Scattering by fractals: theory and integral equation method computation

Simon Chandler-Wilde

Department of Mathematics and Statistics University of Reading, UK

With: Jeanne Besson (ENSTA), António Caetano (Aveiro), Xavier Claeys (Sorbonne), Andrew Gibbs, Dave Hewett (UCL), & Andrea Moiola (Pavia)

CentraleSupélec, Université Paris-Saclay, November 2023

The obstacle Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The incident, scattered, and total fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

The **obstacle** Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The **incident**, **scattered**, and **total** fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

The **obstacle** Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The **incident**, **scattered**, and **total** fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

$$H^1(\mathbb{R}^n) := \{ v \in L_2(\mathbb{R}^n) : \nabla u \in L_2(\mathbb{R}^n) \}, \qquad \widetilde{H}^1(\Omega) := \overline{C_0^{\infty}(\Omega)}^{H^1(\mathbb{R}^n)}$$

The **obstacle** Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The **incident**, **scattered**, and **total** fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

$$H^{1}(\mathbb{R}^{n}) := \{ v \in L_{2}(\mathbb{R}^{n}) : \nabla u \in L_{2}(\mathbb{R}^{n}) \}, \qquad \widetilde{H}^{1}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{1}(\mathbb{R}^{n})}$$

$$H^{1,\text{loc}}(\mathbb{R}^{n}) := \{ v : \mathbb{R}^{n} \to \mathbb{C} : \sigma v \in H^{1}(\mathbb{R}^{n}), \ \forall \sigma \in C_{0}^{\infty}(\mathbb{R}^{n}) \},$$

The obstacle Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The **incident**, scattered, and total fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

$$H^{1}(\mathbb{R}^{n}) := \{ v \in L_{2}(\mathbb{R}^{n}) : \nabla u \in L_{2}(\mathbb{R}^{n}) \}, \quad \widetilde{H}^{1}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{1}(\mathbb{R}^{n})}$$

$$H^{1,\text{loc}}(\mathbb{R}^{n}) := \{ v : \mathbb{R}^{n} \to \mathbb{C} : \sigma v \in H^{1}(\mathbb{R}^{n}), \ \forall \sigma \in C_{0}^{\infty}(\mathbb{R}^{n}) \},$$

$$\widetilde{H}^{1,\text{loc}}(\Omega) := \{ v : \mathbb{R}^{n} \to \mathbb{C} : \sigma v \in \widetilde{H}^{1}(\Omega), \ \forall \sigma \in C_{0}^{\infty}(\mathbb{R}^{n}) \}.$$

The **obstacle** Γ is some compact subset of \mathbb{R}^n , n=2,3, such that $\Omega:=\mathbb{R}^n\setminus \Gamma$ is connected. The **incident**, **scattered**, and **total** fields are u^i , u, and $u^t=u+u^i$, respectively. k>0.

The scattering problem. Find the scattered field $u\in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the standard Sommerfeld radiation condition (SRC), and that $u^t=0$ on Γ in the sense that $u^t\in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$.

This scattering problem is well-posed (classical); rewrite as variational problem in $\Omega_R:=\{x\in\Omega:|x|< R\}$ with continuous and compactly perturbed coercive sesquilinear form.

 $oxed{1.}$ Formulating the above scattering problem as a (newish) first kind integral equation

$$A\phi = g$$

on Γ , with unknown $\phi \in H_{\Gamma}^{-1} := \{ \psi \in H^{-1}(\mathbb{R}^n) : \operatorname{supp}(\psi) \subset \Gamma \}.$

 $oxedsymbol{1.}oxedsymbol{\mathsf{I}}$ Formulating the above scattering problem as a (newish) first kind integral equation

$$A\phi = q$$

on Γ , with unknown $\phi \in H_{\Gamma}^{-1} := \{ \psi \in H^{-1}(\mathbb{R}^n) : \operatorname{supp}(\psi) \subset \Gamma \}.$

2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^d , showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^d , precisely

$$\mathbb{A}\psi(x) = \int_{\Gamma} \Phi(x, y)\psi(y) \, d\mathcal{H}^d(y), \quad x \in \Gamma,$$

where $\Phi(x,y)$ is the fundamental solution of the Helmholtz equation.

 $oxed{1.}$ Formulating the above scattering problem as a (newish) first kind integral equation

$$A\phi = g$$

on Γ , with unknown $\phi \in H_{\Gamma}^{-1} := \{ \psi \in H^{-1}(\mathbb{R}^n) : \operatorname{supp}(\psi) \subset \Gamma \}.$

2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^d , showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^d , precisely

$$\mathbb{A}\psi(x) = \int_{\Gamma} \Phi(x, y)\psi(y) \, d\mathcal{H}^d(y), \quad x \in \Gamma,$$

where $\Phi(x,y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\mathcal{H}^d|_{\Gamma}$.

 $\fbox{1.}$ Formulating the above scattering problem as a (newish) first kind integral equation

$$A\phi = g$$

on Γ , with unknown $\phi \in H_{\Gamma}^{-1} := \{ \psi \in H^{-1}(\mathbb{R}^n) : \operatorname{supp}(\psi) \subset \Gamma \}.$

2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^d , showing that A can be written as an integral operator $\mathbb A$ with respect to \mathcal{H}^d , precisely

$$\mathbb{A}\psi(x) = \int_{\Gamma} \Phi(x, y)\psi(y) \, d\mathcal{H}^{d}(y), \quad x \in \Gamma,$$

where $\Phi(x,y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\mathcal{H}^d|_{\Gamma}$.

3. When Γ is additionally the **attractor** of an **iterated function system** of contracting similarities (an **IFS** for short), proving convergence rates, and providing fully discrete implementation

 $\fbox{1.}$ Formulating the above scattering problem as a (newish) first kind integral equation

$$A\phi = g$$

on Γ , with unknown $\phi \in H_{\Gamma}^{-1} := \{ \psi \in H^{-1}(\mathbb{R}^n) : \operatorname{supp}(\psi) \subset \Gamma \}.$

2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^d , showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^d , precisely

$$\mathbb{A}\psi(x) = \int_{\Gamma} \Phi(x, y)\psi(y) \, d\mathcal{H}^d(y), \quad x \in \Gamma,$$

where $\Phi(x,y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\mathcal{H}^d|_{\Gamma}$.

3. When Γ is additionally the attractor of an iterated function system of contracting similarities (an IFS for short), proving convergence rates, and providing fully discrete implementation - deferred to next talk by Dave Hewett on Hausdorff-measure integration rules for singular integrals

What obstacles Γ do our new theories and methods treat?

Two-dimensional (n=2) examples of d-sets Γ , with: a) d=2; b) d=1; c) d=1; d) d=1; e) $d=\log(2)/\log(3)\approx 0.63$; f) $d=\log(4)/\log(3)\approx 1.26$; g) d=2.

What obstacles Γ do our new theories and methods treat?

Two-dimensional (n=2) examples of d-sets Γ , with: a) d=2; b) d=1; c) d=1; d) d=1; e) $d=\log(2)/\log(3)\approx 0.63$; f) $d=\log(4)/\log(3)\approx 1.26$; g) d=2. Examples c), e), f), g) are all examples that are attractors of an IFS, for which we have a fully discrete implementation.

Why consider scattering by fractals?

Why consider scattering by fractals?

Fractals are an obvious mathematical model for the **multiscale roughness** possessed by many naturally-occuring and man-made scatterers.

Why consider scattering by fractals?

Fractals are an obvious mathematical model for the **multiscale roughness** possessed by many naturally-occuring and man-made scatterers.

They are also a **rich source of mathematical challenges** that are stimulating exciting new research in modelling, function spaces and numerical analysis.

