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COMPUTATION OF THE COMPLEX ERROR FUNCTION USING
MODIFIED TRAPEZOIDAL RULES\ast 

MOHAMMAD AL AZAH\dagger AND SIMON N. CHANDLER-WILDE\ddagger 

Abstract. In this paper we propose a method for computing the Faddeeva function w(z) :=

e - z2erfc( - i z) via truncated modified trapezoidal rule approximations to integrals on the real line.
Our starting point is the method due to Matta and Reichel [Math. Comp., 25 (1971), pp. 339--344]
and Hunter and Regan [Math. Comp., 26 (1972), pp. 339--541]. Addressing shortcomings flagged
by Weideman [SIAM. J. Numer. Anal., 31 (1994), pp. 1497--1518], we construct approximations
which we prove are exponentially convergent as a function of N + 1, the number of quadrature
points, obtaining error bounds which show that accuracies of 2\times 10 - 15 in the computation of w(z)
throughout the complex plane are achieved with N = 11; this is confirmed by computations. These
approximations, moreover, provably achieve small relative errors throughout the upper complex
half-plane where w(z) is nonzero. Numerical tests suggest that this new method is competitive, in
accuracy and computation times, with existing methods for computing w(z) for complex z.
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1. Introduction. The complementary error function is defined by [18, (7.2.2)]

(1) erfc(z) =
2\surd 
\pi 

\int \infty 

z

e - t2 dt

for all z = x + iy (x, y \in \BbbR ). This paper is concerned with approximating erfc(z)
through approximating an integral representation for the related Faddeeva function,
defined by [18, (7.2.3)]

(2) w(z) := e - z2

erfc( - i z).

It is well known [3, (7.1.4)] that

(3) w(z) =
i

\pi 

\int \infty 

 - \infty 

e - t2

z  - t
dt =

iz

\pi 

\int \infty 

 - \infty 

e - t2

z2  - t2
dt, Im(z) > 0,

and this is our starting point. It is sufficient to devise methods to compute w(z) for
z in the first quadrant since values in the other quadrants can be obtained using the
symmetries [19, (3.1) and (3.2)]

(4) w( - z) = 2e - z2

 - w(z) and w(z) = w( - z).

It follows from (2)--(3) that

(5) erfc(z) =
z e - z2

\pi 

\int \infty 

 - \infty 

e - t2

z2 + t2
dt, x = Re(z) > 0.
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2347

Starting from this integral representation, Chiarella and Reichel [7] and Matta and
Reichel [15] showed, by the contour integration arguments that we recall in section 2.1,
that, for x > 0,

(6) erfc(z) =
hze - z2

\pi 

\infty \sum 
k= - \infty 

e - k2h2

z2 + k2h2
+

2H(\pi /h - x)

1 - e2\pi z/h
+ E(h).

Here the first term is the trapezoidal rule approximation to (5) using a step size h > 0,
the second is a modification that arises from Cauchy's residue theorem (expressed
using the standard Heaviside step function H, with H(0) = 1/2), and E(h) is a small
error term. Hunter and Regan [12] (correcting the argument in [7, 15]) show, for x > 0
with x \not = \pi /h, that

(7) | E(h)| \leq 2| ze - z2 | e - \pi 2/h2

\pi 1/2(1 - e - 2\pi 2/h2)| x2  - \pi 2/h2| 
.

Thus, for every fixed z = x+ iy with x > 0, the modified trapezoidal rule approxima-
tion obtained by neglecting E(h) in (6) is very rapidly convergent indeed as h\rightarrow 0.

As the bound (7) suggests, neglecting the error term E(h) in (6) gives a very
accurate approximation also for x = Re(z) = 0, except that the approximation is
undefined if z = ikh for some k \in \BbbZ , and there are stability issues in evaluation if z is
close to one of these points. It is suggested in [12] to solve this issue by switching to
the composite midpoint rule where needed. Precisely, Hunter and Regan [12] propose
using the formula (6) (neglecting the error term E(h)) if 1/4 \leq \varphi (y/h) \leq 3/4, where
y = Im(z) and

(8) \varphi (t) := t - \lfloor t\rfloor \in [0, 1)

is the fractional part of t. Otherwise they suggest using the midpoint rule--based
formula

(9) erfc(z) =
hze - z2

\pi 

\infty \sum 
k= - \infty 

e - (k+1/2)2h2

z2 + (k + 1/2)2h2
+

2H(\pi /h - x)

1 + e2\pi z/h
+ E\prime (h),

neglecting the corresponding error term E\prime (h) which they show satisfies the same
bound (7) as E(h).

These proposals from [12] are our starting point. In a practical implementation
the sums in (6) and (9) must be truncated, say to  - N \leq k \leq N . The contributions
of this paper are to

(i) convert a modified version of the proposals of Hunter and Regan [12] into
a fully specified algorithm, making clear how the choice of h > 0 should be
related to N for optimal accuracy;

(ii) provide error estimates for the approximations we propose for w(z), proving
that the maximum absolute error (and the maximum relative error in the
upper half-plane) decrease exponentially with N , reducing by a factor e\pi \approx 
23.1 for each additional quadrature point;

(iii) demonstrate that the claimed exponential convergence in absolute and rela-
tive errors is achieved numerically;

(iv) present numerical results that suggest that the simple approximation formulae
we propose are competitive in accuracy and computation time with existing
methods for computing w(z).
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2348 MOHAMMAD AL AZAH AND SIMON N. CHANDLER-WILDE

In carrying out (i) we are addressing earlier criticisms of the algorithms in [7, 15,
12] made by Weideman [25], who observes that the formula (6) with the summation
reduced to  - N \leq k \leq N

is very accurate, provided for given z and N the optimal step size h
is selected. It is not easy, however, to determine this optimal h a
priori.

Our recommendations address this issue, detailing which approximation formula and
what step size h should be used for each N and z. (It turns out that, to obtain high
accuracy, the approximation formula chosen must depend on both z and N , but h
only needs to depend on N .)

