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Many interesting computational and numerical analysis challenges!

@ Usual boundary integral equations (BIE) methods for bounded obstacles very
popular, but:

i) need to discretize large section of I" of diameter 2a for accuracy;
ii) condition numbers for standard methods grow at least like (ka)'/?

@ Numerical analysis challenges: stability and convergence of truncation of
unbounded surface; analysis of boundary element methods (BEM) when surface is
unbounded, and of convergence of iterative solvers (GMRES).

In this talk we will:
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that is uniformly bounded in ¢ and coercive with coercivity constant dependent only
on the maximum surface slope;
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uniformly in the BEM step size (/) and the size of the truncated surface discretized
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(a). On the way we will recall: existing analysis tools for Galerkin BEM/GMRES;
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Many interesting computational and numerical analysis challenges!

@ Usual boundary integral equations (BIE) methods for bounded obstacles very
popular, but:

i) need to discretize large section of I" of diameter 2a for accuracy;
ii) condition numbers for standard methods grow at least like (ka)'/?

@ Numerical analysis challenges: stability and convergence of truncation of
unbounded surface; analysis of boundary element methods (BEM) when surface is
unbounded, and of convergence of iterative solvers (GMRES).

In this talk we will: propose a new 2nd kind BIE for the above problem with operator
that is uniformly bounded in ¢ and coercive with coercivity constant dependent only
on the maximum surface slope; prove convergence of combined Galerkin BEM/
surface truncation; prove that a fixed number of GMRES iterations is sufficient,
uniformly in the BEM step size (/) and the size of the truncated surface discretized
(a). On the way we will recall: existing analysis tools for Galerkin BEM/GMRES; recent
related results for 2nd kind BIEs for (single and multiple) bounded scatterers.
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Suppose that A is a bounded linear operator on H and that A is coercive, i.e.,
for some v > 0,
|(Au,u)| > ~|Jul|?, Yuc H.

Céa’s Lemma. Let Hy C H be a closed subspace. Then, Vg € H, 3 a unique
Galerkin approximation uy € Hy to u := A™1g, defined by

(AUN7UN) = (g,’U), VUN S HN, (*)
e 4]
lu—un| < =— inf |lu—woy].
Y vNEHN

If Hy has basis {¢1,..., 0N}, then uy = 25:1 anen and (x) is
N
Z(Agpna@m)an:(gy(,@m), m:1,7N (X)

n=1

Theorem (corollary of field of values estimate in Beckermann et al. 2006). Let
T be the residual after m steps of GMRES applied to (X). Then

Ironll <e¢e provided m > \[” ” nd(M) log <5)’

lI7oll2

where M = [(¢n,, ¢m)] is the mass matrix.
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Taking a linear combination of Dirichlet () and Neumann (9,,) traces, we obtain
the standard 2nd kind integral equation
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Integral equation methods: bounded obstacle case

Point source z* .4 = ()
D
Au+ku=46, k>0

r

u(z) = u'(z) — /r O(z,y)0nu(y)ds(y), =€ D.
with ' '
Adpu = g = 0pu' —ikyu', and A:=3iI+ K’ —ikS.

@ ||[A7| = O(1) as k — oo if I is star-shaped or smooth and non-trapping (C-W &
Monk 2008, Baskin, Spence, Wunsch 2016)

e ||A|| = O(k*?) as k — oo if " is star-shaped and 2D, or smooth and non-trapping
(C-W et al. 2009, Baskin, Spence, Wunsch 2016)

@ A is uniformly-in-k coercive, i.e., for all kg > 0 there exists v > 0 such that

I(Ap, )| > llel®>, € L*T), k> ko,

if I is smooth and uniformly convex (Spence, Kamotski, Smyshlyaev 2016)

@ BUT A is not even compactly perturbed coercive for general Lipschitz I", or even
for general star-shaped polyhedra in 3D (C-W & Spence 2022a) AND there is no
numerical method provably convergent for every polyhedron I" (open problem).
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Taking a linear combination of Dirichlet (v) and Neumann (9,,) and surface
gradient (V1) traces, we obtain the 2nd kind integral equation

Az0pu = gz = Z-AVu'—ikyu', where Ay :=Z-n(31+K')+Z-VrS—iaS,

and Z:T = R%isin L=¥(T). If Z=nand a =k, then Ay = A and g7 = g.

