A Hausdorff-measure boundary element method for scattering by fractal screens I: Numerical Analysis

Simon Chandler-Wilde

Department of Mathematics and Statistics University of Reading, UK

With: António Caetano (Aveiro), Andrew Gibbs, Dave Hewett (UCL), & Andrea Moiola (Pavia)

Waves 2022, July 2022

Time-harmonic acoustic scattering by a fractal screen

The screen Γ is a compact fractal subset of $\mathbb{R}^2 \cong \{x \in \mathbb{R}^3 : x_3 = 0\}, k > 0.$

 $\boldsymbol{u}^s := \boldsymbol{u} - \boldsymbol{u}^i$ satisfies Sommerfeld Radiation Condition at infinity

Time-harmonic acoustic scattering by a fractal screen

The screen Γ is a compact fractal subset of $\mathbb{R}^2 \cong \{x \in \mathbb{R}^3 : x_3 = 0\}, k > 0.$

 $u^s := u - u^i$ satisfies Sommerfeld Radiation Condition at infinity To find $u \in W^{1, \text{loc}}(D)$, by Green's identities it suffices to find the Neumann jump

$$[\partial u/\partial n] \in H_{\Gamma}^{-1/2} = \{\phi \in H^{-1/2}(\mathbb{R}^2) : \operatorname{supp} \phi \subset \Gamma\}.$$

Time-harmonic acoustic scattering by a fractal screen

The screen Γ is a compact fractal subset of $\mathbb{R}^2 \cong \{x \in \mathbb{R}^3 : x_3 = 0\}, k > 0.$

 $u^s := u - u^i$ satisfies Sommerfeld Radiation Condition at infinity To find $u \in W^{1, \text{loc}}(D)$, by Green's identities it suffices to find the Neumann jump

$$[\partial u/\partial n] \in H_{\Gamma}^{-1/2} = \{\phi \in H^{-1/2}(\mathbb{R}^2) : \operatorname{supp} \phi \subset \Gamma\}$$

This satisfies the boundary integral equation (BIE)

$$S[\partial u/\partial n] = u^i|_{\Gamma},$$

where S is the single-layer boundary integral operator.

This talk

We introduce a new "conforming" discretization where

- $\bullet\,$ the BEM basis functions are supported in $\Gamma\,$
- integration is carried out with respect to Hausdorff (not Lebesgue) measure
 - see Andrew Gibbs' talk (next!) for details of numerical quadrature

This talk

We introduce a new "conforming" discretization where

- $\bullet\,$ the BEM basis functions are supported in $\Gamma\,$
- integration is carried out with respect to Hausdorff (not Lebesgue) measure
 - see Andrew Gibbs' talk (next!) for details of numerical quadrature

Convergence analysis can follow the standard Lax-Milgram Lemma/Céa's Lemma approach

This talk

We introduce a new "conforming" discretization where

- $\bullet\,$ the BEM basis functions are supported in $\Gamma\,$
- integration is carried out with respect to Hausdorff (not Lebesgue) measure
 - see Andrew Gibbs' talk (next!) for details of numerical quadrature

Convergence analysis can follow the standard Lax-Milgram Lemma/Céa's Lemma approach

Convergence rates can be obtained under natural solution regularity assumptions

Why fractals?

Why fractals?

Fractals are an obvious mathematical model for the **multiscale roughness** possessed by many naturally-occuring and man-made scatterers.

Why fractals?

Fractals are an obvious mathematical model for the **multiscale roughness** possessed by many naturally-occuring and man-made scatterers.

They are also a **rich source of mathematical challenges** that are stimulating exciting new research in modelling, function spaces and numerical analysis.

