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Time-harmonic acoustic scattering by a fractal screen

The screen Γ is a compact fractal subset of R2 ∼= {x ∈ R3 : x3 = 0}, k > 0.

u = 0

Γ

x1

x2

x3 (∆ + k2)u = 0 in D := R3 \ Γ×{0}

ui = eikd·x

|d| = 1

us := u− ui satisfies Sommerfeld Radiation Condition at infinity

To find u ∈W 1,loc(D), by Green’s identities it suffices to find the Neumann jump

[∂u/∂n] ∈ H−1/2
Γ = {φ ∈ H−1/2(R2) : suppφ ⊂ Γ}.

This satisfies the boundary integral equation (BIE)

S[∂u/∂n] = ui|Γ,

where S is the single-layer boundary integral operator.
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This talk

We introduce a new “conforming” discretization where

the BEM basis functions are supported in Γ

integration is carried out with respect to Hausdorff (not Lebesgue) measure
– see Andrew Gibbs’ talk (next!) for details of numerical quadrature

Convergence analysis can follow the standard Lax-Milgram Lemma/Céa’s Lemma
approach

Convergence rates can be obtained under natural solution regularity assumptions
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Why fractals?

Fractals are an obvious mathematical model for the multiscale roughness
possessed by many naturally-occuring and man-made scatterers.

They are also a rich source of mathematical challenges that are stimulating
exciting new research in modelling, function spaces and numerical analysis.

M. V. Berry, “Diffractals”, J. Phys. A., 1979 - “a new regime in wave physics”

U. Mosco, 2013 - “introducing fractal constructions into the classic theory of PDEs opens a vast

new field of study, both theoretically and numerically”, “this new field has been only scratched”
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Applications

Fractal antennas - wideband/multiband performance from a compact design

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

http://www.antenna-theory.com/antennas/fractal.php


Applications

Scattering by ice crystals in atmospheric physics
e.g. Chris Westbrook (Reading Meteorology)

Fractal apertures in laser optics
e.g. James Christian (Salford Physics)



Preliminaries: Hausdorff measure and dimension

For E ⊂ Rn and d ≥ 0
Hd(E) ∈ [0,∞) ∪ {∞},

is the usual d-dimensional Hausdorff (outer) measure of E.

Then

dimHE := sup{d ≥ 0 : Hd(E) =∞} = inf{d ≥ 0 : Hd(E) = 0} ∈ [0, n].

NOTE: dimH(point) = 0, dimH(line) = 1, dimH(area) = 2, etc., but non-integer
dimensions are also possible!
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Preliminaries: Iterated function systems (IFS)

We’ll assume Γ = ∪Mm=1sm(Γ) is the attractor of an IFS of contracting
similarities {s1, s2, . . . , sM} (with M ≥ 2), so each sm : R2 → R2 satisfies

|sm(x)− sm(y)| = ρm|x− y|, x, y ∈ R2,

for some ρm ∈ (0, 1). Assume also standard open set condition holds.

Examples:

Middle third Cantor dust
M = 4, ρm = 1/3,

dimHΓ = log 4/ log 3

Sierpinski triangle
M = 3, ρm = 1/2,

dimHΓ = log 3/ log 2
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BIE formulation

Γ

D = R3 \ Γ× {0}

x1

x2

x3

Theorem (C-W/Hewett 2018)

The sound-soft Helmholtz BVP has unique solution

u(x) = ui(x)− Sφ(x), x ∈ D,

where φ = ∂+
n u− ∂−n u ∈ H

−1/2
Γ is the unique solution of the BIE

Sφ = ui|Γ.

Here S : H
−1/2
Γ → C2(D) ∩W 1,loc(Rn+1) is the single-layer potential operator,

and S : H
−1/2
Γ → (H

−1/2
Γ )

∗
is the single layer BIO

(explicit formulas to come!)
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Variational formulation and Galerkin BEM

The operator S : H
−1/2
Γ → (H

−1/2
Γ )

∗
is continuous and coercive (strongly elliptic)

- see C-W/Hewett 2015.

Hence, by the Lax–Milgram lemma, the Galerkin method

find φ ∈ VN s.t. 〈Sφ, ψ〉H1/2×H−1/2 = 〈ui, ψ〉H1/2×H−1/2 , ∀ψ ∈ VN ,

is well-posed for any closed subspace VN ⊂ H−1/2
Γ .

Piecewise constant Hausdorff BEM
In our Galerkin BEM we take

VN = {fHd|Γ} ⊂ H−1/2
Γ

where d = dimHΓ and f is a piecewise constant function on a “mesh” of Γ.

fHd|Γ ∈ H−1/2
Γ is the distribution ϕ 7→

∫
Γ
fϕdHd, ϕ ∈ C∞0 (R2).