Theorem (C-W & Spence 2022b). If Z is continuous and Z-n >c¢>0on T,
then Ay = Ay + K where Ay is coercive and K is compact, so that all Galerkin
methods for A;0,u = gz are convergent, provided Ay is injective.



Coercive formulations: bounded obstacle case

Point source 2+ .4, =0
D
Au+ku=46,, k>0
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ule) =u'(o) ~ [ B o) ds). @€ D.

Taking a linear combination of Dirichlet (v) and Neumann (9,,) and surface
gradient (V1) traces, we obtain the 2nd kind integral equation

Az0pu = gz = Z-AVu'—ikyu', where Ay :=Z-n(31+K')+Z-VrS—iaS,

and Z:T = R%isin L=¥(T). If Z=nand a =k, then Ay = A and g7 = g.

Theorem (C-W & Spence 2022b). If Z is continuous and Z-n >c¢>0on T,
then Ay = Ay + K where Ay is coercive and K is compact, so that all Galerkin
methods for A;0,u = gz are convergent, provided Ay is injective.

Sadly injectivity of Az not yet clear in general (open problem).



Coercive formulations: bounded obstacle case

Point source z* 4 =0

v fQ Au+k2u=5, k>0

r

ule) =u'(o) ~ [ SOl ds). @€ D.

Taking a linear combination of Dirichlet (v) and Neumann (9,,) and surface
gradient (Vr) traces, we obtain the 2nd kind integral equation

Az0u = gy = Z-AVu'i—ikyu', where Ay := Z~n(%]+K’)+Z—VFS—iaS,
and Z:T = R%isin L=¥(T"). If Z =n and a =k, then Az = A and g7 = g.

Theorem (Spence, C-W, Graham, Smyshlyaev 2011). If T is star-shaped with
respect to 0,

Z(x) =z, ox):=klz|+i(d-1)/2, z-n>c>0,

on T, then Ay is uniformly-in-k coercive with coercivity constant v = ¢/2, so
that all Galerkin methods for A;0,u = gz are convergent.



Multiple scattering formulation

Iy
I's

ule) =u'(o) ~ [ SOl ds). @€ D.

Azohu = gy = Z-4Vu'—ikyu!, where Ay := Z%(%I+K')+Z~V1\Sfia5.
Corollary (Gibbs, C-W, Langdon, Moiola 2021). If each component T'; of I is
star-shaped, and, on I';,

Z(x) =z —xj, or):=klz—z;|+id-1)/2, (x—x;)-n>c>0,

then Ay = Ay + K with Ag coercive and K compact, and A is injective, so
that all Galerkin methods for A;0,u = g, are convergent.
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Our typical RSS problem; the rough surface is I’

Suppose d =2 or 3, f : R! — R is bounded and Lipschitz continuous, precisely

0</ <f@<fr and [f@-f@)|<LF-F, #jecR".
Let

D

Au+FKu=46, k>0
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Point source z®

D :={(T,zq) :xqa> f(T), T€ R} cRY, T©:=0D={(7, f(7): 7RI}

Key feature: T' unbounded (in the horizontal directions).
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Suppose d =2 or 3, f : R! — R is bounded and Lipschitz continuous, precisely
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Let
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Key feature: T" unbounded (in the horizontal directions). The dimensionless
surface elevation, k(f; — f_), need not be large.



Our typical RSS problem; the rough surface is I’

Suppose d =2 or 3, f : R! — R is bounded and Lipschitz continuous, precisely
0<fo<f@ <[+ and |f(@)-f@I<LT-7, FyeR"L
Let

D Au—+k2u=205,, k>0

Zq

Point source z®

D= {(@ 2q) 174> f(&), 7 €RIIY CRY, T:=0D={(7,f(@): 7€ R"}.