M. V. Berry, "Diffractals", J. Phys. A., 1979 - "a new regime in wave physics"

U. Mosco, 2013 - "introducing fractal constructions into the classic theory of PDEs opens a vast new field of study, both theoretically and numerically", "this new field has been only scratched"

We need Sobolev spaces **defined on** \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) := \{ u \in L_{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \}, \quad s \geq 0,$$

$$H^{-s}(\mathbb{R}^{n}) := (H^{s}(\mathbb{R}^{n})', \quad s > 0,$$

We need Sobolev spaces **defined on** \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) := \{ u \in L_{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \}, \quad s \geq 0,$$

$$H^{-s}(\mathbb{R}^{n}) := (H^{s}(\mathbb{R}^{n})', \quad s > 0,$$

$$\tilde{H}^{s}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{s}(\mathbb{R}^{n})} \subset H^{s}(\mathbb{R}^{n}),$$

We need Sobolev spaces **defined on** \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) := \left\{ u \in L_{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \right\}, \quad s \geq 0,$$

$$H^{-s}(\mathbb{R}^{n}) := (H^{s}(\mathbb{R}^{n})', \quad s > 0,$$

$$\tilde{H}^{s}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{s}(\mathbb{R}^{n})} \subset H^{s}(\mathbb{R}^{n}),$$

$$H_{\Gamma}^{s} := \left\{ v \in H^{s}(\mathbb{R}^{n}) : \operatorname{supp}(v) \subset \Gamma \right\}.$$

We need Sobolev spaces **defined on** \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) := \{ u \in L_{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \}, \quad s \geq 0,$$

$$H^{-s}(\mathbb{R}^{n}) := (H^{s}(\mathbb{R}^{n})', \quad s > 0,$$

$$\tilde{H}^{s}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{s}(\mathbb{R}^{n})} \subset H^{s}(\mathbb{R}^{n}),$$

$$H_{\Gamma}^{s} := \{ v \in H^{s}(\mathbb{R}^{n}) : \operatorname{supp}(v) \subset \Gamma \}.$$

Also need "local" versions with no constraint on growth at infinity, e.g.

$$H^{1,\mathrm{loc}}(\mathbb{R}^n) \ := \ \{v: \mathbb{R}^n \to \mathbb{C}: \sigma \, v \in H^1(\mathbb{R}^n), \, \forall \sigma \in C_0^\infty(\mathbb{R}^n)\},$$

We need Sobolev spaces **defined on** \mathbb{R}^n :

$$H^{s}(\mathbb{R}^{n}) := \left\{ u \in L_{2}(\mathbb{R}^{n}) : \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \right\}, \quad s \geq 0,$$

$$H^{-s}(\mathbb{R}^{n}) := (H^{s}(\mathbb{R}^{n})', \quad s > 0,$$

$$\tilde{H}^{s}(\Omega) := \overline{C_{0}^{\infty}(\Omega)}^{H^{s}(\mathbb{R}^{n})} \subset H^{s}(\mathbb{R}^{n}),$$

$$H_{\Gamma}^{s} := \left\{ v \in H^{s}(\mathbb{R}^{n}) : \operatorname{supp}(v) \subset \Gamma \right\}.$$

Also need "local" versions with no constraint on growth at infinity, e.g.

$$\begin{split} H^{1,\mathrm{loc}}(\mathbb{R}^n) &:= & \{v: \mathbb{R}^n \to \mathbb{C}: \sigma \, v \in H^1(\mathbb{R}^n), \ \forall \sigma \in C_0^\infty(\mathbb{R}^n)\}, \\ \widetilde{H}^{1,\mathrm{loc}}(\Omega) &:= & \{v: \mathbb{R}^n \to \mathbb{C}: \sigma \, v \in \widetilde{H}^1(\Omega), \ \forall \sigma \in C_0^\infty(\mathbb{R}^n)\} \subset H^{1,\mathrm{loc}}(\mathbb{R}^n). \end{split}$$

Preliminaries: Newton potentials

Let $\mathcal{A}\phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi\in L_2(\mathbb{R}^n)$ by

$$\mathcal{A}\phi(x) = \int_{\mathbb{R}^n} \Phi(x, y)\phi(y) \, \mathrm{d}y, \qquad x \in \mathbb{R}^n,$$

where

$$\Phi(x,y) := \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad (n=3), \quad := \frac{i}{4}H_0^{(1)}(k|x-y|), \quad (n=2),$$

is the standard fundamental solution of the Helmholtz equation.

Preliminaries: Newton potentials

Let $\mathcal{A}\phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi\in L_2(\mathbb{R}^n)$ by

$$\mathcal{A}\phi(x) = \int_{\mathbb{R}^n} \Phi(x, y)\phi(y) \,dy, \qquad x \in \mathbb{R}^n,$$

where

$$\Phi(x,y) := \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad (n=3), \quad := \frac{i}{4}H_0^{(1)}(k|x-y|), \quad (n=2),$$

is the standard fundamental solution of the Helmholtz equation.

Then A is continuous as a mapping

$$\mathcal{A}: H^{s-1}_{\text{comp}}(\mathbb{R}^n) \to H^{s+1,\text{loc}}(\mathbb{R}^n), \quad s \in \mathbb{R},$$

where $H^s_{\text{comp}}(\mathbb{R}^n)$ is the space of compactly supported elements of $H^s(\mathbb{R}^n)$, and

$$(\Delta + k^2)\mathcal{A}\phi = \mathcal{A}(\Delta + k^2)\phi = -\phi, \qquad \phi \in H^s_{\text{comp}}(\mathbb{R}^n).$$

Preliminaries: Newton potentials

Let $\mathcal{A}\phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi\in L_2(\mathbb{R}^n)$ by

$$\mathcal{A}\phi(x) = \int_{\mathbb{R}^n} \Phi(x, y)\phi(y) \, \mathrm{d}y, \qquad x \in \mathbb{R}^n,$$

where

$$\Phi(x,y) := \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad (n=3), \quad := \frac{i}{4}H_0^{(1)}(k|x-y|), \quad (n=2),$$

is the standard fundamental solution of the Helmholtz equation.

Explicitly for
$$\phi \in H^{-1}_{\Gamma} \subset H^{-1}_{\text{comp}}(\mathbb{R}^n)$$
,

$$\mathcal{A}\phi(x) = \langle \phi, \overline{\sigma\Phi(x,\cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every

$$\sigma \in C_{0,\Gamma}^{\infty} := \{ \varphi \in C_0^{\infty}(\mathbb{R}^n) : \varphi = 1 \text{ in a neighbourhood of } \Gamma \},$$

such that $x \notin \operatorname{supp}(\sigma)$.

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$.

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. Let's look for a solution as

$$u=\mathcal{A}\phi\in H^{1,\mathrm{loc}}(\mathbb{R}^n)\quad\text{for some}\quad\phi\in H^{-1}_\Gamma.$$

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. Let's look for a solution as

$$u = \mathcal{A}\phi \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$$
 for some $\phi \in H^{-1}_{\Gamma}$.

Then $u^t:=u+u^i\in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$ iff $\sigma u^t\in \widetilde{H}^1(\Omega)$, for some $\sigma\in C^\infty_{0,\Gamma}$,

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. Let's look for a solution as

$$u = \mathcal{A}\phi \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$$
 for some $\phi \in H^{-1}_{\Gamma}$.

Then $u^t:=u+u^i\in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$ iff $\sigma u^t\in \widetilde{H}^1(\Omega)$, for some $\sigma\in C^\infty_{0,\Gamma}$, i.e., iff $P(\sigma u^t)=0$ where $P:H^1(\mathbb{R}^n)\to \widetilde{H}^1(\Omega)^\perp$ is orthogonal projection,

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. Let's look for a solution as

$$u = \mathcal{A}\phi \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$$
 for some $\phi \in H^{-1}_{\Gamma}$.

