernel of the integral component

Ak − (Z · n)
1

2
I = (Z · n)D′

k + Z · ∇SSk − iη̂Sk

is

(Z(x) · n(x))
∂Φk(x, y)

∂n(x)
+ Z(x) ·

(
∇Φk(x, y) − n(x)

∂Φk(x, y)

∂n(x)

)
− iη̂(x)Φk(x, y),

which simplifies to

K(x, y) := Z(x) · ∇Φk(x, y) − iη̂(x)Φk(x, y).

We now consider disjoint, star-shaped boundaries X and Y , with x ∈ X and y ∈ Y . We can bound the
kernel K by considering Definition A.2 and (A.2), noting |Z(x)| ≤ diam(X), and upper bounds on the
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Hankel functions from Chandler-Wilde et al. (2009, (1.22),(1.23))

|K(x, y)|

≤ k diam(X)

[√
1

8πk dist(X, Y)
+ 1

2πk dist(X, Y)

]
+
(

k diam(X) + 1

2

)√
1

8πk dist(X, Y)

≤
(

k diam(X) + 1

2

)[√
1

2πk dist(X, Y)
+ 1

2πk dist(X, Y)

]
.

It follows by the definition of the operator norm and the Cauchy–Schwarz inequality (see Gibbs, 2017,
Lemma 5.13 for a more general result) that for disjoint Lipschitz boundaries X and Y ,

‖Ak,Y�X‖L2(Y)�L2(X) ≤ √|X||Y|ess sup
x∈X,y∈Y

|K(x, y)|

≤√|X||Y|
(

k diam(X) + 1

2

)[√
1

2πk dist(X, Y)
+ 1

2πk dist(X, Y)

]
. (A.4)

The bound (A.4) quantifies the interaction between two disjoint Lipschitz boundaries X and Y . The
following theorem exploits this bound, deriving a coercivity result for a subclass of configurations
considered in this paper—one large and one (or many) small obstacles.

Theorem A.4 Suppose we have a multiple scattering configuration consisting of one large star-shaped
obstacle with boundary Γ and Nγ small star-shaped obstacles γi with boundary γ = ∪iγi. Suppose
further that obstacles are pairwise disjoint, such that the minimum distance between any two obstacles
is bounded below by R > 0. Assuming |Γ | ≥ |γ |, if

|γ | <

⎛⎜⎜⎝ ess inf
x∈Γ ∪γ

{Z(x) · n(x)}

(k|Γ | + 1)
√|Γ |

(
2 +

√
Nγ

)(√
1

2πkR + 1
2πkR

)
⎞⎟⎟⎠

2

, (A.5)

then the constellation-combined operator of Definition A.2 is coercive (i.e., satisfies a bound of the form
(A.3)) with coercivity constant

αΓ ∪γ := 1

2
ess inf
x∈Γ ∪γ

{Z(x) · n(x)} − √|Γ ||γ | (k|Γ | + 1)
(

2 +
√
Nγ

)(√ 1

8πkR
+ 1

4πkR

)
.

Proof. To simplify the notation we shall write ‖Ak,Y�X‖ to mean ‖Ak,Y�X‖L2(Y)�L2(X). We begin by
decomposing the operator into a sum of operators defined on subsets of Γ ∪ γ ,(

Akϕ, ϕ
)

L2(Γ ∪γ )
=
(
Adiagϕ, ϕ

)
L2(Γ ∪γ )

+ (
Acrossϕ, ϕ

)
L2(Γ ∪γ )

, (A.6)

in which we have split the operator into diagonal and off-diagonal terms

Adiag := Ak,Γ �Γ +
Nγ∑
i=1

Ak,γi�γi
, Across := Ak,γ�Γ + Ak,Γ �γ +

Nγ∑
i=1

Ak,γi�(γ \γi)
, (A.7)
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where we have abused the notation of Definition 4.8, which is used differently here to mean:

KX�Yϕ := 1YK[1Xϕ],

where 1X is an indicator function, equal to one on X and zero otherwise. The diagonal terms can all be
bounded via Theorem A.3, yielding∣∣∣(Akϕ, ϕ

)
L2(Γ ∪γ )