The bounds we obtain in carrying out (ii) prove that the absolute error in our
approximation for w(z) tends to zero exponentially with N , uniformly in the complex
plane. This is a substantial improvement on the existing bound (7), which blows up
when x = \pi /h, and does not capture the additional truncation errors due to replacing
infinite sums by finite sums in the approximations (6) and (9).

Concretely, our proposed approximation to w(z), for z = x+ iy, with x, y \geq 0, is

wN (z) :=

\left\{     
wM

N (z) if y \geq max (x, \pi /h) ,

wMT
N (z) if y < x and 1/4 \leq \varphi (x/h) \leq 3/4,

wMM
N (z) otherwise,

(10)

where \varphi is defined by (8), N \in \BbbN 0 := \BbbN \cup \{ 0\} ,

h :=
\sqrt{} 
\pi 
\big/ 
(N + 1) ,(11)

wM
N (z) :=

2ih z

\pi 

N\sum 
k=0

e - t2k

z2  - t2k
,(12)

wMM
N (z) :=

2 e - z2

1 + e - 2i\pi z/h
+ wM

N (z),(13)

wMT
N (z) :=

2 e - z2

1 - e - 2i\pi z/h
+

ih

\pi z
+

2ih z

\pi 

N\sum 
k=1

e - \tau 2
k

z2  - \tau 2k
,(14)

tk := (k + 1/2)h, and \tau k := kh.(15)

We extend the approximation to the full complex plane by using the symmetries
(4)---precisely by defining

(16) wN (z) := wN ( - z) if y \geq 0 and x < 0, wN (z) := 2e - z2

 - wN ( - z) if y < 0.

We supply in Table SM1 of the supplementary materials the MATLAB code imple-
menting the approximation wN (z) that we use for the computations in section 4.1

The main error estimate that we prove, using standard complex analysis argu-
ments including a Phragm\'en--Lindel\"of principle, is the following.

Theorem 1.1. Suppose wN (z) is given by (10) and (16). Then, for N \in \BbbN 0 and
z = x+ iy,

| w(z) - wN (z)| \leq C1 e
 - \pi N for all x, y \in \BbbR , and

| w(z) - wN (z)| 
| w(z)| 

\leq C2

\surd 
N + 1 e - \pi N if x \in \BbbR and y \geq 0,

1The codes in these supplementary materials are also available at github; see https://github.
com/sms03snc/Faddeeva.
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2349

where C1 \approx 0.67 is given by (75) and C2 \approx 3.97 by (76).

We remark that approximation of w(z), for z \in \BbbC , provides an effective route to
the computation of other special functions, including Fresnel integrals (e.g., [5]), Daw-
son's integral [18, equation (7.5.1)], and the Voigt functions [18, equation (7.19.3)].
Indeed, we have previously used, in the restricted case arg(z) = \pi /4, an approxima-
tion resembling wMM

N (z) when approximating Fresnel integrals [5], proving results in
the spirit of Theorem 1.1.

Let us summarize the rest of the paper. In the largest section, section 2, we derive
the above formulae and error bounds. In section 3 we review the existing, alternative
approximate methods for computing erfc(z) and w(z) for complex z. For none of these
has an error bound been proved, similar to Theorem 1.1. In section 4 we carry out
numerical experiments that confirm the accuracy of wN (z), showing that its absolute
error is < 2 \times 10 - 15 throughout the complex plane with N = 11, and that the same
bound holds for the relative error in the upper half-plane. We also show that our new
approximation is competitive in accuracy and appears to be competitive in computing
times with the methods that we survey in section 3, specifically those of [25, 29, 27, 2].

We note that this paper is based, in significant part, on Chapter 3 of the first
author's thesis [4].

2. The proposed approximation and its error bounds. In this section we
derive the approximation given by (10) based on modified trapezoidal rules. We
also derive the error bounds of Theorem 1.1 that demonstrate that the absolute and
relative errors in wN (z) both decrease exponentially as N increases.

2.1. The contour integral argument and its history. Given any f \in C(\BbbR )
that decays sufficiently rapidly at infinity, let

I[f ] :=

\int \infty 

 - \infty 
f(t) dt,

and, for h > 0 and \alpha \in [0, 1), define the generalized trapezoidal rule approximation to
I[f ] by

(17) Ih,\alpha [f ] := h
\sum 
k\in Z

f((k  - \alpha )h).

We note that Ih,\alpha [f ] = Ih,0[f\alpha ], where f\alpha (t) := f(t - \alpha h) for t \in \BbbR , and that Ih,0[f ] is
the trapezoidal rule approximation to I[f ] and Ih,1/2[f ] its composite midpoint rule
approximation.

The approximation (17) for I[f ] converges exponentially when the integrand is
analytic in a strip surrounding the real axis and has sufficient decay at \pm \infty . The
derivation of this result, using contour integration and Cauchy's residue theorem,
dates back, for a particular case, at least to Turing [24], and has been analyzed in
more general cases by Goodwin [11], Davis [9], McNamee [16], Schwartz [21], and
Stenger [22]. For a detailed history and discussion see Trefethen and Weideman [23].

The rate of exponential convergence depends on the width of the strip of an-
alyticity around the real axis, and the accuracy of Ih,\alpha [f ] deteriorates when f has
singularities close to the real line. But, in the case when these singularities are poles,
the contour integral method for establishing the exponential convergence of Ih,\alpha [f ],
that we will recall in Proposition 2.1 below, leads naturally to corrections for mod-
ifying the trapezoidal rule and recovering rapid convergence; these corrections are
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2350 MOHAMMAD AL AZAH AND SIMON N. CHANDLER-WILDE

expressed in terms of residues of f at these poles. This appears to have been ob-
served explicitly first by Chiarella and Reichel [7], in the context of evaluating (5)
(see also Matta and Reichel [15], Hunter and Regan [12], and Mori [17]), and has
been developed into a general theory by Bialecki [6] (see also La Porte [14]).

It is convenient to recall in a proposition the standard arguments (see [7, 15, 12]
and cf. [23, pp. 402--403]) that are made to prove exponential convergence, since we
will use these arguments below. These use, for given h > 0 and \alpha \in [0, 1), the function
g(\zeta ) defined by

(18) g(\zeta ) := i cot (\pi (\alpha + \zeta /h)) .