Then $u^t:=u+u^i\in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$ iff $\sigma u^t\in \widetilde{H}^1(\Omega)$, for some $\sigma\in C^\infty_{0,\Gamma}$, i.e., iff $P(\sigma u^t)=0$ where $P:H^1(\mathbb{R}^n)\to \widetilde{H}^1(\Omega)^\perp$ is orthogonal projection, i.e., iff

$$A\phi := P(\sigma A\phi) = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp}$$

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. Let's look for a solution as

$$u=\mathcal{A}\phi\in H^{1,\mathrm{loc}}(\mathbb{R}^n)\quad\text{for some}\quad\phi\in H^{-1}_\Gamma.$$

Then $u^t:=u+u^i\in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$ iff $\sigma u^t\in \widetilde{H}^1(\Omega)$, for some $\sigma\in C^\infty_{0,\Gamma}$, i.e., iff $P(\sigma u^t)=0$ where $P:H^1(\mathbb{R}^n)\to \widetilde{H}^1(\Omega)^\perp$ is orthogonal projection, i.e., iff

$$A\phi := P(\sigma A\phi) = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})'.$$

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$. We've just shown the first sentence of the following theorem.

The scattering problem (SP). Find the scattered field $u \in H^{1,\text{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\text{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A}$, $\sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection.

The scattering problem (SP). Find the scattered field $u \in H^{1,\text{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\text{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A}$, $\sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A:H^{-1}_{\Gamma}\to \widetilde{H}^{1}(\Omega)^{\perp}=(H^{-1}_{\Gamma})'$ is invertible and is a compact perturbation of a coercive operator

The scattering problem (SP). Find the scattered field $u \in H^{1,\text{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\text{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A},\ \sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A:H^{-1}_{\Gamma}\to \widetilde{H}^{1}(\Omega)^{\perp}=(H^{-1}_{\Gamma})'$ is invertible and is a compact perturbation of a coercive operator, so $A\phi=g$ is uniquely solvable

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1,\text{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\text{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A},\ \sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A:H^{-1}_{\Gamma}\to \widetilde{H}^{1}(\Omega)^{\perp}=(H^{-1}_{\Gamma})'$ is invertible and is a compact perturbation of a coercive operator, so $A\phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1,\mathrm{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\mathrm{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A},\ \sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A:H^{-1}_{\Gamma}\to \widetilde{H}^{1}(\Omega)^{\perp}=(H^{-1}_{\Gamma})'$ is invertible and is a compact perturbation of a coercive operator, so $A\phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.

Proof of main step of 2nd sentence. Coercive compact
$$A = A_k = A_{\rm i} + (A_k - A_{\rm i}) = A_{\rm i} + P \overbrace{\sigma(\mathcal{A}_k - \mathcal{A}_{\rm i})}^{\rm compact}.$$

$\overline{1}$. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1,\text{loc}}(\mathbb{R}^n)$ that satisfies the Helmholtz equation in Ω , the SRC, and that $u^t \in \widetilde{H}^{1,\text{loc}}(\Omega)$.

We've just shown the first sentence of the following theorem.

Theorem If $\phi \in H^{-1}_{\Gamma}$ then $u = \mathcal{A}\phi$ satisfies SP iff

$$A\phi = g := -P(\sigma u^i) \in \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})',$$

where $A:=P\sigma\mathcal{A},\ \sigma\in C^{\infty}_{0,\Gamma}$, and $P:H^{1}(\mathbb{R}^{n})\to \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A:H^{-1}_{\Gamma}\to \widetilde{H}^{1}(\Omega)^{\perp}=(H^{-1}_{\Gamma})'$ is invertible and is a compact perturbation of a coercive operator, so $A\phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.

Proof of main step of 2nd sentence. Coercive compact $A = A_k = A_{\rm i} + (A_k - A_{\rm i}) = A_{\rm i} + P \overbrace{\sigma(\mathcal{A}_k - \mathcal{A}_{\rm i})}^{\rm compact}.$

For all $\psi \in H_{\Gamma}^{-1}$, since $\mathcal{A}_{\mathrm{i}} = (1 - \Delta)^{-1}$,

$$\begin{split} \langle A_{\mathbf{i}}\psi,\psi\rangle_{\widetilde{H}^{1}(\Omega)^{\perp}\times H_{\Gamma}^{-1}} &= \langle \mathcal{A}_{\mathbf{i}}\psi,\psi\rangle_{\widetilde{H}^{1}(\Omega)^{\perp}\times H_{\Gamma}^{-1}} \\ &= \langle \mathcal{A}_{\mathbf{i}}\psi,\psi\rangle_{H^{1}(\mathbb{R}^{n})\times H^{-1}(\mathbb{R}^{n})} = \int_{\mathbb{R}^{n}} (1+|\xi|^{2})^{-1} |\widehat{\psi}(\xi)|^{2} = \|\psi\|_{H_{\Gamma}^{-1}}^{2}. \end{split}$$

For $E \subset \mathbb{R}^n$ and $\operatorname{d} \geq 0$,

$$\mathcal{H}^{\mathbf{d}}(E) \in [0, \infty) \cup \{\infty\},$$

is the usual d-dimensional Hausdorff measure of E.

For $E \subset \mathbb{R}^n$ and $\mathbf{d} \geq 0$,

$$\mathcal{H}^{\mathbf{d}}(E) \in [0, \infty) \cup \{\infty\},\$$

is the usual d-dimensional Hausdorff measure of E.

The **Hausdorff dimension** of E is

$$\dim_{\mathrm{H}} E := \inf \{ \mathbf{d} \ge 0 : \mathcal{H}^d(E) = 0 \} \in [0, n].$$

For $E \subset \mathbb{R}^n$ and $\mathbf{d} \geq 0$,

$$\mathcal{H}^{\mathbf{d}}(E) \in [0, \infty) \cup \{\infty\},\$$

is the usual **d**-dimensional Hausdorff measure of E.

The **Hausdorff dimension** of E is

$$\dim_{\mathbf{H}} E := \inf \{ \frac{\mathbf{d}}{\mathbf{d}} \ge 0 : \mathcal{H}^d(E) = 0 \} \in [0, n].$$

Given $0 < d \le n$, a closed set $\Gamma \subset \mathbb{R}^n$ is **a** d-set if there exist $c_1, c_2 > 0$ such that

$$c_1 r^d \le \mathcal{H}^{\mathbf{d}} \left(\Gamma \cap B_r(x) \right) \le c_2 r^d, \quad x \in \Gamma, \quad 0 < r \le 1.$$

For $E \subset \mathbb{R}^n$ and $\mathbf{d} \geq 0$,

$$\mathcal{H}^{\mathbf{d}}(E) \in [0, \infty) \cup \{\infty\},\$$

is the usual **d**-dimensional Hausdorff measure of E.

The **Hausdorff dimension** of E is

$$\dim_{\mathbf{H}} E := \inf \{ \frac{\mathbf{d}}{\mathbf{d}} \ge 0 : \mathcal{H}^d(E) = 0 \} \in [0, n].$$

Given $0 < d \le n$, a closed set $\Gamma \subset \mathbb{R}^n$ is a d-set if there exist $c_1, c_2 > 0$ such that

$$c_1 r^d \le \mathcal{H}^{\mathbf{d}} \left(\Gamma \cap B_r(x) \right) \le c_2 r^{\mathbf{d}}, \quad x \in \Gamma, \quad 0 < r \le 1.$$

This implies that Γ is **uniformly d**-dimensional in that

$$\dim_{\mathbf{H}}(\Gamma \cap B_r(x)) = \mathbf{d}$$

for every $x \in \Gamma$ and r > 0.

Examples of d-sets in two dimensions (n=2)

Given $0 < \mathbf{d} \le n$, a closed set $\Gamma \subset \mathbb{R}^n$ is a \mathbf{d} -set if there exist $c_1, c_2 > 0$ such that $c_1 r^{\mathbf{d}} \le \mathcal{H}^{\mathbf{d}}(\Gamma \cap B_r(x)) \le c_2 r^{\mathbf{d}}, \qquad x \in \Gamma, \quad 0 < r \le 1.$

$$d=2 \qquad d=1 \qquad d=1 \qquad d=1$$

(a) Closure of bounded Lip-(b) Boundary of bounded (c) Line segment screen schitz domain

(d) Multiscreen

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \left\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 \mathrm{d}\mathcal{H}^d < \infty \right\}$.

operator defined by

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \left\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 d\mathcal{H}^d < \infty \right\}$. Let $\mathcal{D}(\mathbb{R}^n) := C_0^\infty(\mathbb{R}^n)$ and let $\operatorname{tr}_{\Gamma} : \mathcal{D}(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ be the **trace** (or restriction)

$$\operatorname{tr}_{\Gamma}\varphi = \varphi|_{\Gamma}, \quad \varphi \in \mathfrak{D}(\mathbb{R}^n),$$

which is continuous with dense range.

