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What is this talk about?

This talk is about what I’ve worked on throughout my career, namely

solving
∆u+ k2u = 0

by BIE/BEM.

Focus today on scattering in Rn (n = 2, 3) by compact obstacle, O, with
Dirichlet boundary conditions, the so-called sound-soft case in acoustic
terminology.

O
Ω

The wave propagation is in Ω := Rn \O, the complement of and exterior of O,
which we assume is connected.

This is an old, 19th century problem! The novelty will be results for general
compact O, including cases where O is fractal or has fractal boundary.
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Given compact O ⊂ Rn we want to find the scattered field u satisfying

ui

O

ut := ui + u = 0

∆u+ k2u = 0

Ω
u satisfies Sommerfeld radiation condition (SRC),
limr→∞ r(n−1)/2(∂ru− iku) = 0

Example 2D Boundary Element Method (BEM) computation when

ui(x) = exp(ikx · d̂) is a plane wave and O is a polygon, using an asymptotic-numerical
hp-BEM and O(1) degrees of freedom as k → ∞ (C-W, Hewett, Langdon, Twigger, 2015).
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Given compact O ⊂ Rn we want to find the scattered field u satisfying

ui

O

ut := ui + u = 0

∆u+ k2u = 0

Ω
u satisfies SRC

Example 3D BEM computation when ui(x) = exp(ikx · d̂) is a plane wave and O
is a Sierpinski tetrahedron (Caetano, C-W, Claeys, Gibbs, Hewett, Moiola 2024)
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The standard case when O is Lipschitz (e.g., Costabel 1988)

ui

Γ ut := u+ ui = 0

∆u+ k2u = 0

Ω
O u satisfies SRC

Let Γ := ∂O denote the boundary of O and let

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|) (2D), :=

1

4π

eik|x−y|

|x− y| (3D).

Look for a solution as the single-layer potential

u(x) =

∫
Γ

Φ(x, y)φ(y) ds(y), x ∈ Ω.

Find φ by enforcing ut = 0 on Γ, i.e. by solving the BIE

−ui(x) =

∫
Γ

Φ(x, y)φ(y) ds(y), x ∈ Γ.
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. . . or when O = ∂O = Γ is a screen (e.g., Stephan, Wendland 1984)
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. . . or when O = ∂O = Γ is a multi-screen (Claeys, Hiptmair 2013)
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Non-uniqueness at irregular frequencies
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Γ ut := u+ ui = 0

∆u+ k2u = 0

Ω
O u satisfies SRC

We find φ by enforcing ut = 0 on Γ, i.e. by solving the BIE

−ui(x) =

∫
Γ

Φ(x, y)φ(y) ds(y), x ∈ Γ.

When the obstacle O is Lipschitz this BIE is uniquely solvable (in H−1/2(Γ)) if
and only if k is not an irregular frequency, i.e., k2 is not a Dirichlet eigenvalue
of −∆ in

Ω− := int(O) = O \ Γ.
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Piecewise-constant Galerkin BEM

Γ

Ω

Galerkin method for the BIE:

−ui(x) =

∫
Γ

Φ(x, y)φ(y) ds(y), x ∈ Γ.

Divide Γ into N pieces (boundary elements), approximate φ(y) ≈ φj on jth element.

Determine φ1, . . . φN by solving the Galerkin equations

N∑
j=1

∫
Γi

∫
Γj

Φ(x, y) ds(x)ds(y)φj = −
∫
Γi

ui(x) ds(x), i = 1 . . . N.

Approximate u(x) by

uN (x) :=

N∑
j=1

∫
Γj

Φ(x, y) ds(y)φj , x ∈ Ω.
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These are very old ideas!

For the BIE for a flat screen (equivalently an aperture in an infinite screen), see
J. W. S. Rayleigh, Theory of Sound, Vol. 2, London: Macmillan, 1878



These are very old ideas!

For the first piecewise-constant BEM calculations in 3D for a flat screen for
k = 0 see . . .

J. C. Maxwell, The Electrical Researches of the Honourable Henry
Cavendish FRS, Cambridge: University Press, 1879
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Now for the new stuff!
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An IE for general compact obstacles: Case Im k > 0

ui

ut := u+ ui = 0

∆u+ k2u = 0

Ω
O

Recall O is compact and Ω := Rn \O is connected, and assume that

ui ∈ H1(Rn) := {v ∈ L2(Rn) : ∇v ∈ L2(Rn)}.