M. V. Berry, "Diffractals", J. Phys. A., 1979 - "a new regime in wave physics"

U. Mosco, 2013 - "introducing fractal constructions into the classic theory of PDEs opens a vast new field of study, both theoretically and numerically", "this new field has been only scratched"

Applications

Fractal antennas - wideband/multiband performance from a compact design

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Applications

Scattering by ice crystals in atmospheric physics e.g. Chris Westbrook (Reading Meteorology)

Fractal apertures in laser optics e.g. James Christian (Salford Physics)

Preliminaries: Hausdorff measure and dimension

For $E \subset \mathbb{R}^n$ and $d \geq 0$

 $\mathcal{H}^d(E) \in [0,\infty) \cup \{\infty\},\$

is the usual *d*-dimensional Hausdorff (outer) measure of *E*.

Preliminaries: Hausdorff measure and dimension

For $E \subset \mathbb{R}^n$ and $d \geq 0$

 $\mathcal{H}^d(E) \in [0,\infty) \cup \{\infty\},\$

is the usual *d*-dimensional Hausdorff (outer) measure of *E*.

Then

 $\dim_{\mathbf{H}} E := \sup\{d \ge 0 : \mathcal{H}^{d}(E) = \infty\} = \inf\{d \ge 0 : \mathcal{H}^{d}(E) = 0\} \in [0, n].$

Preliminaries: Hausdorff measure and dimension

For $E \subset \mathbb{R}^n$ and $d \ge 0$

 $\mathcal{H}^d(E) \in [0,\infty) \cup \{\infty\},\$

is the usual *d*-dimensional Hausdorff (outer) measure of *E*.

Then

$$\dim_{\mathbf{H}} E := \sup\{d \ge 0 : \mathcal{H}^{d}(E) = \infty\} = \inf\{d \ge 0 : \mathcal{H}^{d}(E) = 0\} \in [0, n].$$

NOTE: $\dim_H(\text{point}) = 0$, $\dim_H(\text{line}) = 1$, $\dim_H(\text{area}) = 2$, etc., but non-integer dimensions are also possible!

Preliminaries: Iterated function systems (IFS)

We'll assume $\Gamma = \bigcup_{m=1}^{M} s_m(\Gamma)$ is the attractor of an **IFS of contracting** similarities $\{s_1, s_2, \ldots, s_M\}$ (with $M \ge 2$), so each $s_m : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^2,$$

for some $\rho_m \in (0,1)$. Assume also standard **open set condition** holds.

Preliminaries: Iterated function systems (IFS)

We'll assume $\Gamma = \bigcup_{m=1}^{M} s_m(\Gamma)$ is the attractor of an **IFS of contracting** similarities $\{s_1, s_2, \ldots, s_M\}$ (with $M \ge 2$), so each $s_m : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^2,$$

for some $\rho_m \in (0,1)$. Assume also standard **open set condition** holds.

Examples:

:: :: :: ::			:: :: :: ::
:: :: :: ::	:::: ::::		
:: :: :: ::	:: :: :: ::	:::: ::::	:::: ::::
	:::: :::	::::	::::

Middle third Cantor dust M = 4, $\rho_m = 1/3$,

 $\dim_{\rm H} \Gamma = \log 4 / \log 3$

Sierpinski triangle M = 3, $\rho_m = 1/2$, $\dim_{\mathrm{H}} \Gamma = \log 3/\log 2$

The screen Γ is a compact fractal subset of $\mathbb{R}^2 \cong \{x \in \mathbb{R}^3 : x_3 = 0\}, k > 0$.

 $u^s := u - u^i$ satisfies Sommerfeld Radiation Condition at infinity

BIE formulation

Theorem (C-W/Hewett 2018)

The sound-soft Helmholtz BVP has unique solution

$$u(x) = u^i(x) - \mathcal{S}\phi(x), \qquad x \in D,$$

where $\phi = \partial_n^+ u - \partial_n^- u \in H_\Gamma^{-1/2}$ is the unique solution of the BIE

$$S\phi = u^i|_{\Gamma}$$

Here $\mathcal{S}: H_{\Gamma}^{-1/2} \to C^2(D) \cap W^{1,\mathrm{loc}}(\mathbb{R}^{n+1})$ is the single-layer potential operator, and $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is the single layer BIO