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \Big\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 \mathrm{d}\mathcal{H}^d < \infty \Big\}.$

Let $\mathcal{D}(\mathbb{R}^n):=C_0^\infty(\mathbb{R}^n)$ and let $\mathrm{tr}_\Gamma:\mathcal{D}(\mathbb{R}^n)\to\mathbb{L}_2(\Gamma)$ be the **trace** (or restriction) operator defined by

$$\operatorname{tr}_{\Gamma}\varphi = \varphi|_{\Gamma}, \quad \varphi \in \mathfrak{D}(\mathbb{R}^n),$$

which is continuous with dense range.

Identifying $\mathbb{L}_2(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^*:\mathbb{L}_2(\Gamma)\to \mathcal{D}'(\mathbb{R}^n)$ is given by

$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)} = (\Psi, \operatorname{tr}_{\Gamma} \phi)_{\mathbb{L}_2(\Gamma)} = \int_{\Gamma} \Psi \overline{\phi}|_{\Gamma} \, \mathrm{d}\mathcal{H}^{\mathbf{d}}, \quad \Psi \in \mathbb{L}_2(\Gamma), \, \phi \in \mathcal{D}(\mathbb{R}^n).$$

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \Big\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 \mathrm{d}\mathcal{H}^d < \infty \Big\}.$

Let $\mathcal{D}(\mathbb{R}^n):=C_0^\infty(\mathbb{R}^n)$ and let $\mathrm{tr}_\Gamma:\mathcal{D}(\mathbb{R}^n)\to\mathbb{L}_2(\Gamma)$ be the **trace** (or restriction) operator defined by $\mathrm{tr}_\Gamma\varphi=\varphi|_\Gamma,\quad \varphi\in\mathcal{D}(\mathbb{R}^n),$

$$\Pi_{\Gamma} \varphi = \varphi|_{\Gamma}, \quad \varphi \in \mathcal{D}(\mathbb{R})$$

which is continuous with dense range.

Identifying $\mathbb{L}_2(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^* : \mathbb{L}_2(\Gamma) \to \mathcal{D}'(\mathbb{R}^n)$ is given by

$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)} = (\Psi, \operatorname{tr}_{\Gamma} \phi)_{\mathbb{L}_2(\Gamma)} = \int_{\Gamma} \Psi \overline{\phi}|_{\Gamma} \, \mathrm{d}\mathcal{H}^d, \quad \Psi \in \mathbb{L}_2(\Gamma), \, \phi \in \mathcal{D}(\mathbb{R}^n).$$

N.B.
$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle = 0$$
 if $\operatorname{supp}(\phi) \cap \Gamma = \emptyset$, i.e. $\operatorname{supp}(\operatorname{tr}_{\Gamma}^* \Psi) \subset \Gamma$.

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \Big\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 \mathrm{d}\mathcal{H}^d < \infty \Big\}.$

Let $\mathcal{D}(\mathbb{R}^n):=C_0^\infty(\mathbb{R}^n)$ and let $\mathrm{tr}_\Gamma:\mathcal{D}(\mathbb{R}^n)\to\mathbb{L}_2(\Gamma)$ be the **trace** (or restriction) operator defined by

$$\operatorname{tr}_{\Gamma}\varphi = \varphi|_{\Gamma}, \quad \varphi \in \mathfrak{D}(\mathbb{R}^n),$$

which is continuous with dense range.

Identifying $\mathbb{L}_2(\Gamma)$ with its dual space, the adjoint $\mathrm{tr}_\Gamma^*:\mathbb{L}_2(\Gamma)\to\mathcal{D}'(\mathbb{R}^n)$ is given by

$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)} = (\Psi, \operatorname{tr}_{\Gamma} \phi)_{\mathbb{L}_2(\Gamma)} = \int_{\Gamma} \Psi \overline{\phi}|_{\Gamma} \, \mathrm{d}\mathcal{H}^{\mathbf{d}}, \quad \Psi \in \mathbb{L}_2(\Gamma), \, \phi \in \mathcal{D}(\mathbb{R}^n).$$

N.B.
$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle = 0$$
 if $\operatorname{supp}(\phi) \cap \Gamma = \emptyset$, i.e. $\operatorname{supp}(\operatorname{tr}_{\Gamma}^* \Psi) \subset \Gamma$.

If Γ is the boundary of a Lipschitz domain then d=n-1, \mathcal{H}^d is surface measure, and tr_Γ extends to a continuous operator

$$\operatorname{tr}_{\Gamma}: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma), \quad \text{for } s > 1/2,$$

so also $\operatorname{tr}^*_{\Gamma}: \mathbb{L}_2(\Gamma) \to H^{-s}(\mathbb{R}^n)$ is continuous.

Let $\Gamma \subset \mathbb{R}^n$ be a d-set and let $\mathbb{L}_2(\Gamma) := \Big\{ \Psi : \Gamma \to \mathbb{C} : \int_{\Gamma} |\Psi|^2 \mathrm{d}\mathcal{H}^d < \infty \Big\}.$

Let $\mathcal{D}(\mathbb{R}^n):=C_0^\infty(\mathbb{R}^n)$ and let $\mathrm{tr}_\Gamma:\mathcal{D}(\mathbb{R}^n)\to\mathbb{L}_2(\Gamma)$ be the **trace** (or restriction) operator defined by

$$\operatorname{tr}_{\Gamma}\varphi = \varphi|_{\Gamma}, \quad \varphi \in \mathfrak{D}(\mathbb{R}^n),$$

which is continuous with dense range.

Identifying $\mathbb{L}_2(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^*:\mathbb{L}_2(\Gamma)\to \mathcal{D}'(\mathbb{R}^n)$ is given by

$$\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)} = (\Psi, \operatorname{tr}_{\Gamma} \phi)_{\mathbb{L}_2(\Gamma)} = \int_{\Gamma} \Psi \overline{\phi}|_{\Gamma} \, \mathrm{d}\mathcal{H}^d, \quad \Psi \in \mathbb{L}_2(\Gamma), \, \phi \in \mathcal{D}(\mathbb{R}^n).$$

N.B. $\langle \operatorname{tr}_{\Gamma}^* \Psi, \phi \rangle = 0$ if $\operatorname{supp}(\phi) \cap \Gamma = \emptyset$, i.e. $\operatorname{supp}(\operatorname{tr}_{\Gamma}^* \Psi) \subset \Gamma$.

If Γ is the boundary of a Lipschitz domain then d=n-1, \mathcal{H}^d is surface measure, and tr_Γ extends to a continuous operator

$$\operatorname{tr}_{\Gamma}: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma), \quad \text{for } s > 1/2,$$

so also $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-s} \subset H^{-s}(\mathbb{R}^n)$ is continuous.

For a general *d*-set Γ we have ... Theorem (e.g., Triebel, 1997) For s > (n-d)/2, the trace operation

Theorem (e.g., Triebel, 1997) For s > (n-d)/2, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$.

For a general d-set Γ we have ...

Theorem (e.g., Triebel, 1997) For s>(n-d)/2, the trace operator extends to a continuous operator with dense range ${\rm tr}_\Gamma: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$.

For s > (n-d)/2 let t := s - (n-d)/2 and let $\mathbb{H}^t(\Gamma) := \operatorname{tr}_{\Gamma}(H^s(\mathbb{R}^n)) \subset \mathbb{L}_2(\Gamma)$, equipped with norm

$$||f||_{\mathbb{H}^t(\Gamma)} := \inf_{\substack{\varphi \in H^s(\mathbb{R}^n) \\ \operatorname{tr}_{\Gamma} \varphi = f}} ||\varphi||_{H^s(\mathbb{R}^n)},$$

For a general d-set Γ we have ...