∣∣∣ ≥ 1

2
ess inf
x∈Γ ∪γ

{Z(x) · n(x)}‖ϕ‖2
L2(Γ ∪γ )

−
∣∣∣(Acrossϕ, ϕ)L2(Γ ∪γ )

∣∣∣ . (A.8)

We want to find conditions under which the right-hand side of the above inequality is positive; hence,
we require the negative term to be sufficiently small. We bound these off-diagonal terms∣∣∣(Acrossϕ, ϕ)L2(Γ ∪γ )

∣∣∣ ≤ ‖Across‖L2(Γ ∪γ )�L2(Γ ∪γ )‖ϕ‖2
L2(Γ ∪γ )

. (A.9)

We now split the above norm on Across using the triangle inequality noting the terms in (A.6) and apply
the bound (A.4) to each component

‖Across‖L2(Γ ∪γ )�L2(Γ ∪γ ) ≤ ‖Ak,γ�Γ ‖ + ‖Ak,Γ �γ ‖ +
Nγ∑
i=1

‖Ak,γi�(γ \γi)
‖

≤1

2

⎛⎝√|Γ ||γ | + √|γ ||Γ | + √|γ |
Nγ∑
i=1

√|γi|
⎞⎠ (k|Γ | + 1)

(√
1

2πkR
+ 1

2πkR

)
, (A.10)

where we have used |Γ | ≥ {|γ |, 2 diam(Γ ), 2 diam(γ )} to simplify terms. Appealing also to the
Cauchy–Schwarz inequality we can write

Nγ∑
i=1

√|γi| ≤
√
Nγ |γ | ≤

√
Nγ |Γ |,

which can be used to simplify (A.10) to obtain

‖Across‖L2(Γ ∪γ )�L2(Γ ∪γ ) ≤ 1

2

√|Γ ||γ | (k|Γ | + 1)
(

2 +
√
Nγ

)(√ 1

2πkR
+ 1

2πkR

)
.

Noting (A.8) we require that

1

2
ess inf
x∈Γ ∪γ

{Z(x) · n(x)} − 1

2

√|Γ ||γ | (k|Γ | + 1)
(

2 +
√
Nγ

)(√ 1

2πkR
+ 1

2πkR

)
> 0,

which is equivalent to the condition (A.5). �
We do not expect the above result to be sharp. A key consequence is the following: if |γ | is no more

than a fixed fraction of a wavelength the constellation-combined formulation is coercive. We conclude
this appendix with bounds on two of the key constants of the Galerkin method as outlined in Section 5,
if the constellation combined formulation is used instead of the standard combined formulation. With
the standard formulation we are unable to bound these constants given current available theory.

Corollary A.5 Suppose we reformulate the Galerkin method of Section 5 instead using the
constellation combined formulation of Definition A.2 and that our scattering configuration Υ = Ω ∪ ω
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satisfies the conditions of Theorem A.4. Then the constants Cq(k) and N0(k) of Lemma 5.1, Theorem
5.2 and Corollary 5.4 satisfy

Cq(k) = C
√

k

αΓ ∪γ

and N0(k) = 1,

where C > 0 is a constant, which depends only on the geometry of Γ and γ , and αΓ ∪γ is the coercivity
constant from Theorem A.4.

Proof. Given that the conditions of Lemma 5.1 hold our formulation is coercive. It follows by the
Lax–Milgram theorem that N0(k) = 1. It follows by Céa’s lemma that the quasi-optimality constant is

Cq(k) = ‖Ak‖L2(Γ ∪Γ )�L2(Γ ∪Γ )

αΓ ∪γ

. (A.11)

The norm in the numerator of (A.11) is O(k1/2) for all k ≥ k0 (Spence et al., 2011, Theorem 4.2). �
Finally, we remark that for a given geometry Ω ∪ ω, there exists a k1 > 0 such that for all k ≥ k1,

Theorem A.4 cannot guarantee coercivity, and consequentially the statements of Corollary A.5 may not
be valid. This is because the negative component of αΓ ∪γ (as defined in Theorem A.4) will become
larger in magnitude as k increases, while the positive component remains fixed; we require αΓ ∪γ > 0
to ensure coercivity.
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