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The Half-Space Matching Method Philosophy

@ It is easy to solve explicitly Dirichlet problems in half-planes.

@ So express your solution in each of a number of overlapping half-planes using
this explicit solution.

© The HSMM equations are obtained by enforcing compatibility between
these different half-plane representations.
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@ It is easy to solve explicitly Dirichlet problems in half-planes.
@ So express your solution in each of a number of overlapping half-planes using
this explicit solution.

© The HSMM equations are obtained by enforcing compatibility between
these different half-plane representations.
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Step 1. Let's solve the simplest half-plane problem ...

u satisfies S.R.C. at 00O
Au+ku=46, in Q

Point source z® u=g¢g on X
2o
Solution is
d
u(z) = Gz, z) + 2/ wg(y) ds(y), =z €,
where s Oya

Gz, 2) = ®(x,2) — B(x, 7)), D(x,y) = iHél)(kkr —y|).
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Point source z

u(z) = G(z, z) + 2/ Mu(y) ds(y), z=e.

s, Oya



Point source z

0®(z,y)
s, Oy

u(z) = G(z, z) + 2/ u(y)ds(y), =€ .
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Point source z®

u(z) = 2/2 Mu(y) ds(y), € Qo.
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Point source z®

u(z) = 2/2 Mu(y) ds(y), = €X;.



The HSMM integral equations

1 20
Point ze |
oint source o ;}””
u=20
Two integral equations for unknowns uls, and uls,:
0o
u(z) = G(x,z)—|—2/ Mu(y) ds(y), =z € Xo,

v, Oy

u(z) = 2/20 ((M)(,g;jl’y)u(y) ds(y), = €X.



The HSMM integral equations

Point source 2z *

u=0>0

Two integral equations for unknowns uls, and uls,:

u(z) = G(z,2)+ 2/E 8@(;;’ y)u(y) ds(y), =z € X,
_ 0P(z,y)
u(z) = 2/20 i u(y)ds(y), € Xy.

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J.
Appl. Math. 2022) if one requires, additionally, that

u(z) = ame 12 4 O(r_3/2), as r:=|z| > co withz € ¥,,,, m=0,1.
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The HSMM integral equations

Point source 2z *

u=0>0

Two integral equations for unknowns uls, and uls,:

u(r) = G(z,2)+ 2/2 8@(;;:2’ y)u(y) ds(y), =z € X,
_ 0P(z,y)
u(z) = 2/20 i u(y)ds(y), € Xy.

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J.
Appl. Math. 2022) if one requires, additionally, that

w(x) = ame* r V2 L O0(r%?), asr:=|z| > cowithz e, m=0,1.

Let @o(s) := u((0,5s)) and @1(s) :=u((s,0)), for s > 0. Then, explicitly the
above equations are . ..
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The HSMM integral equations
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Point source z i S,
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The HSMM integral equations

' 20
Point source z ! S,
u=20
1ks H(l) (kv/'s? +t2
po(s) = Ny (ks ) 1(t)dt, s>0,
iks H; 1) (kv/s? +t2
orls) = / e I RVSH8)  wat, s>,
with .
©m(s) = ame*s™1/2 4 0(3*3/2), ass— o0, m=0,1,
and

P(s) = iHél) (k; (s — 22)% + z%) - iHél) (k (s + 22)% + z%) , s>0.



The Complex-Scaled HSMM integral equations

Point source z ¢
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as s — o0, m:O,l



The Complex-Scaled HSMM integral equations
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Om(s) = ame®*s™V2 £ O(s7%/?), as s — 00, m=0,1.

1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane



The Complex-Scaled HSMM integral equations

Point source 2 ¢
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 0 < 7/2, ...



The Complex-Scaled HSMM integral equations

Point source 2 ¢
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 6 < 7/2, ...
2. Rotating the paths of integration we get ...



The Complex-Scaled HSMM integral equations

Point source 2 ¢
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 6 < 7/2, ...
2. Rotating the paths of integration we get ...
3. Introducing %, and ¢ defined by % (1) := ¢, (re!) and ¥?(r) := (rel?),
these equations are ...



The Complex-Scaled HSMM integral equations
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1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < 0 < 7/2, ...