BIE formulation

Theorem (C-W/Hewett 2018)

The sound-soft Helmholtz BVP has unique solution

$$u(x) = u^i(x) - \mathcal{S}\phi(x), \qquad x \in D,$$

where $\phi = \partial_n^+ u - \partial_n^- u \in H_\Gamma^{-1/2}$ is the unique solution of the BIE

$$S\phi = u^i|_{\Gamma}.$$

Here $S: H_{\Gamma}^{-1/2} \to C^2(D) \cap W^{1,\text{loc}}(\mathbb{R}^{n+1})$ is the single-layer potential operator, and $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is the single layer BIO (explicit formulas to come!)

The operator $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is continuous and coercive (strongly elliptic) - see C-W/Hewett 2015.

The operator $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is continuous and coercive (strongly elliptic) - see C-W/Hewett 2015.

Hence, by the Lax-Milgram lemma, the Galerkin method

 $\text{find } \phi \in V_N \text{ s.t. } \langle S\phi,\psi\rangle_{H^{1/2}\times H^{-1/2}} = \langle u^i,\psi\rangle_{H^{1/2}\times H^{-1/2}}, \quad \forall \psi \in V_N,$

is well-posed for any closed subspace $V_N \subset H_{\Gamma}^{-1/2}$.

The operator $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is continuous and coercive (strongly elliptic) - see C-W/Hewett 2015.

Hence, by the Lax-Milgram lemma, the Galerkin method

 $\text{find } \phi \in V_N \text{ s.t. } \langle S\phi,\psi\rangle_{H^{1/2}\times H^{-1/2}} = \langle u^i,\psi\rangle_{H^{1/2}\times H^{-1/2}}, \quad \forall \psi \in V_N,$

is well-posed for any closed subspace $V_N \subset H_{\Gamma}^{-1/2}$.

Piecewise constant Hausdorff BEM

In our Galerkin BEM we take

$$V_N = \{ f \mathcal{H}^d |_{\Gamma} \} \subset H_{\Gamma}^{-1/2}$$

where $d = \dim_{\mathrm{H}} \Gamma$ and f is a piecewise constant function on a "mesh" of Γ .

The operator $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is continuous and coercive (strongly elliptic) - see C-W/Hewett 2015.

Hence, by the Lax-Milgram lemma, the Galerkin method

 $\text{find } \phi \in V_N \text{ s.t. } \langle S\phi,\psi\rangle_{H^{1/2}\times H^{-1/2}} = \langle u^i,\psi\rangle_{H^{1/2}\times H^{-1/2}}, \quad \forall \psi \in V_N,$

is well-posed for any closed subspace $V_N \subset H_{\Gamma}^{-1/2}$.

Piecewise constant Hausdorff BEM

In our Galerkin BEM we take

$$V_N = \{ f \mathcal{H}^d |_{\Gamma} \} \subset H_{\Gamma}^{-1/2}$$

where $d = \dim_{\mathrm{H}} \Gamma$ and f is a piecewise constant function on a "mesh" of Γ .

 $f\mathcal{H}^d|_{\Gamma} \in H_{\Gamma}^{-1/2}$ is the distribution $\varphi \mapsto \int_{\Gamma} f\varphi \, \mathrm{d}\mathcal{H}^d$, $\varphi \in C_0^{\infty}(\mathbb{R}^2)$.

The operator $S: H_{\Gamma}^{-1/2} \to (H_{\Gamma}^{-1/2})^*$ is continuous and coercive (strongly elliptic) - see C-W/Hewett 2015.

Hence, by the Lax-Milgram lemma, the Galerkin method

 $\text{find } \phi \in V_N \text{ s.t. } \langle S\phi,\psi\rangle_{H^{1/2}\times H^{-1/2}} = \langle u^i,\psi\rangle_{H^{1/2}\times H^{-1/2}}, \quad \forall \psi \in V_N,$

is well-posed for any closed subspace $V_N \subset H_{\Gamma}^{-1/2}$.

