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Time-harmonic acoustic scattering by a fractal screen

The screen I is a compact fractal subset of R2 = {z € R® : 23 = 0}, k > 0.
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Time-harmonic acoustic scattering by a fractal screen

The screen I is a compact fractal subset of R2 = {z € R® : 23 = 0}, k > 0.

3T (A+Ek>)u=0in D :=R3\I'x{0}

’U/i — eikd»z

jd =1

u® := u — u’ satisfies Sommerfeld Radiation Condition at infinity
To find u € WH1°¢(D), by Green's identities it suffices to find the Neumann jump

[Ou/on] € HZ'? = {¢ € H/*(R?) : supp ¢ C T'}.
This satisfies the boundary integral equation (BIE)
S[ou/on) = u'|r,

where S is the single-layer boundary integral operator.
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@ the BEM basis functions are supported in T'

@ integration is carried out with respect to Hausdorff (not Lebesgue) measure
— see Andrew Gibbs' talk (next!) for details of numerical quadrature
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@ the BEM basis functions are supported in T’
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Convergence analysis can follow the standard Lax-Milgram Lemma/Céa’s Lemma
approach

Convergence rates can be obtained under natural solution regularity assumptions
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Fractals are an obvious mathematical model for the multiscale roughness
possessed by many naturally-occuring and man-made scatterers.

They are also a rich source of mathematical challenges that are stimulating
exciting new research in modelling, function spaces and numerical analysis.

M. V. Berry, “Diffractals”, J. Phys. A., 1979 - “a new regime in wave physics"

U. Mosco, 2013 - “introducing fractal constructions into the classic theory of PDEs opens a vast
new field of study, both theoretically and numerically”, “this new field has been only scratched”



Applications

Fractal antennas - wideband/multiband performance from a compact design

www.antenna-theory.com

(Figures from http://www.antenna-theory.com/antennas/fractal.php)


http://www.antenna-theory.com/antennas/fractal.php

Applications

Scattering by ice crystals in atmospheric physics
e.g. Chris Westbrook (Reading Meteorology)

Fractal apertures in laser optics
e.g. James Christian (Salford Physics)
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Preliminaries: Hausdorff measure and dimension

For ECR™and d >0
HYE) € [0,00) U {00},

is the usual d-dimensional Hausdorff (outer) measure of E.
Then
dimp E := sup{d > 0 : H)(E) = oo} = inf{d > 0: HY(E) = 0} € [0,n].

NOTE: dimy(point) = 0, dimg(line) = 1, dimy(area) = 2, etc., but non-integer
dimensions are also possible!



Preliminaries: Iterated function systems (IFS)

We'll assume T' = UM_, s,,,(T') is the attractor of an IFS of contracting
similarities {s1,s2,...,s} (with M > 2), so each s,, : R> — R? satisfies

‘Sm(x) _Sm(y)| =Pm|l‘—y\7 $,y€R27

for some p,, € (0,1). Assume also standard open set condition holds.



Preliminaries: Iterated function systems (IFS)

We'll assume T' = UM_, s,,,(T') is the attractor of an IFS of contracting
similarities {s1,s2,...,s} (with M > 2), so each s,, : R> — R? satisfies

‘STYL('r)_Sm(y” :pM|m_y‘7 may€R2a

for some p,, € (0,1). Assume also standard open set condition holds.
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Examples:

Middle third Cantor dust Sierpinski triangle
M =4, p, =1/3, M =3, pp =1/2,
dimyT" = log4/log 3 dimyT" = log 3/log 2



Time-harmonic acoustic scattering by a fractal screen

The screen I is a compact fractal subset of R? = {2 € R3 : 23 = 0}, k > 0.

3T (A+k*)u=0in D:=R3\T'x{0}

ui _ eikd~w
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u® 1= u — u’ satisfies Sommerfeld Radiation Condition at infinity



BIE formulation

3
D:RS\FX{O} To

Theorem (C-W/Hewett 2018)

The sound-soft Helmholtz BVP has unique solution

u(@) = u'(z) — Sé(z), @ €D,

where ¢ = 0;fu — d7u € Hy /% is the unique solution of the BIE

S(ﬁ = ui|1'*.

Here S : H'/? = C2(D) N Wh1o¢(R"+1) is the single-layer potential operator,
and S : Hla_l/2 — (Hr_l/z) is the single layer BIO



BIE formulation
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Theorem (C-W/Hewett 2018)

The sound-soft Helmholtz BVP has unique solution

u(@) = u'(z) — Sé(z), @ €D,

where ¢ = 0;fu — d7u € Hy /% is the unique solution of the BIE

S(ﬁ = ui|1'*.

Here S : H'/? = C2(D) N Wh1o¢(R"+1) is the single-layer potential operator,
and §': Hla_l/2 — (Hlfl/z) is the single layer BIO (explicit formulas to come!)
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Variational formulation and Galerkin BEM

The operator S : Hr_l/2 — (Hr_l/z)* is continuous and coercive (strongly elliptic)
- see C-W/Hewett 2015.

Hence, by the Lax—Milgram lemma, the Galerkin method
find ¢ € Viv s:t. (S, 9) piraspg-1r2 = (W', ) pasasg-12 Vb € Vi,

is well-posed for any closed subspace Vi C Hr_l/Q.