2. Rotating the paths of integration we get ...

3. Introducing Y, and 1? defined by % (r) := ¢, (re!) and ¥?(r) := (rel?),
these equations are ...



The Complex-Scaled HSMM integral equations
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The Complex-Scaled HSMM integral equations
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Point source z * >

i6 (1) 2 2
0 W 1l<:e 5/ H; Vs +12)
s5) = t) dt,
@o(s) 52 NZEel ¢1(t)
i0 (1) i0 2 2
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We can recover u: for example for z € Qq,

00(z,y)

u(z) = G(z,z)+2
(x) (z,2) e O

u(y) ds(y)



The Complex-Scaled HSMM integral equations
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We can recover u: for example for x € 1,
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The Complex-Scaled HSMM integral equations

M
Point source 2 ¢ PN
i6 (1) 2 2
0 W 1ke s/ H, s2412) 4
s) = t) dt,
©o(s) 52 Nl ©1(t)
]{? i0 H(l) k’ 0. /.2 t2
Plls) = = S/ LV ) otya, s> o0
2 Jo Vs + 2
We can recover u: for example for x € Q,
0P
uw) = Gz w2 [ TR asy)
s, Oy

i oo () (k\/23 + (£ —
G(x,z)—&-lk@/ x5+ (t —x1)?
0

2 3+ (t — 21)2



The Complex-Scaled HSMM integral equations

0
Point source 2 ¢ >
i0 (1 N
0 o 1l<:e s/ H, Vs +12)
s) = t)ydt, s>0,
eo(s) 52 Nl e1(t)
ik i0 H(l k i0 2 t2
Als) = = / LV ) oyd, s> 0.
2 0 82 + t2
We can recover u: for example for x € 1,

we) = G+ [ PRI as)

— Gle o)+ ikelfz, / HO (k\/23 + (er — Il)Q)goO(r) ar
7 V3 + (efr —z;)2 !




The Complex-Scaled HSMM integral equations
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as long as z3 > tan(f) z;.



The Complex-Scaled HSMM integral equations

TeooQ
Point source 2 ¢ ’ ﬂ\ 77777 273% o
i0 (1 N
9 W 1l<:e s/ H; V2 +12)
S = t dt, 8207

@o(s) 32+t2 e1(t)

k i0 H(l k i0 2 t2
Als) = 2 / L e V) oyt s >0

2 0 ‘/S2+t2

We can recover u: for example for z € Q,

Glao)+2 [ Py dsty)
_ T,z ikeigxz H(l)(k\/xg + (eigr - m1)2)
Cl@,2) + / Vi + (efr —xq)2

as long as z3 > tan(f) z;. So take 6 < /4.

i (r)dr,




But why use the CS HSMM integral equations?
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But why use the CS HSMM integral equations?

Point source z ¢

SINT oo g (peid

I e e (ULL
s°+
1kelgs H(1 (kel?\/s2 + 2)

O e (LORED

Key feature. For some constant Cy > 0,

o (5)] < Copexp(—ksin(6)), s>0, m=0,1.



But why use the CS HSMM integral equations?

o) = W)+ B * Y (ke V2 F )
%o = 32+t2 1
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ol(s) = po(t)dt, s>0.
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But why use the CS HSMM integral equations?

@8(8) _ w9<s)+ik‘eies/ H(l)(k' 7\/s2 +12) P
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Written in operator form these are

oo =0+ D%, ! =D,



But why use the CS HSMM integral equations?

 Loail (1) 2 2
vols) = ¢9(8)+1ke 8/ . m)w(f(t)dt, s >0,

Vs? +t?
ikel?s H(1 (kel?\/s2 4 2)
I e LT

Written in operator form these are

0 0 0 0 0 0.6 - 90(9) ”9/19 o ¥
®o :77& +D P15 ¥1 =D #os 1.e., 0 = 0 +D
¥1 2



But why use the CS HSMM integral equations?

 Loail (1) 2 2
wols) = w‘)<8)+1ke 8/ A m)wg(t)dt, s>0,

Vs? +t? !
ikel?s H(1 (kel?\/s2 4 2)
I e LT

Written in operator form these are

0 21,0
0o ="+ DY, i =D¢p, e, <“Q )(% )+D9<%>
Y1 o1

Theorem. As an operator on L2(R..), D = Dy + DY where DY is compact and
1 1 — e—msin(0)
Do|| = —=, |ID}| < —rr—
|| 0” \/57 H 1H = 4ﬁsm(9) )
so that |[D”]| = ||D”|| < || Dol + [ D]l < 1if
6 > sin~ ! (p/7) ~ 0.13438,
where p is the unique positive solution of

T —me P = 8(3 — 2v2)p?