This is a meromorphic function with simple poles at \zeta = (k  - \alpha )h, k \in \BbbZ , and the
properties that, for \zeta \in \BbbC with \eta = Im(\zeta ),

(19) | 1 - g(\zeta )| \leq 2e - 2\pi \eta /h

1 - e - 2\pi \eta /h
if \eta > 0, | 1 + g(\zeta )| \leq 2e2\pi \eta /h

1 - e2\pi \eta /h
if \eta < 0.

We also use, for H \in \BbbR , the notation \Gamma H for the path \{ t + iH : t \in \BbbR \} traversed in
the direction of increasing t. It is enough for our purposes to suppose that the poles
of f are simple. For the case of poles of arbitrary order see [6, Theorem 2.2].

Proposition 2.1. Suppose that, for some H > 0, f is analytic in the strip SH :=
\{ \zeta \in \BbbC : | Im(\zeta )| < H\} , except for a finite number of simple poles at \zeta 1, . . . , \zeta m \in SH ,
with \eta k := Im(\zeta k) \not = 0, for k = 1, . . . ,m. Suppose also that f is continuous in
SH \setminus \{ \zeta 1, . . . , \zeta m\} and that, for some r > 1, f(\zeta ) = O(| \zeta |  - r) as | Re(\zeta )| \rightarrow \infty ,
uniformly in SH . Then

I[f ] - Ih,\alpha [f ] =
1

2

\Biggl( \int 
\Gamma H

f(\zeta )(1 - g(\zeta )) d\zeta +

\int 
\Gamma  - H

f(\zeta )(1 + g(\zeta )) d\zeta 

\Biggr) 
+ Ch,\alpha ,H [f ],

where

Ch,\alpha ,H [f ] := \pi i

m\sum 
k=1

(sign(\eta k) - g(\zeta k))Rk,

and Rk := Res(f, \zeta k) = lim\zeta \rightarrow \zeta k(\zeta  - \zeta k)f(\zeta ) denotes the residue of f at \zeta k.

Proof. Let Ak :=
\bigl( 
k  - \alpha + 1

2

\bigr) 
h for k \in \BbbZ . Let C \widetilde H,i,j denote the positively

oriented rectangular contour with corners at Ai\pm i \widetilde H and Aj\pm i \widetilde H, choosing \widetilde H \in (0, H)
and the integers i < 0 and j > 0 so that C \widetilde H,i,j encloses the poles \zeta 1, . . . , \zeta m (see Figure

1). Noting that Res(g, (k - \alpha )h) = ih/\pi , for k \in \BbbZ , we apply Cauchy's residue theorem
to \int 

C\widetilde H,i,j

f(\zeta )g(\zeta ) d\zeta .

We take the limit \widetilde H \rightarrow H, and then the limit as i \rightarrow  - \infty and j \rightarrow +\infty which leads
(see [23, pp. 402--403] for more detail) to\int 

\Gamma  - H

f(\zeta )g(\zeta ) d\zeta  - 
\int 
\Gamma H

f(\zeta )g(\zeta ) d\zeta =  - 2Ih,\alpha [f ] + 2\pi i

m\sum 
k=1

g(\zeta k)Rk.

Making similar applications of Cauchy's residue theorem, we obtain also that\int 
\Gamma H

f(\zeta ) d\zeta +

\int 
\Gamma  - H

f(\zeta ) d\zeta = 2I[f ] - 2\pi i

m\sum 
k=1

sign(\eta k)Rk,

and the result follows.
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Re

Im

H \Gamma H

 - H \Gamma  - H

\zeta 1

\zeta 2

\zeta 3
\cdot \cdot \cdot 

\zeta m - 1

\zeta m
C \widetilde H,i,j

Fig. 1. The contour C \widetilde H,i,j
used in the proof of Proposition 2.1. The dots on the real line are

the poles of g(\zeta ) at (k  - \alpha )h for k \in \BbbZ .

Thanks to the bounds (19) it follows from the above proposition that

(20) | I[f ] - I\ast h,\alpha ,H [f ]| \leq e - 2\pi H/h

1 - e - 2\pi H/h

\int 
\Gamma H

(| f(\zeta )| + | f( - \zeta )| ) | d\zeta | ,

where

(21) I\ast h,\alpha ,H [f ] := Ih,\alpha [f ] + Ch,\alpha ,H [f ]

is what we will call the modified generalized trapezoidal rule. If f is analytic in SH ,
so that I\ast h,\alpha ,H [f ] = Ih,\alpha [f ], this bound reduces to [23, Theorem 5.1] and proves that
Ih,\alpha [f ] is exponentially convergent as h \rightarrow 0. In the more general case that f has
simple pole singularities in SH , the bound (20) proves the same rate of exponential
convergence for I\ast h,\alpha ,H [f ], the trapezoidal rule having been modified to take into
account these poles of f .

Our application of the above proposition and bound will be to the integrals given
by (5) and (3). In these cases (cf. Goodwin [11]) we have additionally that

(22) f(\zeta ) = e - \zeta 2

F (\zeta ),

where F is even and F (\zeta ) = O(1) as | Re(\zeta )| \rightarrow \infty , uniformly in SH . This satisfies the

conditions of the above proposition, and, since | exp( - \zeta 2)| = eH
2 - t2 for \zeta = t + iH,

and
\int \infty 
 - \infty exp( - t2) dt =

\surd 
\pi , the bound (20) implies in this case that

(23)
\bigm| \bigm| I[f ] - I\ast h,\alpha ,H [f ]

\bigm| \bigm| \leq 2eH
2 - 2\pi H/h

1 - e - 2\pi H/h

\int \infty 

 - \infty 
e - t2 | F (t+ iH)| dt \leq 2

\surd 
\pi MeH

2 - 2\pi H/h

1 - e - 2\pi H/h
,

where

(24) M := sup
t\in \BbbR 

| F (t+ iH)| .