Key feature: T" unbounded (in the horizontal directions). The dimensionless
surface elevation, k(f; — f_), need not be large.

Applications in outdoor noise or radar propagation over ground and sea surfaces,
and in optics: all nominally flat surfaces are rough at some scale!
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First idea: just use the bounded obstacle formulation, i.e.
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Integral equation methods: rough surface scattering

D

Au+ku=26, k>0

Zd

Point source z ®

First idea: just use the bounded obstacle formulation, i.e.
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Integral equation methods: rough surface scattering

D Au+ku=15,, k>0

Zd

r

Point source z ®

First idea: just use the bounded obstacle formulation, i.e.

- / G(z,y)0nu(y)ds(y), =z € D.
r
where 0, u satisfies

Adpu = g := Opu — ikyu, and A:= %I + K’ —ikS,

/&m)GI Y)e(y) ds(y), Se(z) = /FG(xvy)w(y) ds(y), z€l.

Issue: ®(x,y) decays too slowly for A to be a bounded operator.
Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
®(x,y) with Dirichlet half-space Green's function, G(x,y) := ®(z,y) — ®(z,y’).
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f(@)

xT

Adpu = g := Opu — ikyu, and A:= %I + K’ —ikS,

K'o(x) = A6n<z>0(w,y)w(y) ds(y), Se(x) = /FG(%y)w(y) ds(y), €l

Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
®(xz,y) with Dirichlet half-space Green's function, G(z,y) := ®(z,y) — ®(z, /).
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Adpu = g := Opu — ikyu, and A:= %I + K’ —ikS,

K'o(x) = A3n<z>0(w,y)¢(y) ds(y), Se(x) = /FG(%y)w(y) ds(y), €l

Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
®(xz,y) with Dirichlet half-space Green's function, G(z,y) := ®(z,y) — ®(z, /).
Theorem (C-W, Heinemeyer, Potthast 2006a,b). A is bounded and invertible on
L3(T), indeed, where L is the Lipschitz constant of f,

A7) < 12(1 + L)%



f(@)

xT

Adpu = g := Opu — ikyu, and A:= %I + K’ —ikS,

K@@):xA%mG@ﬂM@ﬁMw7Sﬂwﬁ=ﬂG@wwwﬁmw,$€P

Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
®(xz,y) with Dirichlet half-space Green's function, G(z,y) := ®(z,y) — ®(z, /).

Theorem (C-W, Heinemeyer, Potthast 2006a,b). A is bounded and invertible on
L3(T), indeed, where L is the Lipschitz constant of f,
A7) < 12(1 + L)2.

Issue: but how do we prove convergence of boundary truncation, BEM, GMRES?



D

Au+k2u=95, k>0

Td

Point source z ®

Az0gu =gy = Z-4Vul—ikyu', where Ay := Z-n(%[—l—K’)—l—Z-VrS—ik:S.

K'p(x) = /Fanu)G(x,y)w(y) ds(y), Se(z) = /FG(%?J)@(ZU) ds(y), ze€l.

Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
®(x,y) with Dirichlet half-space Green's function, G(x,y) := ®(z,y) — ®(x,y’).

Theorem (C-W, Heinemeyer, Potthast 2006a,b). A is bounded and invertible on
L?(T), indeed, where L is the Lipschitz constant of f,

A < 12(1+ L)

Issue: but how do we prove convergence of boundary truncation, BEM, GMRES?
Solution: replace A with Ay with Z = ¢4, so that Z -n > (1 + L?)~1/2.



D

r Au+k*u=96, k>0
. d 7 = €q
olnt source 2 * u = 0
f()
T

Az0u = gy = Z-4Vul—ikyu', where Ay := Z-n(%[—l—K’)—i—Z-VrS—ikS.
Theorem (C-W, Heinemeyer, Potthast 2006a,b). A is bounded and invertible on
L3(T), indeed, where L is the Lipschitz constant of f,
A7 <1201+ L)%
Theorem. With Z = ¢, A is bounded and uniformly-in-k coercive on L?(T'),
with coercivity constant
1

L —1 -1 _ 2\1/2



FD Au+k2u=26, k>0

Zd

oint source z *

T
Az0u = gy = Z-4Vul—ikyu', where Ay := Z-n(%[—l—K’)—i—Z-VrS—ikS.
Theorem. With Z = ¢, A is bounded and uniformly-in-k coercive on L?(T),
with coercivity constant

1

- - -1 -1 _ 211/2
7'_2(1+L2)1/2 sothat |[[AL'|| <~ =2(1+L%)"~.