Theorem (e.g., Triebel, 1997) For s>(n-d)/2, the trace operator extends to a continuous operator with dense range ${\rm tr}_\Gamma:H^s(\mathbb R^n)\to \mathbb L_2(\Gamma).$

For s>(n-d)/2 let t:=s-(n-d)/2 and let $\mathbb{H}^t(\Gamma):=\operatorname{tr}_{\Gamma}(H^s(\mathbb{R}^n))\subset \mathbb{L}_2(\Gamma)$, equipped with norm

$$||f||_{\mathbb{H}^t(\Gamma)} := \inf_{\substack{\varphi \in H^s(\mathbb{R}^n) \\ \operatorname{tr}_{\Gamma} \varphi = f}} ||\varphi||_{H^s(\mathbb{R}^n)},$$

so that $\|\operatorname{tr}_{\Gamma}\|_{H^{s}(\mathbb{R}^{n})\to\mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}:\ker(\operatorname{tr}_{\Gamma})^{\perp}\to\mathbb{H}^{t}(\Gamma)$ is unitary.

For a general d-set Γ we have . . .

Theorem (e.g., Triebel, 1997) For s>(n-d)/2, the trace operator extends to a continuous operator with dense range ${\rm tr}_\Gamma: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$.

For s>(n-d)/2 let t:=s-(n-d)/2 and let $\mathbb{H}^t(\Gamma):=\mathrm{tr}_\Gamma(H^s(\mathbb{R}^n))\subset \mathbb{L}_2(\Gamma)$, equipped with norm

$$||f||_{\mathbb{H}^t(\Gamma)} := \inf_{\substack{\varphi \in H^s(\mathbb{R}^n) \\ \operatorname{tr}_{\Gamma} \varphi = f}} ||\varphi||_{H^s(\mathbb{R}^n)},$$

so that $\|\operatorname{tr}_{\Gamma}\|_{H^{s}(\mathbb{R}^{n})\to\mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}:\ker(\operatorname{tr}_{\Gamma})^{\perp}\to\mathbb{H}^{t}(\Gamma)$ is unitary.

Further, where

$$\mathbb{H}^{-t}(\Gamma) := (\mathbb{H}^t(\Gamma))', \quad t > 0,$$

 $\mathbb{L}_2(\Gamma)$ is continuously and densely embedded in $\mathbb{H}^{-t}(\Gamma)$ and $\mathrm{tr}_{\Gamma}^*:\mathbb{H}^{-t}(\Gamma)\to H_{\Gamma}^{-s}$ is an isometry.

For a general d-set Γ we have . . .

Theorem (e.g., Triebel, 1997) For s > (n-d)/2, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^s(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$.

For s>(n-d)/2 let t:=s-(n-d)/2 and let $\mathbb{H}^t(\Gamma):=\mathrm{tr}_\Gamma(H^s(\mathbb{R}^n))\subset \mathbb{L}_2(\Gamma)$, equipped with norm

$$||f||_{\mathbb{H}^t(\Gamma)} := \inf_{\substack{\varphi \in H^s(\mathbb{R}^n) \\ \operatorname{tr}_{\Gamma} \varphi = f}} ||\varphi||_{H^s(\mathbb{R}^n)},$$

so that $\|\operatorname{tr}_{\Gamma}\|_{H^{s}(\mathbb{R}^{n})\to\mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}:\ker(\operatorname{tr}_{\Gamma})^{\perp}\to\mathbb{H}^{t}(\Gamma)$ is unitary.

Further, where

$$\mathbb{H}^{-t}(\Gamma) := (\mathbb{H}^t(\Gamma))', \quad t > 0,$$

 $\mathbb{L}_2(\Gamma)$ is continuously and densely embedded in $\mathbb{H}^{-t}(\Gamma)$ and $\mathrm{tr}_{\Gamma}^*:\mathbb{H}^{-t}(\Gamma)\to H_{\Gamma}^{-s}$ is an isometry.

Lemma (Triebel, 2001, Caetano, Hewett, Moiola 2021) For

$$(n-d)/2 < s < (n-d)/2 + 1$$
, $\ker(\operatorname{tr}_{\Gamma}) = \widetilde{H}^s(\Omega)$ where $\Omega := \mathbb{R}^n \setminus \Gamma$, so

$$\operatorname{tr}_\Gamma: \widetilde{H}^s(\Omega)^\perp \to \mathbb{H}^t(\Gamma) \quad \text{and} \quad \operatorname{tr}_\Gamma^*: \mathbb{H}^{-t}(\Gamma) \to H_\Gamma^{-s} = (\widetilde{H}^s(\Omega)^\perp)' \quad \text{are unitary}.$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$.

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \langle \mathrm{tr}_{\Gamma}^* f, \overline{\sigma \Phi(x, \cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every $\sigma \in C^{\infty}_{0,\Gamma}$ with $x \notin \operatorname{supp}(\sigma)$.

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^* : \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^*f(x) = \langle \mathrm{tr}_{\Gamma}^*f, \overline{\sigma\Phi(x,\cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every $\sigma \in C^{\infty}_{0,\Gamma}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$\langle \operatorname{tr}_{\Gamma}^* f, \overline{\sigma \Phi(x, \cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)} = \langle \operatorname{tr}_{\Gamma}^* f, \overline{\sigma \Phi(x, \cdot)} \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)}$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \langle \mathrm{tr}_{\Gamma}^* f, \sigma \Phi(x, \cdot) \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every $\sigma \in C_{0,\Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$\langle \operatorname{tr}_{\Gamma}^* f, \sigma \Phi(x, \cdot) \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)} = \langle \operatorname{tr}_{\Gamma}^* f, \sigma \Phi(x, \cdot) \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)}$$
$$= (f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)})_{\mathbb{L}_2(\Gamma)}$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^*f(x) = \langle \mathrm{tr}_{\Gamma}^*f, \overline{\sigma\Phi(x,\cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every $\sigma \in C^{\infty}_{0,\Gamma}$ with $x \not\in \operatorname{supp}(\sigma)$. Further,

$$\langle \operatorname{tr}_{\Gamma}^* f, \sigma \Phi(x, \cdot) \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)} = \langle \operatorname{tr}_{\Gamma}^* f, \sigma \Phi(x, \cdot) \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)}$$

$$= (f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)})_{\mathbb{L}_2(\Gamma)}$$

$$= \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y),$$

so that

$$\mathcal{A}\mathrm{tr}_{\Gamma}^*f(x) = \int_{\Gamma} \Phi(x,y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \quad x \in \Omega.$$

.

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^* : \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^*f(x) = \langle \mathrm{tr}_{\Gamma}^*f, \overline{\sigma\Phi(x,\cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)}, \qquad x \in \Omega,$$

for every $\sigma \in C^{\infty}_{0,\Gamma}$ with $x \not\in \operatorname{supp}(\sigma)$. Further,

$$\begin{split} \langle \operatorname{tr}_{\Gamma}^* f, \overline{\sigma \Phi(x, \cdot)} \rangle_{H^{-1}(\mathbb{R}^n) \times H^1(\mathbb{R}^n)} &= \langle \operatorname{tr}_{\Gamma}^* f, \overline{\sigma \Phi(x, \cdot)} \rangle_{\mathcal{D}'(\mathbb{R}^n) \times \mathcal{D}(\mathbb{R}^n)} \\ &= (f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)})_{\mathbb{L}_2(\Gamma)} \\ &= \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d} \mathcal{H}^d(y), \end{split}$$

so that

$$\underbrace{\mathcal{A}\mathrm{tr}_{\Gamma}^*}_{\mathcal{S}}f(x) = \int_{\Gamma}\Phi(x,y)f(y) \underbrace{\mathrm{d}\mathcal{H}^d(y),}_{\text{surface measure}} \quad x \in \Omega.$$

If Γ is boundary of Lipschitz domain then d=n-1 and

$$\mathcal{A}\mathrm{tr}_{\Gamma}^{*}f=\mathcal{S}f=\,$$
 standard single-layer potential

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \qquad x \in \Omega.$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^* : \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \qquad x \in \Omega.$$