A “mesh” is a set {Tj}Nj=1 of Hd-measurable subsets of Γ (the “elements”) with

Hd(Tj) > 0 for each j, Hd(Tj ∩ Tj′) = 0 for j 6= j′, and Γ =
⋃N

j=1 Tj .
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Iterated function systems

When Γ is the fractal attractor of an IFS we will choose each “mesh element”
Tj to be one of the “components” of Γ, defined by

Γm1,m2,...,mp
:= sm1

◦ · · · ◦ smp
(Γ), with mj ∈ {1, ...,M}, j = 1, . . . , p,

each of which is a scaled version of Γ
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Galerkin matrix entries

Using the canonical basis f1, . . . , fN for VN , with each f j |Tj = 1 and
f j |Γ\Tj

= 0, the Galerkin BEM matrix has entries

Aij =

∫
Ti

∫
Tj

Φ(x, y) dHd(y)dHd(x),

where Φ(x, y) =
eik|x−y|

4π|x− y|
is the usual Helmholtz fundamental solution

Practical implementation requires singular quadrature with respect to Hausdorff
measure - see Andrew Gibbs’ talk!
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Main convergence result

Specify h > 0 and choose as the elements of our mesh all those components with
diameter ≤ h whose “parent” has diameter > h.

Theorem
Suppose Γ1, . . . ,ΓM disjoint, 1 < d = dimHΓ < 2. Suppose exact BIE solution
φ ∈ Hs

Γ with −1/2 < s < d
2 − 1. Then Hausdorff BEM solution φN satisfies

‖φ− φN‖H−1/2
Γ

. hs+1/2‖φ‖Hs
Γ
, h > 0.

If d ≤ 1 then φ = 0, incident wave doesn’t “see” Γ – see C-W/Hewett 2018
d
2 − 1 is a hard upper limit; Hs

Γ = {0} for s ≥ d
2 − 1 – see Hewett/Moiola 2017

Proof uses Céa’s lemma plus
Trace theorems from Hs(R2) to L2(Γ;Hd), and relationship between Hs

Γ

spaces and “trace spaces” on Γ – Caetano/Hewett/Moiola 2021
Haar-type-wavelet characterisations of trace spaces on fractals – Jonsson
1998

Under appropriate assumptions, linear functionals J : H
−1/2
Γ → C (e.g. evaluation

of us) exhibit expected “superconvergence”:

|J(φ)− J(φN )| . h2s+1‖φ‖Hs
Γ
, h > 0.
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Example: Cantor dust

Consider scattering in R3 by a Cantor dust, with
ρm = ρ ∈ (1/4, 1/2),

d = dimH Γ = log 4/ log(1/ρ) ∈ (1, 2)

Field plots for ρ = 1/3:

Taking h = ρ`, and assuming the best possible regularity, our analysis predicts

‖φ− φN‖H−1/2
Γ

. (4ρ)−`/2, |J(φ)− J(φN )| . (4ρ)−`, ` ∈ N
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Field plots for ρ = 1/3:

Taking h = ρ`, and assuming the best possible regularity, our analysis predicts
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Summary

Conforming BEM discretizations for scattering by fractal screens can be
analysed and implemented

This appears to be the first analysis of a BEM based on integration with
respect to Hausdorff measure Hd for non-integer d

Error bounds rely on solution regularity assumptions that have not yet been
proved ⇒ open questions in PDE/integral equation theory!

But numerics agree precisely with theoretical error bounds assuming highest
possible solution regularity ⇒ conjecture that highest possible regularity is
achieved

Currently our analysis requires “disjointness” assumption - future work might
include extension to non-disjoint fractals such as the Sierpinski triangle
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Previous work

Suppose that Γ is defined by a sequence of “prefractals” Γ0,Γ1,Γ2, . . .

· · ·

Approximate Γ by Γj for some j, and apply a conventional BEM
discretization on Γj

In general, a non-conforming approximation, since

VN 6⊂ V = H
−1/2
Γ = {φ ∈ H−1/2(R2) : suppφ ⊂ Γ}

Can prove convergence in the joint limit j →∞, h→ 0 using Mosco
convergence of function spaces

However, analysis does not provide convergence rates, and applies only to
“thickened” prefractals.
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Example: Cantor set

Our analysis also works for 2D (i.e. scattering in R2 by a subset of R)
Example: Cantor set with uniform scale factor ρ = α ∈ (0, 1/2)

Total field plot for α = 1/3:

Taking h = α`, and assuming the best possible regularity, our analysis predicts

‖φ− φN‖H−1/2
Γ

. 2−`/2, |J(φ)− J(φN )| . 2−`, ` ∈ N

Note: predicted rates are independent of α, and numerics support this
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