An important observation, particularly when applying the above bound in cases
where F is meromorphic in the whole complex plane, is that the exponent H2  - 
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2352 MOHAMMAD AL AZAH AND SIMON N. CHANDLER-WILDE

2\pi H/h is minimized by the choice H = \pi /h, in which case H2  - 2\pi H/h =  - \pi 2/h2.
The representations (6) and (9), with the bound (7) (which bounds both | E(h)| and
| E\prime (h)| ), follow from applying (23) to (5). Precisely, we apply (23) with H = \pi /h
and \alpha = 0 and \alpha = 1/2, in the respective cases (6) and (9), noting that (5) can be
written as erfc(z) = I[f ] with f given by (22) and F (t) := z exp( - z2)/(\pi (z2 + t2)).
To obtain the bound (7) from (23) and (24) we note further that, for z = x+ iy and
\zeta = t + i\pi /h, | z2 + \zeta 2| = | z + i\zeta | | z  - i\zeta | \geq | x  - \pi /h| | x + \pi /h| = | x2  - \pi 2/h2| . (We
remark that the blow-up when x = \pi /h in the bound (7) is an artifact of the method
of argument that the contour \Gamma H with H = \pi /h passes through a pole of the function
F when x = \pi /h.)

2.2. Trapezoidal rule error estimates. In this subsection we apply the above
methods and bounds to obtain uniform absolute and relative error estimates as a
replacement for the bound (7). Except where explicitly indicated otherwise, all the
results we prove hold for all h > 0 and all \alpha \in [0, 1). In the estimates we obtain in
Proposition 2.2 we avoid the equivalent of the blow-up seen in (7) when x = \pi /h by
making two separate applications of the contour integral argument, with H = \pi /h\pm \epsilon .
It turns out that the \epsilon correction to the optimal choice H = \pi /h incurs only an O(1)
factor correction to the error bound as long as \epsilon is fixed independently of h. At the
same time, if we take a fixed \epsilon and switch as needed between H = \pi /h + \epsilon and
H = \pi /h - \epsilon , we can ensure that \Gamma H remains at least an O(1) distance from the poles
of the integrand as we vary z.

For z = x+ iy with y > 0 we write (3) as w(z) = I[fz] where

fz(t) := e - t2Fz(t) and Fz(t) :=
i z

\pi (z2  - t2)
.(25)

The even function fz is meromorphic with simple poles at t = \pm z and residues

R1 := Res (fz, z) =
 - i e - z2

2\pi 
and R2 := Res (fz, - z) =  - R1.(26)

Thus, using the notation of Proposition 2.1, we have

(27) Ch,\alpha ,H [fz] =

\biggl\{ 
2e - z2

/(1 - e - 2i\pi (\alpha +z/h)) if H > y,
0 if H < y,

and the trapezoidal rule approximation to w(z) = I[fz] is

(28) Ih,\alpha [fz] = h
\sum 
k\in \BbbZ 

iz e - (k - \alpha )2h2

\pi (z2  - (k  - \alpha )2h2)
=

\left\{           
hiz

\pi 

\Biggl[ 
1

z2
+ 2

\infty \sum 
k=1

e - \tau 2
k

z2  - \tau 2k

\Biggr] 
, \alpha = 0,

2hiz

\pi 

\infty \sum 
k=0

e - t2k

z2  - t2k
, \alpha = 1

2 ,

where tk and \tau k are as defined in (15). It is useful also to introduce the notation

(29) Ch,\alpha [fz] := lim
H\rightarrow \infty 

Ch,\alpha ,H [fz] =
2e - z2

1 - e - 2i\pi (\alpha +z/h)

and

(30) I\ast h,\alpha [fz] := lim
H\rightarrow \infty 

I\ast h,\alpha ,H [fz] = Ih,\alpha [fz] + Ch,\alpha [fz],
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where I\ast h,\alpha ,H [fz] is the modified trapezoidal rule defined by (21). Note that

(31) Ch,\alpha [fz] = Ch,\alpha ,H [fz] and I
\ast 
h,\alpha [fz] = I\ast h,\alpha ,H [fz] for y < H

and that I\ast h,\alpha ,H [fz] = Ih,\alpha [fz] for y > H. We note also that, as a function of z,
I\ast h,\alpha [fz] is entire: Ih,\alpha [fz] and Ch,\alpha [fz] are both meromorphic with simple poles at
z = \pm (k  - \alpha )h, k \in \BbbZ , and it is easy to check that the pole contributions cancel in
the sum (30): the singularities in I\ast h,\alpha [fz] are removable.

The following proposition (cf. [17, section 2]) bounds | w(z) - I\ast h,\alpha ,H [fz]| for H =
\pi /h. It also bounds the relative error | w(z) - I\ast h,\alpha ,H [fz]| /| w(z)| using the lower bound
[5, Theorem 6]

(32) | w(z)| \geq 1

1 +
\surd 
\pi | z| 

, Im(z) \geq 0,

this being sharp for small and large z as w(0) = 1 and w(z) \sim i/(
\surd 
\pi z) as z \rightarrow \infty [10,

(2.6)].

Proposition 2.2. Suppose that z = x+ iy with 0 \leq x \leq y. Then

(33)
\bigm| \bigm| w(z) - I\ast h,\alpha [fz]

\bigm| \bigm| \leq 2

\sqrt{} 
e

\pi 

e - \pi 2/h2

1 - e - 2\pi 2/h2

and

(34)

\bigm| \bigm| \bigm| w(z) - I\ast h,\alpha [fz]
\bigm| \bigm| \bigm| 

| w(z)| 
\leq 4

\surd 
2\pi e

h

e - \pi 2/h2

1 - e - 2\pi 2/h2

if 0 \leq y \leq \pi /h, while

(35) | w(z) - Ih,\alpha [fz]| \leq 4

\sqrt{} 
e

\pi 

e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

and

(36)
| w(z) - Ih,\alpha [fz]| 

| w(z)| 
\leq 4

\surd 
2\pi e(1 +

\surd 
\pi )

h

e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

if y \geq \pi /h and h <
\surd 
2\pi .

Proof. For H > 0 and y > 0 with H \not = y we have the bound (23) with

(37) M = sup
t\in \BbbR 

| Fz(t+ iH)| = | z| 
\pi 

sup
t\in \BbbR 

1

| z2  - (t+ iH)2| 
.