Further, if n-2 < d < n, then $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is **unitary** for

$$t_d = 1 - (n - d)/2.$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \qquad x \in \Omega.$$

Further, if n-2 < d < n, then $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is **unitary** for

$$t_d = 1 - (n - d)/2.$$

Thus, if $\phi \in H^{-1}_{\Gamma}$, in which case $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$,

$$A\phi = g$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \qquad x \in \Omega.$$

Further, if n-2 < d < n, then $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is **unitary** for

$$t_d = 1 - (n - d)/2.$$

Thus, if $\phi \in H^{-1}_{\Gamma}$, in which case $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$,

$$A\phi = g \Leftrightarrow \mathbb{A}f = -u^i|_{\Gamma}, \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^*.$$

Suppose $n-2 < d \le n$ so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{L}_2(\Gamma)$ and $\operatorname{tr}_{\Gamma}^*: \mathbb{L}_2(\Gamma) \to H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_2(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^* f \in H_{\Gamma}^{-1}$. Then

$$\mathcal{A}\mathrm{tr}_{\Gamma}^* f(x) = \int_{\Gamma} \Phi(x, y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \qquad x \in \Omega.$$

Further, if n-2 < d < n, then $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is **unitary** for

$$t_d = 1 - (n - d)/2.$$

Thus, if $\phi \in H_{\Gamma}^{-1}$, in which case $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$,

$$\begin{array}{rcl} A\phi & = & g & \Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^*. \quad \text{Further,} \\ \mathbb{A}f(x) & = & \int_{\Gamma}\Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^*: \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^*: \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi &=& g &\Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^* \quad \text{and} \\ \mathbb{A}f(x) &=& \int_{\Gamma} \Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. $x \in \Gamma$,} \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi\in H^{-1}_\Gamma$, equivalently $\phi=\mathrm{tr}_\Gamma^*f$ with $f\in\mathbb{H}^{-t_d}(\Gamma)$, such that

$$A\phi = g \Leftrightarrow \mathbb{A}f = -u^i|_{\Gamma}, \quad \text{where} \quad \mathbb{A} := \operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^* \quad \text{and}$$

$$\mathbb{A}f(x) = \int_{\Gamma} \Phi(x,y) f(y) \, \mathrm{d}\mathcal{H}^d(y), \quad \text{for } \mathcal{H}^d\text{-a.e.} \quad x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma).$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1, \ldots, T_N with $\mathcal{H}^d(T_j) > 0$ for each j and maximum diameter h.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H^{-1}_{\Gamma}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi & = & g & \Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^* \quad \text{and} \\ \mathbb{A}f(x) & = & \int_{\Gamma} \Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1,\ldots,T_N with $\mathcal{H}^d(T_j)>0$ for each j and maximum diameter h. Let $\mathbb{V}_N\subset\mathbb{L}_\infty(\Gamma)\subset\mathbb{H}^{-t_d}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_N:=\mathrm{tr}_\Gamma^*(\mathbb{V}_N)\subset H_\Gamma^{-1}$.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H^{-1}_{\Gamma}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi &=& g &\Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^* \quad \text{and} \\ \mathbb{A}f(x) &=& \int_{\Gamma} \Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1,\ldots,T_N with $\mathcal{H}^d(T_j)>0$ for each j and maximum diameter h. Let $\mathbb{V}_N\subset\mathbb{L}_\infty(\Gamma)\subset\mathbb{H}^{-t_d}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_N:=\mathrm{tr}_\Gamma^*(\mathbb{V}_N)\subset H_\Gamma^{-1}$.

Our GM is: find $\phi_N \in V_N$ such that

$$\langle A\phi_N, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)} = \langle g, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_N \in V_N.$$

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma}: H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^*: \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H^{-1}_{\Gamma}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi &=& g &\Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^* \quad \text{and} \\ \\ \mathbb{A}f(x) &=& \int_{\Gamma} \Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1,\ldots,T_N with $\mathcal{H}^d(T_j)>0$ for each j and maximum diameter h. Let $\mathbb{V}_N\subset\mathbb{L}_\infty(\Gamma)\subset\mathbb{H}^{-t_d}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_N:=\mathrm{tr}_\Gamma^*(\mathbb{V}_N)\subset H_\Gamma^{-1}$. Our GM is: find $\phi_N\in V_N$ such that

$$\langle A\phi_N, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)} = \langle g, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_N \in V_N.$$

Equivalently, find $f_N \in \mathbb{V}_N$ such that

$$(\mathbb{A}f_N, g_N)_{\mathbb{L}_2(\Gamma)} = -(u^i, g_N)_{\mathbb{L}_2(\Gamma)}, \quad \forall g_N \in \mathbb{V}_N,$$

and set $\phi_N := \operatorname{tr}_{\Gamma}^* f_N \in V_N$.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi &=& g &\Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \mathrm{tr}_{\Gamma}A\mathrm{tr}_{\Gamma}^* \quad \text{and} \\ \mathbb{A}f(x) &=& \int_{\Gamma} \Phi(x,y)f(y)\,\mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1,\ldots,T_N with $\mathcal{H}^d(T_j)>0$ for each j and maximum diameter h. Let $\mathbb{V}_N\subset\mathbb{L}_\infty(\Gamma)\subset\mathbb{H}^{-t_d}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_N:=\mathrm{tr}_\Gamma^*(\mathbb{V}_N)\subset H_\Gamma^{-1}$. Our GM is: find $\phi_N\in V_N$ such that

$$\langle A\phi_N, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)} = \langle g, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_N \in V_N.$$

Equivalently, find $f_N \in \mathbb{V}_N$ such that

$$(\mathbb{A}f_N, g_N)_{\mathbb{L}_2(\Gamma)} = -(u^i, g_N)_{\mathbb{L}_2(\Gamma)}, \quad \forall g_N \in \mathbb{V}_N,$$

and set $\phi_N := \operatorname{tr}_{\Gamma}^* f_N \in V_N$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. n-2 < d < n so $\operatorname{tr}_{\Gamma} : H^1(\mathbb{R}^n) \to \mathbb{H}^{t_d}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^* : \mathbb{H}^{-t_d}(\Gamma) \to H_{\Gamma}^{-1}$ is unitary for $t_d = 1 - (n-d)/2$.

We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, such that

$$\begin{array}{rcl} A\phi & = & g & \Leftrightarrow & \mathbb{A}f = -u^i|_{\Gamma}, & \quad \text{where} \quad \mathbb{A} := \operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^* \quad \text{and} \\ \mathbb{A}f(x) & = & \int_{\Gamma} \Phi(x,y) f(y) \, \mathrm{d}\mathcal{H}^d(y), & \quad \text{for \mathcal{H}^d-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma). \end{array}$$

The Galerkin method (GM). Divide Γ into disjoint elements T_1,\ldots,T_N with $\mathcal{H}^d(T_j)>0$ for each j and maximum diameter h. Let $\mathbb{V}_N\subset\mathbb{L}_\infty(\Gamma)\subset\mathbb{H}^{-t_d}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_N:=\mathrm{tr}_\Gamma^*(\mathbb{V}_N)\subset H_\Gamma^{-1}$.

Our GM is: find $\phi_N \in V_N$ such that

$$\langle A\phi_N, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)} = \langle g, \psi_N \rangle_{H^1(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_N \in V_N.$$

Equivalently, find $f_N \in \mathbb{V}_N$ such that

$$(\mathbb{A}f_N, q_N)_{\mathbb{T}_2(\Gamma)} = -(u^i, q_N)_{\mathbb{T}_2(\Gamma)}, \quad \forall q_N \in \mathbb{V}_N,$$

and set $\phi_N := \operatorname{tr}_\Gamma^* f_N \in V_N$. Matrix entries: $\int_{\Gamma_m} \int_{\Gamma_n} \Phi(x,y) \, \mathrm{d}\mathcal{H}^d(x) \, \mathrm{d}\mathcal{H}^d(y)$, $m,n=1,\ldots,N$ - see next talk for evaluation!

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A:H_{\Gamma}^{-1}\to \widetilde{H}^1(\Omega)^{\perp}=(H_{\Gamma}^{-1})'$ is a compact perturbation of a coercive operator and is invertible.

