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What is this talk about?

This talk is about what I've worked on throughout my career, namely

solving ,
Au+ku=0

by BIE/BEM.
Focus today on scattering in R” (n = 2,3) by compact obstacle, O, with

Dirichlet boundary conditions, the so-called sound-soft case in acoustic
terminology.

Q

The wave propagation is in 2 := R™ \ O, the complement of and exterior of O,
which we assume is connected.

This is an old, 19th century problem! The novelty will be results for general
compact O, including cases where O is fractal or has fractal boundary.
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Given compact O C R™ we want to find the scattered field u satisfying
% U Au+ k?u =0
vuli=u +u=0
(O  u satisfies Sommerfeld radiation condition (SRC),
0 lim, o0 7™ D/2(9pu — iku) = 0

Example 2D Boundary Element Method (BEM) computation when
u'(x) = exp(ikz - d) is a plane wave and O is a polygon, using an asymptotic-numerical
hp-BEM and O(1) degrees of freedom as k — 0o (C-W, Hewett, Langdon, Twigger, 2015).
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Given compact O C R™ we want to find the scattered field u satisfying
7 u Au+ Eu=0
ut i=ul+u =0

u satisfies SRC
Q

Example 3D BEM computation when u’(z) = exp(ikz - d) is a plane wave and O
is a Sierpinski tetrahedron (Caetano, C-W, Claeys, Gibbs, Hewett, Moiola 2024)
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Overview of Talk

@ What is this talk about? (1st kind BIE/BEM for sound-soft acoustic scattering)

© Standard 1st kind BIEs and (piecewise-constant) BEM for Lipschitz obstacles
and screens

© Our 19th Century roots!

@ A 1st kind IE for general compact obstacles

© A piecewise-constant Galerkin BEM for (rather) general compact obstacles
@ Numerical examples

@ Conclusion and bibliography



The standard case when O is Lipschitz (eg., Costabel 1988)

%ui Au+Ek*u=0

Nut'=u+u =0

u satisfies SRC
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Let I := QO denote the boundary of O and let

i) 1 etFlz—vl
O(z,y) = ZHO (klz —yl) (2D), = Ew (3D).
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...or when O = 90O = 1" is a screen (e.g., Stephan, Wendland 1984)
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...or when O = 90 = I" is a multi-screen (Claeys, Hiptmair 2013)
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Non-uniqueness at irregular frequencies
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Non-uniqueness at irregular frequencies

%ui Au+E*u=0

Nut:=u+u =0

u satisfies SRC
Q

We find ¢ by enforcing u® = 0 on I, i.e. by solving the BIE

—ui(x)Z/F‘P(x,y)w(y) ds(y), zel.

When the obstacle O is Lipschitz this BIE is uniquely solvable (in H~1/2(I")) if
and only if & is not an irregular frequency, i.e., k2 is not a Dirichlet eigenvalue
of —A in

Q_:=int(0) = O\T.
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r

Galerkin method for the BIE:

(@) = [ @9)el)dsy), zeT,



Piecewise-constant Galerkin BEM

r
Iy
Ty
Tx
Galerkin method for the BIE:
@) = [ @@ ewdst), seT.
-

Divide I into N pieces (boundary elements), approximate ¢(y) = ¢, on jth element.



Piecewise-constant Galerkin BEM

r
Iy
Ty
Ty

Galerkin method for the BIE:

o) = [ @@)ewds). wer.

Divide I into N pieces (boundary elements), approximate ¢(y) = ¢, on jth element.

Determine @1, ... pnN by solving the Galerkin equations

i/r /F O(x,y) ds(x)ds(y) w; = —/ u'(z) ds(x), i=1...N.

ry



Piecewise-constant Galerkin BEM

r
I'y
1)
Tx
Galerkin method for the BIE:
@) = [ @@ ewdst), seT.
-

Divide I into N pieces (boundary elements), approximate ¢(y) = ¢, on jth element.

Determine @1, ... pnN by solving the Galerkin equations

i/r /F O(x,y) ds(x)ds(y) w; = —/ u'(z) ds(x), i=1...N.

ry

Approximate u(z) by

un () := Z/ D(z,y)ds(y) ¢, x e Q.



These are very old ideas!

For the BIE for a flat screen (equivalently an aperture in an infinite screen), see
J. W. S. Rayleigh, Theory of Sound, Vol. 2, London: Macmillan, 1878
If P cos (nt + €) denote the value of d¢/dz at the various points

of the area (S) of the aperture, the condition for determining
P and e is by (6) § 278,

_%rﬁp”‘“("t—:_’""“)ds=eosm ......... ),

where » denotes the distance between the element dS and any
fixed point in the aperture, When P and ¢ are known, the
complete value of ¢ for any point on the positive side of the scréen
is given by 3
cos (nt—kr+e
g [[PEELZEENGg i e

and for any point on the negative side by
b=+ %ff)’gw:iwds-i—2cosntcoska:......(4).