Since | z2  - (t + iH)2| = | z  - t  - iH| | z + t + iH| \geq | y  - H| | y + H| , it follows that
M \leq | z| /(\pi | y2  - H2| ), so that
(38)\bigm| \bigm| w(z) - I\ast h,\alpha ,H [fz]

\bigm| \bigm| \leq 2| z| eH2 - 2\pi H/h

\surd 
\pi 
\bigl( 
1 - e - 2\pi H/h

\bigr) 
| y2  - H2| 

\leq 2
\surd 
2 y eH

2 - 2\pi H/h

\surd 
\pi 
\bigl( 
1 - e - 2\pi H/h

\bigr) 
| y2  - H2| 

since 0 \leq x \leq y so that | z| \leq 
\surd 
2y. Further, using (32) and 0 \leq x \leq y,

(39)

\bigm| \bigm| \bigm| w(z) - I\ast h,\alpha ,H [fz]
\bigm| \bigm| \bigm| 

| w(z)| 
\leq 2

\surd 
2(1 +

\surd 
2\pi y)y eH

2 - 2\pi H/h

\surd 
\pi 
\bigl( 
1 - e - 2\pi H/h

\bigr) 
| y2  - H2| 

.
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2354 MOHAMMAD AL AZAH AND SIMON N. CHANDLER-WILDE

Now suppose that 0 < y \leq \pi /h, and take H = \pi /h + \varepsilon for some \varepsilon > 0. Then,
by (31), I\ast h,\alpha [fz] = I\ast h,\alpha ,H [fz], and since y/(H2  - y2) and (1 +

\surd 
2\pi y)y/(H2  - y2) are

increasing as functions of y on [0, H), it follows from (38) and (39) with H = \pi /h+ \varepsilon 
that

(40)
\bigm| \bigm| w(z) - I\ast h,\alpha [fz]

\bigm| \bigm| \leq 2
\surd 
2\pi e - \pi 2/h2+\varepsilon 2\bigl( 

1 - e - 2\pi 2/h2 - 2\pi \varepsilon /h
\bigr) 
\varepsilon (2\pi + \varepsilon h)

and

(41)

\bigm| \bigm| \bigm| w(z) - I\ast h,\alpha [fz]
\bigm| \bigm| \bigm| 

| w(z)| 
\leq 2

\surd 
2\pi (h+

\surd 
2\pi \pi ) e - \pi 2/h2+\varepsilon 2

h
\bigl( 
1 - e - 2\pi 2/h2 - 2\pi \varepsilon /h

\bigr) 
\varepsilon (2\pi + \varepsilon h)

.

Choosing \varepsilon = 1/
\surd 
2 to minimize exp(\varepsilon 2)/\varepsilon , we obtain, for 0 < y < \pi /h, the bound

(33), and also the bound (34) on noting that (h +
\surd 
2\pi \pi )/(2\pi + h/

\surd 
2) \leq 

\surd 
2; these

bounds hold also for y = 0 and y = \pi /h since the left-hand sides of the bounds depend
continuously on y on [0, \pi /h] (recall that I\ast h,\alpha [fz] is an entire function of z and that
w(z) is bounded below on y \geq 0 by (32)).

Now suppose that y > \pi /h, and take H = \pi /h  - \varepsilon for some \varepsilon \in (0, \pi /h). Then
I\ast h,\alpha ,H [fz] = Ih,\alpha [fz], and since y/(y2 - H2) and (1+

\surd 
2\pi y)y/(y2 - H2) are decreasing

as functions of y on (H,\infty ], it follows from (38) and (39) with H = \pi /h - \varepsilon that

(42) | w(z) - Ih,\alpha [fz]| \leq 
2
\surd 
2\pi e - \pi 2/h2+\varepsilon 2\bigl( 

1 - e - 2\pi 2/h2+2\pi \varepsilon /h
\bigr) 
\varepsilon (2\pi  - \varepsilon h)

and

(43)
| w(z) - Ih,\alpha [fz]| 

| w(z)| 
\leq 2

\surd 
2\pi (h+

\surd 
2\pi \pi ) e - \pi 2/h2+\varepsilon 2

h
\bigl( 
1 - e - 2\pi 2/h2+2\pi \varepsilon /h

\bigr) 
\varepsilon (2\pi  - \varepsilon h)

.

If \pi /h > 1/
\surd 
2, we can again choose \varepsilon = 1/

\surd 
2, obtaining the bounds (35) and (36) for

y > \pi /h; these bounds hold also for y = \pi /h since the left-hand sides of the bounds
depend continuously on y on [\pi /h,\infty ).

It follows immediately from the definition (29) that, for x \in \BbbR , y > 0,

| Ch,\alpha [fz]| \leq 
2 e - 2\pi y/h

1 - e - 2\pi y/h
ey

2 - x2

.(44)

Since | I\ast h,\alpha [fz]| \leq | Ih,\alpha [fz]| + | Ch,\alpha [fz]| , the following corollary follows from the above
proposition, (44), and (32). The purpose of this corollary is to provide bounds on
errors on part of the boundary of the infinite sector \Omega (as defined in Lemma 2.4
with a = 4). This will lead to absolute and relative error bounds for I\ast h,\alpha [fz] as an

approximation on the whole of \Omega via the Phragm\'en--Lindel\"of principle of Lemma 2.4;
see Proposition 2.6 below.

Corollary 2.3. If z = x+ iy with x = y \geq 0 and h <
\surd 
2\pi , then

(45)
\bigm| \bigm| w(z) - I\ast h,\alpha [fz]

\bigm| \bigm| \leq ca
e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

and

(46)

\bigm| \bigm| \bigm| w(z) - I\ast h,\alpha [fz]
\bigm| \bigm| \bigm| 

| w(z)| 
\leq cr

h

e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

,
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2355

where

(47) ca :=
2(2e +

\surd 
\pi )\surd 

e\pi 
\approx 4.934 and cr :=

2
\surd 
2\pi (1 +

\surd 
\pi )(2e +

\surd 
\pi )\surd 

e
\approx 60.77.