[2.] Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \to \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})'$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_2(\Gamma)$,

 $\inf_{g_N\in\mathbb{V}_N}\|f-g_N\|_{\mathbb{L}_2(\Gamma)}\to 0\quad \text{provided}\quad h\to 0\quad \text{as}\quad N\to\infty.$

[2.] Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \to \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})'$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_2(\Gamma)$,

$$\inf_{g_N\in\mathbb{V}_N}\|f-g_N\|_{\mathbb{L}_2(\Gamma)}\to 0\quad \text{provided}\quad h\to 0\quad \text{as}\quad N\to\infty.$$

Now $\mathbb{L}_2(\Gamma)$ is dense in $\mathbb{H}^{-t_d}(\Gamma)$ and $\operatorname{tr}_\Gamma^:(\mathbb{H}^{-t_d}(\Gamma)) \to H_\Gamma^{-1}$ is unitary. Thus, for all $\psi \in H_\Gamma^{-1}$, so that $\psi = \operatorname{tr}_\Gamma^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, as long as $h \to 0$,

$$\inf_{\psi_N \in V_N} \|\psi - \psi_N\|_{H_\Gamma^{-1}} = \inf_{f_N \in \mathbb{V}_N} \|f - f_N\|_{\mathbb{H}^{-t_d}(\Gamma)} \to 0 \quad \text{as} \quad N \to \infty,$$

Error Analysis. Recall $A:H_\Gamma^{-1}\to \widetilde H^1(\Omega)^\perp=(H_\Gamma^{-1})'$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f\in \mathbb{L}_2(\Gamma)$,

$$\inf_{g_N\in\mathbb{V}_N}\|f-g_N\|_{\mathbb{L}_2(\Gamma)}\to 0\quad \text{provided}\quad h\to 0\quad \text{as}\quad N\to\infty.$$

Now $\mathbb{L}_2(\Gamma)$ is dense in $\mathbb{H}^{-t_d}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^:(\mathbb{H}^{-t_d}(\Gamma)) \to H_{\Gamma}^{-1}$ is unitary. Thus, for all $\psi \in H_{\Gamma}^{-1}$, so that $\psi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, as long as $h \to 0$,

$$\inf_{\psi_N\in V_N}\|\psi-\psi_N\|_{H_\Gamma^{-1}}=\inf_{f_N\in \mathbb{V}_N}\|f-f_N\|_{\mathbb{H}^{-t_d}(\Gamma)}\to 0\quad\text{as}\quad N\to\infty,$$

so that, by standard arguments, for some $N_0 \in \mathbb{N}$ and C>0,

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \le C \inf_{\phi_N \in V_N} \|\phi - \phi_N\|_{H_{\Gamma}^{-1}}, \quad N \ge N_0.$$

Error Analysis. Recall $A: H_{\Gamma}^{-1} \to \widetilde{H}^1(\Omega)^{\perp} = (H_{\Gamma}^{-1})'$ is a **compact perturbation** of a **coercive** operator and is **invertible**. Further, for every $f \in \mathbb{L}_2(\Gamma)$,

$$\inf_{g_N\in\mathbb{V}_N}\|f-g_N\|_{\mathbb{L}_2(\Gamma)}\to 0\quad \text{provided}\quad h\to 0\quad \text{as}\quad N\to\infty.$$

Now $\mathbb{L}_2(\Gamma)$ is dense in $\mathbb{H}^{-t_d}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{:}(\mathbb{H}^{-t_d}(\Gamma)) \to H_{\Gamma}^{-1}$ is unitary. Thus, for all $\psi \in H_{\Gamma}^{-1}$, so that $\psi = \operatorname{tr}_{\Gamma}^* f$ with $f \in \mathbb{H}^{-t_d}(\Gamma)$, as long as $h \to 0$,

$$\inf_{\psi_N \in V_N} \|\psi - \psi_N\|_{H_\Gamma^{-1}} = \inf_{f_N \in \mathbb{V}_N} \|f - f_N\|_{\mathbb{H}^{-t_d}(\Gamma)} \to 0 \quad \text{as} \quad N \to \infty,$$

so that, by standard arguments, for some $N_0 \in \mathbb{N}$ and C > 0,

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \le C \inf_{\phi_N \in V_N} \|\phi - \phi_N\|_{H_{\Gamma}^{-1}}, \quad N \ge N_0.$$

Assume $\Gamma = \bigcup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$, $|s_m(x)-s_m(y)|=\rho_m|x-y|,\quad x,y\in\mathbb{R}^n$, and $\Gamma=s_1(\Gamma)\cup\ldots\cup s_M(\Gamma)$.

Assume $\Gamma = \bigcup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$, $|s_m(x)-s_m(y)|=\rho_m|x-y|,\quad x,y\in\mathbb{R}^n,\quad \text{and}\quad \Gamma=s_1(\Gamma)\cup\ldots\cup s_M(\Gamma).$

Assume also standard **open set condition** holds.

Assume $\Gamma = \bigcup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$, $|s_m(x)-s_m(y)|=\rho_m|x-y|,\quad x,y\in\mathbb{R}^n,\quad \text{and}\quad \Gamma=s_1(\Gamma)\cup\ldots\cup s_M(\Gamma).$

Assume also standard **open set condition** holds. Then Γ is a **d-set** where $\mathbf{d} \in (0, n]$ is solution of

$$\sum_{m=1}^{M} (\rho_m)^{\mathbf{d}} = 1$$

Assume $\Gamma = \bigcup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$, $|s_m(x)-s_m(y)|=\rho_m|x-y|,\quad x,y\in\mathbb{R}^n$, and $\Gamma=s_1(\Gamma)\cup\ldots\cup s_M(\Gamma)$.

Assume also standard **open set condition** holds. Then Γ is a **d-set** where $\mathbf{d} \in (0, n]$ is solution of

$$\sum_{m=1}^{M} (\rho_m)^{\mathbf{d}} = 1 \iff \mathbf{d} = \frac{\log(M)}{\log(1/\rho)} \text{ if } \rho_m = \rho, \quad m = 1, \dots, M.$$

Assume $\Gamma = \bigcup_{m=1}^{M} s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$,

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^n, \quad \text{and} \quad \Gamma = s_1(\Gamma) \cup \ldots \cup s_M(\Gamma).$$

Assume also standard **open set condition** holds. Then Γ is a **d-set** where $d \in (0, n]$ is solution of

Middle third Cantor dust

Sierpinski triangle M = 4, $\rho_m = 1/3$, $d = \log 4/\log 3$ M = 3, $\rho_m = 1/2$, $d = \log 3/\log 2$

Assume $\Gamma = \cup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$,

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^n, \quad \text{and} \quad s_m(\Gamma) = \Gamma), \quad m = 1, \dots, M.$$

Sierpinski triangle

We call the IFS **disjoint** if $s_m(\Gamma) \cap s_n(\Gamma) = \emptyset$ if $m \neq n$.

Assume $\Gamma = \cup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$,

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^n, \quad \text{and} \quad s_m(\Gamma) = \Gamma), \quad m = 1, \dots, M.$$

We call the IFS **disjoint** if $s_m(\Gamma) \cap s_n(\Gamma) = \emptyset$ if $m \neq n$.

When meshing an IFS each element T_i takes the form, for some $\ell \in \mathbb{N}$,

$$T_j = s_{m_1} \circ \cdots \circ s_{m_\ell}(\Gamma), \quad \text{with } m_p \in \{1, ..., M\}, \quad p = 1, ..., \ell.$$

Assume $\Gamma = \cup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$,

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^n, \quad \text{and} \quad s_m(\Gamma) = \Gamma), \quad m = 1, \dots, M.$$

We call the IFS **disjoint** if $s_m(\Gamma) \cap s_n(\Gamma) = \emptyset$ if $m \neq n$.