Piecewise constant Hausdorff BEM

In our Galerkin BEM we take

Vi = {fH%r} c Hp'/?

where d = dimgI" and f is a piecewise constant function on a “mesh” of I'.

fHY ) € Hy "% is the distribution ¢ — [ fodH?, ¢ € C3°(R2).

A “mesh” is a set {T} };VZI of H%-measurable subsets of T (the “elements”) with
H(T;) > 0 for each j, HU(T; N Ty) =0 for j #j', and T = U}, T)



Iterated function systems

When T is the fractal attractor of an IFS we will choose each “mesh element”
T; to be one of the “components” of I, defined by

Conyima,imy 2= 8my © - 08, (1), withmy € {1,..., M}, j=1,...,p,

each of which is a scaled version of T
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Iterated function systems

When T is the fractal attractor of an IFS we will choose each “mesh element”
T; to be one of the “components” of I, defined by

Conyima,imy 2= 8my © - 08, (1), withmy € {1,..., M}, j=1,...,p,

each of which is a scaled version of T
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Galerkin matrix entries

Using the canonical basis f*,..., f~ for Vi, with each 7|7, =1 and
fj\p\Tj = 0, the Galerkin BEM matrix has entries

L . d d(p
A”‘/Ti/nq’( ) AH ()M (),

etfle=yl .
where ®(z,y) = ﬁ is the usual Helmholtz fundamental solution
e —y



Galerkin matrix entries

Using the canonical basis f*,..., f~ for Vi, with each 7|7, =1 and
fj\p\Tj = 0, the Galerkin BEM matrix has entries

L . d d(p
A”‘/Ti/nq)( ) AH ()M (),

eik‘a:*yl . .
where ®(z,y) = ——— is the usual Helmholtz fundamental solution

Arle —y|
Practical implementation requires singular quadrature with respect to Hausdorff
measure - see Andrew Gibbs’ talk!



Main convergence result

Specify h > 0 and choose as the elements of our mesh all those components with
diameter < h whose “parent” has diameter > h.

Suppose I'y, ..., 'y disjoint, 1 < d = dimyl" < 2. Suppose exact BIE solution
¢ € Hi with —1/2 < s < g — 1. Then Hausdorff BEM solution ¢ satisfies

6= onll o1z S BTV PG, B> 0.
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Main convergence result

Specify h > 0 and choose as the elements of our mesh all those components with
diameter < h whose “parent” has diameter > h.

Suppose I'y, ..., 'y disjoint, 1 < d = dimyl" < 2. Suppose exact BIE solution
¢ € Hf with —1/2 < s < % — 1. Then Hausdorff BEM solution ¢ satisfies

6= onll o1z S BTV PG, B> 0.

If d <1 then ¢ =0, incident wave doesn't “see” T' — see C-W/Hewett 2018
4 —1is a hard upper limit; H3 = {0} for s > 4 — 1 — see Hewett/Moiola 2017
Proof uses Céa’s lemma plus
@ Trace theorems from H*(R?) to L(I'; H?), and relationship between H
spaces and “trace spaces’ on I' — Caetano/Hewett/Moiola 2021

@ Haar-type-wavelet characterisations of trace spaces on fractals — Jonsson
1998

Under appropriate assumptions, linear functionals J : Hlfl/Q — C (e.g. evaluation
of u®) exhibit expected “superconvergence”:

|J(p) — J(dn)| S A2 Bl ey, h>0.



Example: Cantor dust

Consider scattering in R3 by a Cantor dust, with
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Numerical results — 3D — scattering by Cantor dust

Cantor dust, absolute increment errors ||y — ¢riillg-12(52), b =5
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Summary

Conforming BEM discretizations for scattering by fractal screens can be
analysed and implemented

This appears to be the first analysis of a BEM based on integration with
respect to Hausdorff measure H? for non-integer d

Error bounds rely on solution regularity assumptions that have not yet been
proved = open questions in PDE/integral equation theory!

But numerics agree precisely with theoretical error bounds assuming highest
possible solution regularity = conjecture that highest possible regularity is
achieved

Currently our analysis requires “disjointness” assumption - future work might
include extension to non-disjoint fractals such as the Sierpinski triangle
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Previous work

Suppose that I' is defined by a sequence of “prefractals” T'g, 'y, T, ...

A
A

@ Approximate I' by I'; for some j, and apply a conventional BEM
discretization on I';

@ In general, a non-conforming approximation, since
Vn ¢V =H;"? = {¢ € H/2(R?) : supp ¢ C T}

@ Can prove convergence in the joint limit 7 — oo, h — 0 using Mosco
convergence of function spaces

@ However, analysis does not provide convergence rates, and applies only to
“thickened” prefractals.

@ S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, J. Besson,

Boundary element methods for acoustic scattering by fractal screens,
Numer. Math., 147(4), 785-837, 2021
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Example: Cantor set

Our analysis also works for 2D (i.e. scattering in R? by a subset of R)
Example: Cantor set with uniform scale factor p = a € (0,1/2)

Total field plot for . = 1/3:

Real part total field

Taking h = of, and assuming the best possible regularity, our analysis predicts

I = nll =12 S 2742, [J(¢) = J(on)| S27° (€N

Note: predicted rates are independent of «, and numerics support this



Numerical results — 2D — scattering by Cantor set
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1+1D Galerkin-Hausdorft-BEM, k = 53
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