The scattering problem. Find the scattered field u ∈ H1(Ω) that satisfies the
Helmholtz equation in Ω and that ut = 0 on ∂Ω = ∂Γ in the sense that
ut ∈ H1

0 (Ω).

Here

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}, H1
0 (Ω) := C∞

0 (Ω)
H1(Ω)

It is a standard PDE result (via a variational formulation and Lax-Milgram) that
this problem is well-posed.
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A little more Sobolev space notation: (McLean 2000)

We’ve just introduced

H1(Rn) := {v ∈ L2(Rn) : ∇v ∈ L2(Rn)}

and spaces of functions defined on Ω:

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}, H1
0 (Ω) := C∞

0 (Ω)
H1(Ω)

⊂ H1(Ω).

We need other Sobolev spaces defined on Rn:

H−1(Rn) := (H1(Rn))∗,

H−1
Γ :=

{
v ∈ H−1(Rn) : supp(v) ⊂ Γ

}
,

H̃1(Ω) := C∞
0 (Ω)

H1(Rn)
⊂ H1(Rn).

N.B. H̃1(Ω) and H1
0 (Ω) are almost the same space: precisely, restriction to Ω is

an isometric isomorphism
|Ω : H̃1(Ω) → H1

0 (Ω)

whose inverse is extension by zero.
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IE for general compact O: Case Im k > 0 (Caetano et al 2024)

ui

ut = 0

∆u+ k2u = 0

Ω
O

Recall O is compact, Ω := Rn \O is connected, assume ui ∈ H1(Rn).

Step 1. Choose a compact Γ such that ∂Ω = ∂O ⊂ Γ ⊂ O, so Γ = O if O = ∂O.

Step 2. Look for a solution in the form u = Aϕ, for some ϕ ∈ H−1
Γ , where

Aψ(x) :=
∫
Rn

Φ(x, y)ψ(y) dy, for ψ ∈ L2(Rn), x ∈ Rn.

Automatically, u ∈ H1(Rn), as A = −(∆ + k2)−1 : H−1(Rn) → H1(Rn). Also,

∆u+ k2u = 0 in Ω∗ := Rn \ Γ.

Step 3. Where ut := u+ ui ∈ H1(Rn), enforce ut|Ω ∈ H1
0 (Ω), by requiring ut = 0 on Γ

in the sense that

ut ∈ H̃1(Ω∗) = C∞
0 (Ω∗)

H1(Rn)
.
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Γ ⊂ H−1(Rn).

This satisfies the
scattering problem iff

Skϕ = g := −Pui, where Sk := PA : H−1
Γ → H̃1(Ω∗)⊥ = (H−1

Γ )∗,

Ω∗ := Rn \ Γ, and P : H1(Rn) → H̃1(Ω∗)⊥ = (H−1
Γ )∗ is orthogonal projection.

Theorem (Caetano et al 2024)

If Im k > 0 then Sk : H−1
Γ → (H−1

Γ )∗ is invertible, indeed coercive, i.e., for some c > 0,∣∣⟨Skψ,ψ⟩H1×H−1

∣∣ ≥ c∥ψ∥2H−1(Rn), ∀ψ ∈ H−1
Γ ,

Let Ω− := O \ Γ. If k > 0 then Sk : H−1
Γ → (H−1

Γ )∗ is coercive + compact and is
invertible iff k2 ̸∈ spec(−∆D(Ω−)). So Galerkin methods convergent if Sk invertible.
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The choice of Γ: recall the IE solution satisfies u = −ui on Γ.
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Recap. Γ is compact with ∂Ω = ∂O ⊂ Γ ⊂ O . Look for solution as u = Aϕ, where
ϕ ∈ H−1

Γ . This satisfies the scattering problem iff

Skϕ = g := −Pui

and Sk : H−1
Γ → (H−1

Γ )∗ invertible iff k2 ̸∈ spec(−∆D(Ω−)), where Ω− := O \ Γ.

Choice 1: Γ = ∂O, the BIE choice, so Ω− = int(O).

Choice 2: Γ = O, so Ω− = ∅, and Sk invertible for all k > 0.

Choice 3: ∂O ⊊ Γ ⊊ O, the CHIEF choice (Schenk 1968).

Lemma (Caetano et al 2024)

If ∆ui + k2ui = 0 in a neighbourhood of O and Sk is invertible, then ϕ = S−1
k g ∈ H−1
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Aim: Solve Skϕ = g by piecewise-constant Galerkin BEM, for which we need a
notion of integration on Γ.
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Ω
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Suppose µ is a Radon measure on Γ. For χ ∈ D(Rn) := C∞
0 (Rn), let γχ := χ|Γ

∈ L2(Γ, µ).