When meshing an IFS each element T_i takes the form, for some $\ell \in \mathbb{N}$,

$$T_i = s_{m_1} \circ \cdots \circ s_{m_\ell}(\Gamma), \quad \text{with } m_p \in \{1, ..., M\}, \quad p = 1, ..., \ell.$$

Assume $\Gamma = \cup_{m=1}^M s_m(\Gamma)$ is the attractor of an **IFS of contracting similarities** $\{s_1,\ldots,s_M\}$ (with $M\geq 2$), so $s_m:\mathbb{R}^n\to\mathbb{R}^n$ satisfies, for some $\rho_m\in(0,1)$,

$$|s_m(x) - s_m(y)| = \rho_m |x - y|, \quad x, y \in \mathbb{R}^n, \quad \text{and} \quad s_m(\Gamma) = \Gamma), \quad m = 1, \dots, M.$$

We call the IFS **disjoint** if $s_m(\Gamma) \cap s_n(\Gamma) = \emptyset$ if $m \neq n$.

When meshing an IFS each element T_i takes the form, for some $\ell \in \mathbb{N}$,

$$T_i = s_{m_1} \circ \cdots \circ s_{m_\ell}(\Gamma), \quad \text{with } m_p \in \{1, ..., M\}, \quad p = 1, ..., \ell.$$

Theorem

Suppose IFS is disjoint, $n-2 < d = \dim_{\mathrm{H}} \Gamma < n$, and the exact solution $\phi \in H^s_{\Gamma}$ with $-1 < s < \frac{d-n}{2}$. If $h \to 0$ as $N \to \infty$, then, for some $N_0 \in \mathbb{N}$, the Galerkin solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \lesssim \inf_{\psi_N \in V_N} \|\phi - \psi_N\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1} \|\phi\|_{H_{\Gamma}^s}, \qquad N \geq N_0.$$

Theorem

Suppose IFS is disjoint, $n-2 < d = \dim_{\mathrm{H}} \Gamma < n$, and the exact solution $\phi \in H^s_{\Gamma}$ with $-1 < s < \frac{d-n}{2}$. If $h \to 0$ as $N \to \infty$, then, for some $N_0 \in \mathbb{N}$, the Galerkin solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \lesssim \inf_{\psi_N \in V_N} \|\phi - \psi_N\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1} \|\phi\|_{H_{\Gamma}^s}, \qquad N \ge N_0.$$

If $d \le n-2$ then $\phi=0$, incident wave doesn't "see" Γ – see **C-W/Hewett 2018**

Theorem

Suppose IFS is disjoint, $n-2 < d = \dim_{\mathrm{H}} \Gamma < n$, and the exact solution $\phi \in H^s_{\Gamma}$ with $-1 < s < \frac{d-n}{2}$. If $h \to 0$ as $N \to \infty$, then, for some $N_0 \in \mathbb{N}$, the Galerkin solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \lesssim \inf_{\psi_N \in V_N} \|\phi - \psi_N\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1} \|\phi\|_{H_{\Gamma}^s}, \qquad N \ge N_0.$$

If $d \le n-2$ then $\phi=0$, incident wave doesn't "see" Γ – see **C-W/Hewett 2018** $\frac{d-n}{2}$ is a hard upper limit; $H^s_\Gamma=\{0\}$ for $s\ge \frac{d-n}{2}$ – see **Hewett/Moiola 2017**

Theorem

Suppose IFS is disjoint, $n-2 < d = \dim_{\mathrm{H}}\Gamma < n$, and the exact solution $\phi \in H^s_{\Gamma}$ with $-1 < s < \frac{d-n}{2}$. If $h \to 0$ as $N \to \infty$, then, for some $N_0 \in \mathbb{N}$, the Galerkin solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \lesssim \inf_{\psi_N \in V_N} \|\phi - \psi_N\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1} \|\phi\|_{H_{\Gamma}^s}, \qquad N \ge N_0.$$

If $d \le n-2$ then $\phi=0$, incident wave doesn't "see" Γ – see **C-W/Hewett 2018** $\frac{d-n}{2}$ is a hard upper limit; $H^s_\Gamma=\{0\}$ for $s\ge \frac{d-n}{2}$ – see **Hewett/Moiola 2017**

The new element in the result, the best approximation estimate, is obtained via Haar-type-wavelet characterisations of the spaces $\mathbb{H}^t(\Gamma)$ and their norms, for t>0 in Jonsson 1998 and for t<0 in Caetano, C-W, Gibbs, Hewett, Moiola 2022.

Theorem

Suppose IFS is disjoint, $n-2 < d = \dim_{\mathrm{H}} \Gamma < n$, and the exact solution $\phi \in H^s_{\Gamma}$ with $-1 < s < \frac{d-n}{2}$. If $h \to 0$ as $N \to \infty$, then, for some $N_0 \in \mathbb{N}$, the Galerkin solution ϕ_N satisfies

$$\|\phi - \phi_N\|_{H_{\Gamma}^{-1}} \lesssim \inf_{\psi_N \in V_N} \|\phi - \psi_N\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1} \|\phi\|_{H_{\Gamma}^s}, \qquad N \ge N_0.$$

If $d \le n-2$ then $\phi=0$, incident wave doesn't "see" Γ – see **C-W/Hewett 2018** $\frac{d-n}{2}$ is a **hard upper limit**; $H^s_\Gamma=\{0\}$ for $s\ge \frac{d-n}{2}$ – see **Hewett/Moiola 2017**

The new element in the result, the best approximation estimate, is obtained via Haar-type-wavelet characterisations of the spaces $\mathbb{H}^t(\Gamma)$ and their norms, for t>0 in Jonsson 1998 and for t<0 in Caetano, C-W, Gibbs, Hewett, Moiola 2022.

Under appropriate assumptions, linear functionals $J:H_{\Gamma}^{-1}\to\mathbb{C}$ (e.g. evaluation of $u=\mathcal{A}\phi(x)$) exhibit expected "superconvergence":

$$|J(\phi) - J(\phi_N)| \lesssim h^{2(s+2)} ||\phi||_{H_{\Gamma}^s}, \qquad N \ge N_0.$$

• New integral equation formulation $A\phi=g$ for sound-soft scattering by arbitrary compact Γ , with A coercive + compact

- New integral equation formulation $A\phi=g$ for sound-soft scattering by arbitrary compact Γ , with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^d measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^d measure see next talk!

- New integral equation formulation $A\phi=g$ for sound-soft scattering by arbitrary compact Γ , with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^d measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^d measure see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!

- New integral equation formulation $A\phi=g$ for sound-soft scattering by arbitrary compact Γ , with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^d measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^d measure see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!
- But numerics agree well, in many cases, with theoretical error bounds assuming highest possible solution regularity ⇒ conjecture that highest possible regularity is achieved

- New integral equation formulation $A\phi=g$ for sound-soft scattering by arbitrary compact Γ , with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^d measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^d measure see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!
- But numerics agree well, in many cases, with theoretical error bounds assuming highest possible solution regularity ⇒ conjecture that highest possible regularity is achieved
- Currently our analysis requires IFS disjoint future work might include extension to non-disjoint fractals such as the Sierpinski triangle

References

- A. Caetano, S. N. Chandler-Wilde, X. Claeys, A. Gibbs, D. P. Hewett, A. Moiola, Integral equation methods for acoustic scattering by fractals, https://arxiv.org/abs/2309.02184, 2023.
- A. Caetano, S. N. Chandler-Wilde, A. Gibbs, D. P. Hewett, A. Moiola,
 A Hausdorff-measure boundary element method for acoustic scattering by fractal screens, https://arxiv.org/abs/2212.06594, 2022.
- A. Jonsson, Wavelets on fractals and Besov spaces, J. Fourier Anal. Appl., 4, pp. 329–340, 1998.
- A. Caetano, D. P. Hewett, A. Moiola,
 Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets,
 J. Funct. Anal., 281(3), 109019, 2021
- S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, J. Besson,
 Boundary element methods for acoustic scattering by fractal screens, Numer.
 Math., 147(4), 785-837, 2021
- S. N. Chandler-Wilde, D. P. Hewett,
 Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 50(1), 677-717, 2018

Links and preprints available at www.reading.ac.uk/~sms03snc