Proof. For 0 \leq x = y \leq \pi /h these bounds follow immediately from the sharper
bounds (33) and (34). Suppose now that x = y \geq \pi /h and h <

\surd 
2\pi . Then it follows

from (44) that

| Ch,\alpha [fz]| \leq 
2 e - 2\pi 2/h2

1 - e - 2\pi 2/h2 \leq 2 e - \pi 2/h2

\surd 
e
\bigl( 
1 - e - 2\pi 2/h2

\bigr) .
Further, since (1 +

\surd 
2\pi y)/(e2\pi y/h  - 1) is decreasing as a function of y on [\pi /h,\infty ),

it follows from (44) and (32) that

| Ch,\alpha [fz]| 
| w(z)| 

\leq 2 (h+
\surd 
2\pi \pi )e - 2\pi 2/h2

h
\bigl( 
1 - e - 2\pi 2/h2

\bigr) \leq 2
\surd 
2\pi (1 +

\surd 
\pi ) e - \pi 2/h2

h
\surd 
e
\bigl( 
1 - e - 2\pi 2/h2

\bigr) .

Since | I\ast h,\alpha [fz]| \leq | Ih,\alpha [fz]| + | Ch,\alpha [fz]| , the required bounds for x = y \geq \pi /h follow
from the above bounds and (35) and (36) in Proposition 2.2.

Proposition 2.2 tells us that I\ast h,\alpha ,H [fz], withH = \pi /h, is an approximation to w(z)
with controllable absolute and relative errors for \pi /4 \leq arg(z) \leq \pi /2. To complement
this result we will show in Proposition 2.6 below that I\ast h,\alpha [fz] is an approximation
to w(z) with controllable absolute and relative errors for 0 \leq arg(z) \leq \pi /4, so that
I\ast h,\alpha ,\pi /h[fz] and I\ast h,\alpha [fz] together provide trapezoidal rule--based approximations to

w(z) across the whole first quadrant (and, via the symmetries (4), across the whole
complex plane). We will prove Proposition 2.6 via the following Phragm\'en--Lindel\"of
principle applied with a = 4 to the left-hand sides of (42) and (43).

Lemma 2.4 (see [8, Chapter VI, Cor. 4.2]). Let a \geq 1/2, and put

\Omega :=
\bigl\{ 
z = rei\theta : r > 0 and 0 < \theta < \pi /a

\bigr\} 
.

Suppose that f is analytic on \Omega and continuous in \Omega and that there is a constant P
such that | f(z)| \leq P for all z \in \partial \Omega . If there are positive constants Q and b < a such
that | f(z)| \leq Q exp(| z| b) for all z \in \Omega , then | f(z)| \leq P for all z \in \Omega .

The main step in proving Proposition 2.6 via this lemma is to show that the
left-hand sides of (45) and (46) are bounded on \partial \Omega when a = 4. We have bounded
these left-hand sides already on \{ rei\pi /4 : r \geq 0\} in Corollary 2.3. It remains to bound
them on the positive real axis, which we do in the next proposition.

Proposition 2.5. If x \geq 0, then

(48)
\bigm| \bigm| w(x) - I\ast h,\alpha [fx]

\bigm| \bigm| \leq 2he - \pi 2/h2

\pi 3/2
\bigl( 
1 - e - 2\pi 2/h2

\bigr) 
and

(49)

\bigm| \bigm| \bigm| w(x) - I\ast h,\alpha [fx]
\bigm| \bigm| \bigm| 

| w(x)| 
\leq 
\biggl[ 
8 +

10h

\pi 3/2

\biggr] 
e - \pi 2/h2

1 - e - 2\pi 2/h2 .
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2356 MOHAMMAD AL AZAH AND SIMON N. CHANDLER-WILDE

Proof. Arguing as in the proof of Proposition 2.2, for x \geq 0 and 0 < y < \pi /h we
have the bound (23) with H = \pi /h. Thus, and since (recall (31)) I\ast h,\alpha ,H [fz] = I\ast h,\alpha [fz]
for y < H, it follows that

(50)
\bigm| \bigm| I[f ] - I\ast h,\alpha [fz]

\bigm| \bigm| \leq 2e - \pi 2/h2

1 - e - 2\pi 2/h2

\int \infty 

 - \infty 
e - t2 | Fz(t+ iH)| dt \leq 2

\surd 
\pi Me - \pi 2/h2

1 - e - 2\pi 2/h2 ,

where M is given by (37). Since M and the left- and right-hand sides of the first of
these inequalities depend continuously on y on [0, \pi /h), the above inequalities hold
also for y = 0. Since, also, for x \geq 0 and t \in \BbbR we have that

| x2  - (t+ i\pi /h)2| = | x2  - (| t| + i\pi /h)2| 

= | x - | t|  - i\pi /h| | x+ | t| + i\pi /h| \geq \pi 

h
| x+ i\pi /h| \geq \pi 

h
| x| ,(51)

it follows that M \leq h/\pi 2 for x \geq 0, and (48) follows from (50) with z = x \geq 0.
From (32) and (50), with z = x \geq 0 and H = \pi /h, it follows that

(52)

\bigm| \bigm| \bigm| I[f ] - I\ast h,\alpha [fx]
\bigm| \bigm| \bigm| 

| w(x)| 
\leq 2(1 +

\surd 
\pi x)e - \pi 2/h2

1 - e - 2\pi 2/h2

\int \infty 

 - \infty 
Gx(t) dt

for x \geq 0, where

Gx(t) := e - t2 | Fx(t+ i\pi /h)| = xe - t2

\pi | x2  - (t+ i\pi /h)2| 
.

If x \geq 0 and  - x/2 \leq t \leq x/2, then

| x2 - (t+i\pi /h)2| = | x - t - i\pi /h| | x+t+i\pi /h| \geq | x/2 - i\pi /h| | x/2+i\pi /h| = x2 + 4\pi 2/h2

4
,

so that \int x/2

 - x/2

Gx(t) dt \leq 
4x

\pi (x2 + 4\pi 2/h2)

\int \infty 

 - \infty 
e - t2 dt =

4x\surd 
\pi (x2 + 4\pi 2/h2)

.