The expression of P and e for a finite aperture, even if of circular
form, is probably beyond the power of known methods; but in the
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These are very old ideas!

For the first piecewise-constant BEM calculations in 3D for a flat screen for
k=0 see ...J. C. Maxwell, The Electrical Researches of the Honourable Henry
Cavendish FRS, Cambridge: University Press, 1879

NotE 22, Amr. 283,

ZElectric Capacity of a Square.
I am not aware of an i
'y method by which the capacit,
::hb:v:lox:: ;my.. {hhave therefore endeavoured 3: 211{1 i{;:;ﬁ:‘:
ing the square into 36 equal d ing
Ty i equal squares and calcula
S ;‘;’:ﬂ i ucnit;? a3 to make the potential at the middle of each
The potential at the middle of a square wh ide i
3 ntial 0se side
charge is 1, distributed with uniform d:?uity, 3 ke
4 log (1 +,/2) = 352549.
In calculating the potential at the middle of a
which do not touch the sides of the great square I have used this

formula, but for those which touch a side I have s ed the
be 31583, and for a corner square 2"3;;7? SSRRS geabint

ny of the small squares

ABCCBA

If the 36 squares are arranged asin the B D E E D B
margin, and if the charges of the corner CEFFEC
squares be taken for unity, the charges will CEFFEC
be as follows : BDEEDSB
ABCCBA

A B C D E F
1000 -599 -562 265 <210 -201
and the capacity of a square whose side is 1 will be 0-3607.

The ratio of the capacity of a square to that of a globe whose
diameter is equal to a side of the square is therefore 0-7214.



Now for the new stuff!

@ A 1st kind IE for general compact obstacles



An |E for general compact obstacles: Case Im /4 > 0

%ui Au+ k2u =0
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O
Q

Recall O is compact and €2 := R"™ \ O is connected, and assume that

u' € HY(R") := {v € L*(R") : Vv € L*(R")}.
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An |E for general compact obstacles: Case Im /4 > 0
" i Au+ Eu=0
yu =ut+u =0
O
Q

Recall O is compact and €2 := R™ \ O is connected, and assume that
u' € HY(R") := {v € L*(R") : Vv € L*(R")}.

The scattering problem. Find the scattered field u € H'({2) that satisfies the
Helmholtz equation in €2 and that u' = 0 on 9 = JI in the sense that

ut € H}(Q).

Here

HYQ) = {ve I2Q): Vo e I2(Q)),  HMQ) =@ @

It is a standard PDE result (via a variational formulation and Lax-Milgram) that
this problem is well-posed.
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and spaces of functions defined on Q:
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A little more Sobolev space notation: (Mctean 2000)

We've just introduced

H'(R") := {v e L*(R") : Vv € L*(R™)}

and spaces of functions defined on Q:

HY(Q) = foelQ):Voel2Q)}, HY(Q) =co@" @ c m).

We need other Sobolev spaces defined on R™:

HO®RY) = (H'E®Y),



A little more Sobolev space notation: (Mctean 2000)
We've just introduced

H'(R") := {v e L*(R") : Vv € L*(R™)}

and spaces of functions defined on Q:

HY(Q) = foelQ):Voel2Q)}, HY(Q) =co@" @ c m).

We need other Sobolev spaces defined on R™:
H™(R") (H'(R™))",
H' == {ve H *(R"):supp(v) C T},



A little more Sobolev space notation: (Mctean 2000)
We've just introduced
H'(R") := {v e L*(R") : Vv € L*(R™)}

and spaces of functions defined on Q:
1 2 2 1 —ssrarH (@) 1
HY(Q) = {velL*Q):VovelLl*Q)}, Hy(Q) = C5°(Q) C HY(Q).

We need other Sobolev spaces defined on R™:

H®RY) = (R
H:' = {ve H '(R"):supp(v) C I'},

@ = o c Ry,



A little more Sobolev space notation: (Mctean 2000)
We've just introduced

H'(R") := {v e L*(R") : Vv € L*(R™)}
and spaces of functions defined on Q:

HY(Q)

HY Q) = {vel?Q):Vvel?*)}, H(Q) := C5°(Q) c HY(Q).

We need other Sobolev spaces defined on R™:

H®RY) = (R
H' == {ve H *(R"):supp(v) C T},
@ = oo e wn).

N.B. H'(Q) and H}(Q) are almost the same space: precisely, restriction to € is
an isometric isomorphism

lo s H'(Q) —» Hy ()

whose inverse is extension by zero.