O



But why use the CS HSMM integral equations?

The equations in operator form are

b ="+ D%, ] =D

Theorem. As an operator on L2(R,), D’ = Dy + DY where D{ is compact and

IDall < . 1D}l < W
so that DY = | D[l < || Dol + DY < 1 if
0 > sin~!(p/m) ~ 0.13438,
where p is the unique positive solution of
7 —me P =8(3 - 2v2)p*

As a consequence, if
0.134387 < 0 < 0.257,

u can be recovered from 9 and ©{, and | D?|| < 1 so Neumann iteration
converges



But why use the CS HSMM integral equations?

The equations in operator form are

b ="+ D%, ] =D

Theorem. As an operator on L2(R,), D’ = Dy + DY where D{ is compact and

IDall < . 1D}l < M
so that DY = | D[l < || Dol + DY < 1 if
0 > sin~!(p/m) ~ 0.13438,
where p is the unique positive solution of
T —me P =8(3 - 2V2)p?.
As a consequence, if
0.134387 < 6 < 0.257,

u can be recovered from 9 and ©{, and | D?|| < 1 so Neumann iteration
converges, and Galerkin methods are convergent and quasi-optimal:

1D

Error in Galerkin solution < ————
1 —||D?||

Best approximation from Galerkin subspace
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The CS HSMM integral equations: numerical results

The equations in operator form are
0o =9’ + D%, o] = D¢}
Approximate the integral operator DY by an N x N matrix D%, by approximating
00 L
/ = / ~ Midpoint rule with N subintervals
0 Jo

and by collocating at the midpoints of the subintervals.



The CS HSMM integral equations: numerical results

The equations in operator form are
0o =9’ + D%, o] = D¢}

Approximate the integral operator DY by an N x N matrix D%, by approximating

o) L
/ ~ / ~ Midpoint rule with N subintervals
0 Jo

and by collocating at the midpoints of the subintervals.

The discrete unknowns are N x 1 vectors ¢! , m = 0,1, approximations to the
true values at the collocation points, that satisfy

oo =v" + D!, ] =Dl



The CS HSMM integral equations: numerical results

Approximate the integral operator DY by an N x N matrix DY by approximating

[e%S) L
/ = / ~ Midpoint rule with IV subintervals
0 0

and by collocating at the midpoints of the subintervals.



The CS HSMM integral equations: numerical results
Approximate the integral operator DY by an N x N matrix DY; by approximating
oo L
/ %/ ~ Midpoint rule with N subintervals
0 0

and by collocating at the midpoints of the subintervals.

4
Results for L = 3 wavelengths = %, N =20, 60=0.24r.
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The CS HSMM integral equations: numerical results
Approximate the integral operator DY by an N x N matrix DY; by approximating
oo L
/ %/ ~ Midpoint rule with N subintervals
0 0

and by collocating at the midpoints of the subintervals.

4
Results for L = 3 wavelengths = %, N =20, 0=0.27r.




The CS HSMM integral equations: numerical results
Approximate the integral operator D’ by an N x N matrix DS’V by approximating
oo L
/ = / ~ Midpoint rule with N subintervals
0 0

and by collocating at the midpoints of the subintervals.

4
Results for L = 3 wavelengths = %, N =20, 60=0.297.




The CS HSMM integral equations: numerical results
Approximate the integral operator DY by an N x N matrix DY; by approximating
oo L
/ %/ ~ Midpoint rule with N subintervals
0 0

and by collocating at the midpoints of the subintervals.

4
Results for L = 3 wavelengths = %, N =20, 60=0.24r.
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What can the CS HSMM do apart from wedges?



What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.’s) in homogeneous medium

22
»3

21

»4 o

b3 Y

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.



What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium

P

»l

A

P

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.
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@ The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

@ The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium
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@ The HSMM (without CS) already well-established for a range of scattering
problems in complex media, e.g., scalar problem with complex background, Ott,

Karlsruhe IT, PhD, 2017
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Conclusions and Open Problems

@ The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

@ The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium

@ The HSMM (without CS) already well-established for a range of scattering
problems in complex media, e.g., crack in anisotropic elastic medium, Bécache,
Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Open problems for the CS HSMM include:
@ complete numerical analysis, and bounds for other wedge angles and b.c.’s;
@ application of HSMM (and its CS version) to transmission wedge problems;
@ exact solution of the CS HSMM integral equations by the K-L transform?
@ CS HSMM formulations for problems with more complex backgrounds.