Thus, if Hy C L?(T") is any BEM subspace supported on a finite part of I' of
diameter 2a, then the Galerkin approximation ¢ € Hy to Oyu is well-defined and

A
18 — o] < 1221 1t — .

inf |
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FD Au+k2u=26, k>0

Zd

oint source z *

T
Az0u = gy = Z-4Vul—ikyu', where Ay := Z-n(%[—l—K’)—i—Z-VrS—ikS.

Theorem. With Z = ¢, A is bounded and uniformly-in-k coercive on L?(T),
with coercivity constant

1
2(1 +L2)1/2
Thus, if Hy C L?(T") is any BEM subspace supported on a finite part of I' of
diameter 2a, then the Galerkin approximation ¢ € Hy to Oyu is well-defined and

- sothat | AZ!| <7t =2(1+ L)Y

10t — o || < llAz]] an||anu_¢N\|.

Moreover, if M is the mass matrix of the chosen basis for Hy and r,, is the
residual after m steps of GMRES,

lI7m |2
lI7oll2

3 A 8
<e provided m>— \[ 3 14z ZH cond (M) log <€> .



Theorem. With Z = ¢4, Az is bounded and uniformly-in-k coercive on L*(T'), with
coercivity constant

o 1 -1 —1 _ 2y1/2
Thus, if Hy C L*(T") is any BEM subspace supported on a finite part of T' of diameter
2a, then the Galerkin approximation on € Hy to Onu is well-defined and

Al

H 3
I5) — < 1 0, — .
” nU H ’Y 1/)NIEfHN H nU 7/)” H

Moreover, if M is the mass matrix of the chosen basis for Hy and r,, is the residual
after m steps of GMRES,

[[7m 2 <e provided m>— 3\[ HAZH cond(M) log (§> .
lroll2 :

Idea of proof. The proof combines:
@ harmonic analysis techniques for 2nd kind integral equations on Lipschitz domains



Theorem. With Z = ¢4, Az is bounded and uniformly-in-k coercive on L*(T'), with
coercivity constant

o 1 -1 —1 _ 2y1/2
Thus, if Hy € L*(T) is any BEM subspace supported on a finite part of ' of diameter
2a, then the Galerkin approximation on € Hy to Onu is well-defined and

Al
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Moreover, if M is the mass matrix of the chosen basis for Hy and r,, is the residual
after m steps of GMRES,

S\f I\AzH

l[7m |2
lIroll2

<e provided m>—
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Idea of proof. The proof combines:
@ harmonic analysis techniques for 2nd kind integral equations on Lipschitz domains

@ methods for proving invertibility/coercivity through Rellich-type identities,
combining ideas of Verchota (1984), C-W and Monk (2005), C-W, Heinemeyer,
Potthast (2006b), Spence, C-W, Graham, Smyshlyaev (2011).



Theorem. With Z = ¢4, Az is bounded and uniformly-in-k coercive on L*(T'), with
coercivity constant

o 1 -1 —1 _ 2y1/2
Thus, if Hy € L*(T) is any BEM subspace supported on a finite part of ' of diameter
2a, then the Galerkin approximation on € Hy to Onu is well-defined and
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Moreover, if M is the mass matrix of the chosen basis for Hy and r,, is the residual
after m steps of GMRES,
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Idea of proof. The proof combines:
@ harmonic analysis techniques for 2nd kind integral equations on Lipschitz domains
@ methods for proving invertibility/coercivity through Rellich-type identities,
combining ideas of Verchota (1984), C-W and Monk (2005), C-W, Heinemeyer,
Potthast (2006b), Spence, C-W, Graham, Smyshlyaev (2011). The Rellich identity
we need follows from writing in divergence form integrals of the form