IE for general compact O: Case Im k > 0 (Caetano et al 2024)
n Au+ E*u=0

u

Q

Recall O is compact, 2 := R"™ \ O is connected, assume u' € H'(R™).
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Z"ui Au+E*u=0
Fut=0

Q

Recap. T is compact with 92 = 90 C T' C O. Look for solution as u = A¢p, where
Avp(x) :/ O(z,y)P(y)dy, for ¢ € Linp(RY), z R,

and ¢ € H~*(R™) is supported on T, i.e., 6 € H-' ¢ H™*(R™).
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Recap. T is compact with 92 = 90 C T' C O. Look for solution as u = A¢p, where

AY(z) = /n Dz, y)(y)dy, for 1 € Limp(RY), 2 €R",

and ¢ € H™*(R™) is supported on T, i.e., ¢ € H7' C H™'(R™). This satisfies the
scattering problem iff

.= —Pu', where S;:=PA:H ' — H(Q)" = H "),

Q" :=R"\T, and P: H'(R") — H'(Q*)* = (H')* is orthogonal projection.
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Recap. T is compact with 92 = 90 C T' C O. Look for solution as u = A¢p, where
avta) = [ Ba)u)dy, for b€ Lmp(®Y), xR,
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Q" :=R"\T, and P: H'(R") — H'(Q*)* = (H')* is orthogonal projection.

Theorem (Caetano et al 2024)

IfTmk > 0 then Sy, : H ' — (H;')* is invertible, indeed coercive, i.e., for some ¢ > 0,
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Zsui Au+ k*u =0
Mut=0

Q

Recap. T is compact with 92 = 90 C T' C O. Look for solution as u = A¢p, where
avta) = [ Ba)u)dy, for b€ Lmp(®Y), xR,

and ¢ € H™*(R™) is supported on T, i.e., ¢ € H7' C H™'(R™). This satisfies the
scattering problem iff

.= —Pu', where S;:=PA:H:' = H(Q)" = (H ),

Q" :=R"\T, and P: H'(R") — H'(Q*)* = (H')* is orthogonal projection.

Theorem (Caetano et al 2024)

IfTmk > 0 then Sy, : H ' — (H;')* is invertible, indeed coercive, i.e., for some ¢ > 0,
(S, W) 1| 2 elllfr-r@my, VO € HE,

Let Q_ :=O\T. Ifk >0 then S; : H-' — (H:")* is coercive + compact and is
invertible iff k* ¢ spec(—Ap(2_)). So Galerkin methods convergent if S, invertible.
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Lemma (Caetano et al 2024)

If Au' 4 E*u' = 0 in a neighbourhood of O and S, is invertible, then ¢ = S,:lg € Ha_s:zL-
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d = dimg (") = log4/log(1/p) € (0,2]
Our IE theory applies for 0 < p < 1/2. If p < 1/4
then d < 1 and H' = {0}, so
¢=0and u=A¢p =0.
Our BEM theory applies, with = p?, if d > 1,
e ifl1/4<p<1/2.
Scattered field u for p= 1/32 Real part scattered field

We take N = 4° elements so that hy = p® diam(I"). Assuming best possible solution
regularity, a wavelet-based best-approximation analysis (using Jonsson 1998) gives

6= énllyr SEYPm @p)7% Ju(@) —un (@) S~ (40) 7"
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@ Some 19th century history - work on BIE/BEM by Rayleigh/Maxwell!

@ New 1st kind IE formulation S;¢ = g for sound-soft scattering by arbitrary
compact I, with S;, coercive + compact

@ Conditions on a measure 1 on I that ensure piecewise-constant Galerkin
approximation is convergent, Galerkin matrix takes familiar form but with
integration with respect to p. Standard BEM is special case.

@ Numerics agree well with theoretical error bounds assuming highest possible
solution regularity = conjecture that highest possible regularity is achieved

@ For the convergence rate analysis, see Caetano et al 2024a,b, and for (full)
details of the numerical integration on self-similar fractals, see Gibbs, Hewett,
Major 2024

o Not discussed today is wavenumber dependence (recent work with Sadeghi),
in which we show that

”S,lH < k, for k > ko if ' star-shaped,
kol 20240 for | € [kg,00) \ E in general,

for every 6 > 0 and some E C [kg, 00) of arbitrarily small Lebesgue measure.
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A 2D example: O is a Koch snowflake

Choice 1: T' = 90, the BIE choice, so 2_ = int(O).
Choice 2: ' =0, so Q_ =0, and S;, invertible for all & > 0.

(a) Re(u') for volume approach (b) Re(u') for bu’undary approach
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() [¢] for volume approach, h=0.22 (d) 6] for volume approach, h =0.074
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