On the other hand, using (51), we see that Gx(t) \leq he - t2/\pi 2 for all x \geq 0, t \in \BbbR , so
that \int 

\BbbR \setminus [ - x/2,x/2]

Gx(t) dt \leq 
2h

\pi 2

\int \infty 

x/2

e - t2 dt <
2h

\pi 2x
e - x2/4 \leq 2h

\pi 2x

for x > 0 since, for a > 0,

(53)

\int \infty 

a

e - t2 dt =
e - a2

2a
 - 1

2

\int \infty 

a

e - t2

t2
dt <

e - a2

2a
.

Moreover, \int 
\BbbR \setminus [ - x/2,x/2]

Gx(t) dt \leq 
2h

\pi 2

\int \infty 

0

e - t2 dt =
h

\pi 3/2
.

Thus, and since min(a, b) \leq 2ab/(a+ b) if a \geq 0, b \geq 0, and a+ b > 0, it follows that\int 
\BbbR \setminus [ - x/2,x/2]

Gx(t) dt \leq 
h

\pi 2
min(

\surd 
\pi , 2x - 1) \leq 4h

\pi 3/2(2 +
\surd 
\pi x)
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2357

so that \int \infty 

 - \infty 
Gx(t) dt \leq 

4\surd 
\pi 

\biggl( 
x

x2 + 4\pi 2/h2
+

h

\pi (2 +
\surd 
\pi x)

\biggr) 
and (49) follows from (52) on noting that x2/(x2+4\pi 2/h2) \leq 1 and x/(x2+4\pi 2/h2) \leq 
h/(4\pi ).

In our final proposition of this subsection (cf. [4, Proposition 3.3.4]) we combine
Corollary 2.3, Proposition 2.5, and Lemma 2.4 to bound approximations to w(z) in
0 \leq arg(z) \leq \pi /4, complementing the bounds in Proposition 2.2 for \pi /4 \leq arg(z) \leq 
\pi /2.

Proposition 2.6. Suppose that h <
\surd 
2\pi and z = x+ iy with 0 \leq y \leq x. Then

the bounds (45) and (46) hold with ca and cr given by (47).

Proof. We will prove this proposition by applying Lemma 2.4 with a = 4, so
that \Omega = \{ z = x + iy : 0 < y < x\} , to the functions Eh(z) := w(z)  - I\ast h,\alpha [fz] and
eh(z) := Eh(z)/w(z) = (w(z) - I\ast h,\alpha [fz])/w(z).

We have remarked already that w(z) and I\ast h,\alpha [fz] are entire as a function of z,
so that Eh is entire and, noting (32), eh is analytic in Im(z) > 0 and continuous in
Im(z) \geq 0. In particular, Eh and eh are continuous in \Omega and analytic in \Omega . Further, if
h <

\surd 
2\pi , it follows from Corollary 2.3 and Proposition 2.5, on noting that the bounds

in Proposition 2.5 are smaller than those in Corollary 2.3, that Eh and eh satisfy the
bounds claimed in the proposition when z \in \partial \Omega , i.e., for z on \{ x + ix : x \geq 0\} and
on the positive real axis. Thus the proposition follows by Lemma 2.4 if we can show
that Eh(z) and eh(z) do not grow too rapidly as z \rightarrow \infty in \Omega .

But, if h <
\surd 
2\pi , it follows from (31) and (38) applied with H = 3 that, for some

constant C > 0 independent of z, | Eh(z)| \leq C| z| if z \in \Omega with y \leq 2. Similarly,
since I\ast h,\alpha ,H [fz] = Ih,\alpha [fz] if y > H and I\ast h,\alpha [fz] = Ih,\alpha [fz] + Ch,\alpha [fz], it follows from

(38) applied with H = 1 and (44) that, for some constant \widetilde C > 0 independent of

z, | Eh(z)| \leq \widetilde C| z| if z \in \Omega with y \geq 2. Thus | Eh(z)| \leq C\ast | z| for z \in \Omega , where

C\ast := max(C, \widetilde C), so that also, applying (32), | eh(z)| \leq C\ast | z| (1 +
\surd 
\pi | z| ) for z \in \Omega .

Thus the proposition follows by applying Lemma 2.4.

The following corollary summarizes and simplifies, at the cost of a little sharpness,
the results of Propositions 2.2 and 2.6 and of this subsection.

Corollary 2.7. Suppose that z = x + iy with x \geq 0, y \geq 0, and h <
\surd 
2\pi .

Then the bounds (45) and (46) hold with ca and cr given by (47) if y \leq max(x, \pi /h).
The same bounds hold as bounds on | w(z)  - Ih,\alpha [fz]| and | w(z)  - Ih,\alpha [fz]| /| w(z)| ,
respectively, with the same values of ca and cr, if y \geq max(x, \pi /h).

Proof. The first claim of the corollary follows from Proposition 2.6 and (33) and
(34), and the second follows from (35) and (36).

2.3. Truncating the infinite series. Propositions 2.2 and 2.6 together provide
accurate trapezoidal rule--based approximations to w(z) in the first quadrant of the
complex plane that can be extended to the whole complex plane using the symme-
tries (4). But in implementation the infinite series in these approximations must be
truncated. We estimate the additional error this introduces in this subsection.

At this point, since we wish to use the fact that fz is even to reduce computation,
we restrict our attention to the cases \alpha = 0 and \alpha = 1/2, in which cases the trapezoidal
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rule approximation reduces to (28). In these cases we approximate Ih,\alpha [fz] by

INh,\alpha [fz] :=

\left\{           
hfz(0) + 2h

N\sum 
k=1

fz(\tau k), \alpha = 0,

2h

N\sum 
k=0

fz(tk), \alpha = 1/2,

(54)

with fz given by (25) and \tau k and tk defined as in (15). We will call the error in
approximating Ih,\alpha [fz] by I

N
h,\alpha [fz] the truncation error, given by

(55) TN
h,\alpha [fz] := 2h

\infty \sum 
k=N+1

fz(sk),

where sk := (k + \alpha )h. This is also the error in approximating I\ast h,\alpha [fz] by I
\ast ,N
h,\alpha [fz],

where I\ast h,\alpha [fz] is defined as in (30) and

(56) I\ast ,Nh,\alpha [fz] := INh,\alpha [fz] + Ch,\alpha [fz].