Piecewise constant Hausdorff BEM

In our Galerkin BEM we take

$$V_N = \{ f \mathcal{H}^d |_{\Gamma} \} \subset H_{\Gamma}^{-1/2}$$

where $d = \dim_{\mathrm{H}} \Gamma$ and f is a piecewise constant function on a "mesh" of Γ .

$$\begin{split} f\mathcal{H}^d|_{\Gamma} &\in H_{\Gamma}^{-1/2} \text{ is the distribution } \varphi \mapsto \int_{\Gamma} f\varphi \, \mathrm{d}\mathcal{H}^d, \, \varphi \in C_0^{\infty}(\mathbb{R}^2). \\ \mathsf{A} \text{ "mesh" is a set } \{T_j\}_{j=1}^N \text{ of } \mathcal{H}^d\text{-measurable subsets of } \Gamma \text{ (the "elements") with } \\ \mathcal{H}^d(T_j) &> 0 \text{ for each } j, \, \mathcal{H}^d(T_j \cap T_{j'}) = 0 \text{ for } j \neq j', \text{ and } \Gamma = \bigcup_{j=1}^N T_j. \end{split}$$

Iterated function systems

When Γ is the fractal attractor of an IFS we will choose each "**mesh element**" T_i to be one of the "**components**" of Γ , defined by

 $\Gamma_{m_1,m_2,...,m_p} := s_{m_1} \circ \cdots \circ s_{m_p}(\Gamma), \quad \text{with } m_j \in \{1,...,M\}, \quad j = 1,...,p,$ each of which is a scaled version of Γ

Iterated function systems

When Γ is the fractal attractor of an IFS we will choose each "**mesh element**" T_j to be one of the "**components**" of Γ , defined by

 $\Gamma_{m_1,m_2,...,m_p} := s_{m_1} \circ \cdots \circ s_{m_p}(\Gamma), \text{ with } m_j \in \{1,...,M\}, j = 1,...,p,$

each of which is a scaled version of $\boldsymbol{\Gamma}$

Galerkin matrix entries

Using the canonical basis f^1, \ldots, f^N for V_N , with each $f^j|_{T_j} = 1$ and $f^j|_{\Gamma \setminus T_j} = 0$, the Galerkin BEM matrix has entries

$$A_{ij} = \int_{T_i} \int_{T_j} \Phi(x, y) \, \mathrm{d}\mathcal{H}^d(y) \mathrm{d}\mathcal{H}^d(x),$$

where $\Phi(x,y)=\frac{{\rm e}^{{\rm i}k|x-y|}}{4\pi|x-y|}$ is the usual Helmholtz fundamental solution

Galerkin matrix entries

Using the canonical basis f^1, \ldots, f^N for V_N , with each $f^j|_{T_j} = 1$ and $f^j|_{\Gamma \setminus T_j} = 0$, the Galerkin BEM matrix has entries

$$A_{ij} = \int_{T_i} \int_{T_j} \Phi(x, y) \, \mathrm{d}\mathcal{H}^d(y) \mathrm{d}\mathcal{H}^d(x),$$

where $\Phi(x,y)=\frac{{\rm e}^{{\rm i}k|x-y|}}{4\pi|x-y|}$ is the usual Helmholtz fundamental solution

Practical implementation requires singular quadrature with respect to Hausdorff measure - see Andrew Gibbs' talk!

Specify h > 0 and choose as the elements of our mesh all those components with diameter $\leq h$ whose "parent" has diameter > h.