/(Au+k2 )8—ud:c
x4



Theorem. With Z = ¢4, Az is bounded and uniformly-in-k coercive on L*(T'), with
coercivity constant

o 1 -1 —1 _ 2y1/2
Thus, if Hy € L*(T) is any BEM subspace supported on a finite part of ' of diameter
2a, then the Galerkin approximation on € Hy to Onu is well-defined and

Al

1Azl .
_ < f — .
[Onu — on |l o 10nu — ||

Moreover, if M is the mass matrix of the chosen basis for Hy and r,, is the residual
after m steps of GMRES,

3f HAzH

l[7m |2
lIroll2

<e provided m>—

cond(M) log (8>

Idea of proof. The proof combines:
@ harmonic analysis techniques for 2nd kind integral equations on Lipschitz domains
@ methods for proving invertibility/coercivity through Rellich-type identities,
combining ideas of Verchota (1984), C-W and Monk (2005), C-W, Heinemeyer,
Potthast (2006b), Spence, C-W, Graham, Smyshlyaev (2011). The Rellich identity
we need follows from writing in divergence form integrals of the form

/(Au+k2 )8—ud:c
x4

@ The convergence theory for Galerkin BEM and GMRES recalled earlier



Numerical results: flat I': f(z) = f- = 0.25

2D numerical results when T is flat, applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=1, kh=05, kf- =0.25, z = (0,5),

using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

Real part of the total field u



https://github.com/matthieuaussal/gypsilab

Numerical results: flat I f(Z) = f- = 0.25

2D numerical results when I' is flat, applying 2-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=1, kh=0.5, kf- =0.25, z = (0,5),
using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.
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Numerical results: flat I f(Z) = f- = 0.25

2D numerical results when I' is flat, applying 2-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=1, kh=0.5, kf- =0.25, z = (0,5),
using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

50 Number of GMRES iterations: Standard and new formulations, flat
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https://github.com/matthieuaussal/gypsilab

Numerical results: sawtooth I : f_ < f(Z) < f., slope L

2D numerical results for sawtooth I', applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=2 kh=03, kf- =025, kf, =1.25 L =0.578;z = (0,5),

using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

Real part of the total field u



https://github.com/matthieuaussal/gypsilab

Numerical results: sawtooth I : f_ < f(Z) < f., slope L

2D numerical results for sawtooth I', applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=2, kh=03, kf- =0.25, kf =1.25 L =0.578;z = (0,5),
using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

Condition number: Standard and new formulations, saw tooth
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Numerical results: sawtooth I : f_ < f(Z) < f., slope L

2D numerical results for sawtooth I', applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k=2, kh=03, kf- =0.25, kf =1.25 L =0.578;z = (0,5),
using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

Number of GMRES iterations: Standard and new formulations, saw tooth
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Summary

We have:

@ Seen that unbounded rough surfaces are problems with interesting additional
computational and numerical analysis challenges!

@ Recalled the strong/precise results available for analysis of Galerkin methods
and GMRES when A : H — H is bounded and coercive

@ Recalled that, even for bounded obstacles, no convergence proof exists yet
for any Galerkin BEM for the standard 2nd kind BIE on L?(T") with
A= %I + K’ — ik S, that applies for general Lipschitz I', or even just for all

star-shaped polyhedral T’

@ Recalled recent novel 2nd kind integral equations for bounded obstacles, with
A replaced by an operator Ay := 7 - n(%]—l— K'Y+ Z - V1S — ikS which is
coercive 4+ compact

@ Proposed a new 2nd kind integral equation of this type for our RSS problem
with Z = e,, the constant vertical unit vector, for which A, is bounded and
uniformly-in-%k coercive, leading to proof of convergence of combined
surface truncation/Galerkin BEM, and convergence of GMRES in a
number of iterations independent of the element diameter /i and the
truncated surface diameter a.
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