For ψ ∈ L2(Γ, µ) let γ∗ψ ∈ D′(Rn) denote the distribution, supported on Γ,
given by

(γ∗ψ, χ) :=

∫
Γ

ψ γχdµ, χ ∈ D(Rn).

Suppose

γ∗(L2(Γ, µ)) ⊂ H−1
Γ and γ∗ : L2(Γ, µ) → H−1

Γ is continuous with dense range.

Divide Γ into N elements Γ1, . . . ,ΓN ⊂ Γ such that

Γ =

N⋃
i=1

Γi, µ(Γi) > 0, µ(Γi ∩ Γj) = 0, i, j = 1, . . . N.

Let

VN := {γ∗ψ : ψ ∈ L2(Γ, µ) is constant on Γi, i = 1, . . . , N}, hN := max
i=1,...,N

diam(Γi).
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Examples of Γ and µ for which this works

We need that µ is a Radon measure on Γ that satisfies

γ∗(L2(Γ, µ)) ⊂ H−1
Γ , γ∗ : L2(Γ, µ) → H−1

Γ is continuous with dense range,

supx∈Rn

∫
Γ∩Bε(x)

|Φ(x, y)| dµ(y) → 0 as ε → 0

1. The BIE/BEM Case. O is Lipschitz, Γ = ∂O, µ is
surface measure µS (e.g., Costabel 1988)
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2. Domain IE Case. Γ = O is Lipschitz, µ is
(n-dimensional) Lebesgue measure, µL
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Γm with Γm = ρmAm(Γ) + δn, m = 1, . . . ,M,

where ρm ∈ (0, 1), δn ∈ Rn, Am : Rn → Rn is an isometry, and the Γm are (almost)
disjoint
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d ∈ (0, n] is solution of

M∑
m=1

ρdm = 1 ⇒ d = log(M)/ log(1/ρ) if ρm = ρ, m = 1, . . . ,M.

d = log 3/ log 2 ≈ 1.58

As long as
n− 2 < d ≤ n,

µ = cµd works, where c > 0 and µd is d-dimensional
Hausdorff measure.
This is simple! For this example just take µ(Γ) = 1,
µ(Γm) = 1/3, m = 1, 2, 3, etc.
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3D Example: Cantor dust, with 0 < ρ ≤ 1/2 (Γ is a square if ρ = 1/2)

d = dimH(Γ) = log 4/ log(1/ρ) ∈ (0, 2]

Our IE theory applies for 0 < ρ ≤ 1/2. If ρ ≤ 1/4
then d ≤ 1 and H−1

Γ = {0}, so
ϕ = 0 and u = Aϕ = 0.

Our BEM theory applies, with µ = µd, if d > 1,
i.e. if 1/4 < ρ ≤ 1/2.

Scattered field u for ρ = 1/3:

We take N = 4ℓ elements so that hN = ρℓ diam(Γ). Assuming best possible solution
regularity, a wavelet-based best-approximation analysis (using Jonsson 1998) gives

∥ϕ− ϕN∥
H−1

Γ
≲ h

(d−1)/2
N ≈ (4ρ)−ℓ/2, |u(x)− uN (x)| ≲ hd−1

N ≈ (4ρ)−ℓ.
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Summary

Some 19th century history - work on BIE/BEM by Rayleigh/Maxwell!

New 1st kind IE formulation Skϕ = g for sound-soft scattering by arbitrary
compact Γ, with Sk coercive + compact

Conditions on a measure µ on Γ that ensure piecewise-constant Galerkin
approximation is convergent, Galerkin matrix takes familiar form but with
integration with respect to µ. Standard BEM is special case.

Numerics agree well with theoretical error bounds assuming highest possible
solution regularity ⇒ conjecture that highest possible regularity is achieved

For the convergence rate analysis, see Caetano et al 2024a,b, and for (full)
details of the numerical integration on self-similar fractals, see Gibbs, Hewett,
Major 2024

Not discussed today is wavenumber dependence (recent work with Sadeghi),
in which we show that

∥S−1
k ∥ ≲

{
k, for k ≥ k0 if Γ star-shaped,
k2n+2+δ, for k ∈ [k0,∞) \ E in general,

for every δ > 0 and some E ⊂ [k0,∞) of arbitrarily small Lebesgue measure.
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A 2D example: O is a Koch snowflake

Choice 1: Γ = ∂O, the BIE choice, so Ω− = int(O).

Choice 2: Γ = O, so Ω− = ∅, and Sk invertible for all k > 0.
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