Theorem

Suppose $\Gamma_1, \ldots, \Gamma_M$ disjoint, $1 < d = \dim_{\mathrm{H}} \Gamma < 2$. Suppose exact BIE solution $\phi \in H^s_{\Gamma}$ with $-1/2 < s < \frac{d}{2} - 1$. Then Hausdorff BEM solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1/2}} \lesssim h^{s+1/2} \|\phi\|_{H_{\Gamma}^s}, \qquad h > 0.$$

Specify h > 0 and choose as the elements of our mesh all those components with diameter $\leq h$ whose "parent" has diameter > h.

Theorem

Suppose $\Gamma_1, \ldots, \Gamma_M$ disjoint, $1 < d = \dim_{\mathrm{H}} \Gamma < 2$. Suppose exact BIE solution $\phi \in H^s_{\Gamma}$ with $-1/2 < s < \frac{d}{2} - 1$. Then Hausdorff BEM solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1/2}} \lesssim h^{s+1/2} \|\phi\|_{H_{\Gamma}^s}, \qquad h > 0.$$

If $d \leq 1$ then $\phi = 0,$ incident wave doesn't "see" Γ – see C-W/Hewett 2018

Specify h > 0 and choose as the elements of our mesh all those components with diameter $\leq h$ whose "parent" has diameter > h.

Theorem

Suppose $\Gamma_1, \ldots, \Gamma_M$ disjoint, $1 < d = \dim_{\mathrm{H}} \Gamma < 2$. Suppose exact BIE solution $\phi \in H^s_{\Gamma}$ with $-1/2 < s < \frac{d}{2} - 1$. Then Hausdorff BEM solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1/2}} \lesssim h^{s+1/2} \|\phi\|_{H_{\Gamma}^s}, \qquad h > 0.$$

If $d \leq 1$ then $\phi = 0$, incident wave doesn't "see" Γ – see C-W/Hewett 2018 $\frac{d}{2} - 1$ is a hard upper limit; $H_{\Gamma}^s = \{0\}$ for $s \geq \frac{d}{2} - 1$ – see Hewett/Moiola 2017

Specify h > 0 and choose as the elements of our mesh all those components with diameter $\leq h$ whose "parent" has diameter > h.

Theorem

Suppose $\Gamma_1, \ldots, \Gamma_M$ disjoint, $1 < d = \dim_{\mathrm{H}} \Gamma < 2$. Suppose exact BIE solution $\phi \in H^s_{\Gamma}$ with $-1/2 < s < \frac{d}{2} - 1$. Then Hausdorff BEM solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H^{-1/2}_{\Gamma}} \lesssim h^{s+1/2} \|\phi\|_{H^s_{\Gamma}}, \qquad h > 0.$$

If $d \leq 1$ then $\phi = 0$, incident wave doesn't "see" Γ – see C-W/Hewett 2018 $\frac{d}{2} - 1$ is a **hard upper limit**; $H_{\Gamma}^{s} = \{0\}$ for $s \geq \frac{d}{2} - 1$ – see Hewett/Moiola 2017 Proof uses Céa's lemma plus

- Trace theorems from $H^s(\mathbb{R}^2)$ to $L^2(\Gamma; \mathcal{H}^d)$, and relationship between H^s_{Γ} spaces and "trace spaces" on Γ Caetano/Hewett/Moiola 2021
- Haar-type-wavelet characterisations of trace spaces on fractals Jonsson 1998

Specify h > 0 and choose as the elements of our mesh all those components with diameter $\leq h$ whose "parent" has diameter > h.

Theorem

Suppose $\Gamma_1, \ldots, \Gamma_M$ disjoint, $1 < d = \dim_{\mathrm{H}} \Gamma < 2$. Suppose exact BIE solution $\phi \in H^s_{\Gamma}$ with $-1/2 < s < \frac{d}{2} - 1$. Then Hausdorff BEM solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H^{-1/2}_{\Gamma}} \lesssim h^{s+1/2} \|\phi\|_{H^s_{\Gamma}}, \qquad h > 0.$$

If $d \leq 1$ then $\phi = 0$, incident wave doesn't "see" Γ – see C-W/Hewett 2018 $\frac{d}{2} - 1$ is a **hard upper limit**; $H_{\Gamma}^{s} = \{0\}$ for $s \geq \frac{d}{2} - 1$ – see Hewett/Moiola 2017 Proof uses Céa's lemma plus

- Trace theorems from $H^s(\mathbb{R}^2)$ to $L^2(\Gamma; \mathcal{H}^d)$, and relationship between H^s_{Γ} spaces and "trace spaces" on Γ Caetano/Hewett/Moiola 2021
- Haar-type-wavelet characterisations of trace spaces on fractals Jonsson 1998

Under appropriate assumptions, linear functionals $J: H_{\Gamma}^{-1/2} \to \mathbb{C}$ (e.g. evaluation of u^s) exhibit expected "superconvergence":

$$|J(\phi) - J(\phi_N)| \lesssim h^{2s+1} \|\phi\|_{H^s_{\Gamma}}, \qquad h > 0.$$

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

::	:		:	::	;	•
	 	 			:	•
	 :: 	 			:	•
					:	

.....

.. ..

.....

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

Field plots for $\rho = 1/3$:

::	:	:	:	:	:	:	::
			••				
ä		÷		÷		ä	÷

:: ::

:: ::

....

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

Field plots for $\rho = 1/3$:

••	••	••	••	••	••	••	••
••	••	••		••	••	••	••
••	••	••		••	••	••	••
**				**	**	**	**
••	••	••		••	••	••	••
				••			
••	••	••		••		••	••
:::	**	::		::	**	::	**
••	••	••		••	••	••	••
••	••	••	••	••	••	••	••
:::		::		::		::	::

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

Field plots for $\rho = 1/3$:

** **			
:: ::	:: ::	:: ::	:: ::
	(.=	0	
	=) 	0	
	=]	U ==	
	=) :::		
	=) :::		

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

Field plots for $\rho = 1/3$:

:::	:::	::::	
	1.	- 1	
	- U '	- 1	
		- 1	:: ::
		- 1	

Consider scattering in \mathbb{R}^3 by a Cantor dust, with $\rho_m=\rho\in(1/4,1/2),$

$$d = \dim_H \Gamma = \log 4 / \log(1/\rho) \in (1,2)$$

Field plots for $\rho = 1/3$:

		88	::::: ::::::::::::::::::::::::::::::::
			:: ::
	l=2		
:::		::::	

Summary

- Conforming BEM discretizations for scattering by fractal screens can be analysed and implemented
- This appears to be the first analysis of a BEM based on integration with respect to Hausdorff measure \mathcal{H}^d for non-integer d

Summary

- Conforming BEM discretizations for scattering by fractal screens can be analysed and implemented
- This appears to be the first analysis of a BEM based on integration with respect to Hausdorff measure \mathcal{H}^d for non-integer d
- Error bounds rely on solution regularity assumptions that have not yet been proved ⇒ open questions in PDE/integral equation theory!
- But numerics agree precisely with theoretical error bounds assuming highest possible solution regularity \Rightarrow conjecture that highest possible regularity is achieved

Summary

- Conforming BEM discretizations for scattering by fractal screens can be analysed and implemented
- This appears to be the first analysis of a BEM based on integration with respect to Hausdorff measure \mathcal{H}^d for non-integer d
- Error bounds rely on solution regularity assumptions that have not yet been proved ⇒ open questions in PDE/integral equation theory!
- But numerics agree precisely with theoretical error bounds assuming highest possible solution regularity \Rightarrow conjecture that highest possible regularity is achieved
- Currently our analysis requires "disjointness" assumption future work might include extension to non-disjoint fractals such as the Sierpinski triangle

References

- A. Caetano, S. N. Chandler-Wilde, A. Gibbs, D. P. Hewett, A. Moiola,
 A Hausdorff-measure boundary element method for acoustic scattering by fractal screens, in preparation
- A. Jonsson, Wavelets on fractals and Besov spaces, J. Fourier Anal. Appl., 4, pp. 329–340, 1998.
- A. Caetano, D. P. Hewett, A. Moiola, Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets, J. Funct. Anal., 281(3), 109019, 2021
- S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, J. Besson, Boundary element methods for acoustic scattering by fractal screens, Numer. Math., 147(4), 785-837, 2021
- S. N. Chandler-Wilde, D. P. Hewett, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 50(1), 677-717, 2018
- S. N. Chandler-Wilde, D. P. Hewett, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, Integr. Equat. Operat. Th., 82(3), 423-449, 2015

Links and preprints available at www.reading.ac.uk/~sms03snc

Previous work

Suppose that Γ is defined by a sequence of "prefractals" $\Gamma_0,\Gamma_1,\Gamma_2,\ldots$

Previous work

Suppose that Γ is defined by a sequence of "prefractals" $\Gamma_0, \Gamma_1, \Gamma_2, \ldots$

- Approximate Γ by Γ_j for some j, and apply a conventional BEM discretization on Γ_j
- In general, a non-conforming approximation, since $V_N \not\subset V = H_{\Gamma}^{-1/2} = \{\phi \in H^{-1/2}(\mathbb{R}^2) : \operatorname{supp} \phi \subset \Gamma\}$

Previous work

Suppose that Γ is defined by a sequence of "prefractals" $\Gamma_0, \Gamma_1, \Gamma_2, \ldots$

- Approximate Γ by Γ_j for some j, and apply a conventional BEM discretization on Γ_j
- In general, a non-conforming approximation, since
 V_N ⊄ V = H_Γ^{-1/2} = {φ ∈ H^{-1/2}(ℝ²) : supp φ ⊂ Γ}
- $\bullet\,$ Can prove convergence in the joint limit $j\to\infty,\,h\to0$ using Mosco convergence of function spaces
- However, analysis does not provide convergence rates, and applies only to "thickened" prefractals.
- S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, J. Besson, Boundary element methods for acoustic scattering by fractal screens, Numer. Math., 147(4), 785-837, 2021

Our analysis also works for 2D (i.e. scattering in \mathbb{R}^2 by a subset of \mathbb{R}) Example: Cantor set with uniform scale factor $\rho = \alpha \in (0, 1/2)$

Our analysis also works for 2D (i.e. scattering in \mathbb{R}^2 by a subset of \mathbb{R}) Example: Cantor set with uniform scale factor $\rho = \alpha \in (0, 1/2)$

Total field plot for $\alpha = 1/3$:

Our analysis also works for 2D (i.e. scattering in \mathbb{R}^2 by a subset of \mathbb{R}) Example: Cantor set with uniform scale factor $\rho = \alpha \in (0, 1/2)$

Total field plot for $\alpha = 1/3$:

Taking $h = \alpha^{\ell}$, and assuming the best possible regularity, our analysis predicts

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1/2}} \lesssim 2^{-\ell/2}, \qquad |J(\phi) - J(\phi_N)| \lesssim 2^{-\ell}, \qquad \ell \in \mathbb{N}$$

Our analysis also works for 2D (i.e. scattering in \mathbb{R}^2 by a subset of \mathbb{R}) Example: Cantor set with uniform scale factor $\rho = \alpha \in (0, 1/2)$

Total field plot for $\alpha = 1/3$:

Taking $h = \alpha^{\ell}$, and assuming the best possible regularity, our analysis predicts

 $\|\phi - \phi_N\|_{H_{\Gamma}^{-1/2}} \lesssim 2^{-\ell/2}, \qquad |J(\phi) - J(\phi_N)| \lesssim 2^{-\ell}, \qquad \ell \in \mathbb{N}$

Note: predicted rates are independent of α , and numerics support this

1+1D Galerkin-Hausdorff-BEM, k=3

1+1D Galerkin-Hausdorff-BEM, k = 53