The following result [4, Proposition 3.3.7] bounds TN
h,\alpha [fz] for \pi /4 \leq arg(z) \leq \pi /2.

We use in this proposition the estimate, obtained since exp( - t2) is decreasing on
(0,\infty ) and noting (53), that

(57) 2h

\infty \sum 
k=M

e - s2k \leq 2he - s2M + 2

\int \infty 

sM

e - t2 dt \leq 2hsM + 1

sM
e - s2M , M \in \BbbN .

Proposition 2.8. Suppose \alpha = 0 or 1/2 and z = x + iy with y \geq x \geq 0. Then,
for N \in \BbbN 0,

| TN
h,\alpha [fz]| \leq 

(1 + 2h \tau N+1)

\pi \tau 2N+1

e - \tau 2
N+1 and(58)

| TN
h,\alpha [fz]| 
| w(z)| 

\leq (1 + 2h \tau N+1)(1 + 2
\surd 
\pi \tau N+1)

\pi \tau 2N+1

e - \tau 2
N+1 .(59)

Proof. For z = x+ iy with y \geq x \geq 0,

| z2  - s2k| 2 = y4 + s4k + x4 + 2x2y2 + 2s2k(y
2  - x2) \geq y4 + s4k \geq y4 + \tau 4k .

Thus, and recalling (25) and using (57) with M = N + 1,

| TN
h,\alpha [fz]| \leq 

2
\surd 
2h y

\pi 

\infty \sum 
k=N+1

e - \tau 2
k\sqrt{} 

y4 + \tau 4k
\leq 

\surd 
2y (1 + 2h \tau N+1)

\pi \tau N+1

\sqrt{} 
y4 + \tau 4N+1

e - \tau 2
N+1 .

Moreover,

y
\Big/ \sqrt{} 

y4 + \tau 4N+1 \leq 1\surd 
2 \tau N+1

and y2
\Big/ \sqrt{} 

y4 + \tau 4N+1 \leq 1

so that (58) follows and also

y | TN
h,\alpha [fz]| \leq 

\surd 
2(1 + 2h \tau N+1)

\pi \tau N+1
e - \tau 2

N+1 .(60)

Since, by (32), | w(z)|  - 1 \leq 1 +
\surd 
2\pi y for 0 \leq x \leq y, (59) follows from (58) and (60).
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2359

The following result [4, Propositions 3.3.5, 3.3.6] bounds TN
h,\alpha [fz] for 0 \leq arg(z)

\leq \pi /4 so that Propositions 2.8 and 2.9 together bound the absolute and relative
truncation errors in the first quadrant. The case 0 \leq arg(z) \leq \pi /4 is more subtle
because TN

h,\alpha [fz] is unbounded, it has simple poles at z = sk for k \geq N + 1, and
our bound requires that the distance of z from this set of poles is \geq h/4. Despite
this restriction, we can construct accurate approximations covering the whole region
0 \leq arg(z) \leq \pi /4 because sk = \tau k = kh for \alpha = 0 while sk = tk = \tau k + h/2 for
\alpha = 1/2, so that \{ z : | z  - sk| \geq h/4 for either sk = \tau k or tk, for k \geq N + 1\} includes
the whole of \{ z : 0 \leq arg(z) \leq \pi /4\} .

Proposition 2.9. Suppose \alpha = 0 or 1/2 and z = x + iy with 0 \leq y \leq x and
| z  - sk| \geq h/4 for k \geq N + 1. Then, for N \in \BbbN 0,

| TN
h,\alpha [fz]| \leq c(h,N, \alpha ) :=

2
\surd 
2 (1 + 2hsN+1) (h+ 4sN+1)

\pi h s2N+1

e - s2N+1 and(61)

| TN
h,\alpha [fz]| 
| w(z)| 

\leq (1 +
\surd 
2\pi sN+1) c(h,N, \alpha ).(62)

Proof. From (25) and (55), for 0 \leq y \leq x,

(63) | TN
h,\alpha [fz]| \leq 

2h| z| 
\pi 

\infty \sum 
k=N+1

e - s2k

| z2  - s2k| 
\leq 2

\surd 
2hx

\pi (x+ sN+1)

\infty \sum 
k=N+1

e - s2k

| z  - sk| 
.

Thus, and noting (32), the bounds (61) and (62) hold if x = 0.
Choose \theta with 0 < \theta < 1. Recalling z = x + iy, in the case that x > 0 let M be

the smallest integer \geq N +1 such that sM > \theta x, so that, if M > N +1, it holds that
sk \leq \theta x and | z - sk| \geq (1 - \theta )x for k < M . If M > N +1, it follows, using the bound
(57), that

2hx

M - 1\sum 
k=N+1

e - s2k

| z  - sk| 
\leq 2h

1 - \theta 

\infty \sum 
k=N+1

e - s2k \leq 2hsN+1 + 1

(1 - \theta )sN+1
e - s2N+1 ,

while, for M \geq N + 1, assuming | z  - sk| \geq h/4 for k \geq N + 1 and again using (57),

2hx

\infty \sum 
k=M

e - s2k

| z  - sk| 
\leq 8x

\infty \sum 
k=M

e - s2k \leq 4x(2hsM + 1)

hsM
e - s2M \leq 4(2hsM + 1)

h\theta 
e - s2M .

Thus, and since (2ht + 1) exp( - t2) is decreasing as a function of t on [h,\infty ) and
sM \geq sN+1 \geq h,

2hx

\infty \sum 
k=N+1

e - s2k

| z  - sk| 
\leq (2hsN+1 + 1)

\biggl[ 
4

h\theta 
+

1

(1 - \theta )sN+1

\biggr] 
e - s2N+1

=
2(2hsN+1 + 1)(h+ 4sN+1)

hsN+1
e - s2N+1 ,(64)

on choosing \theta = 4sN+1/(h+4sN+1) so as to equalize the terms in the square brackets.
From (63) and (64), on noting that x+ sN+1 \geq sN+1 and x/(x+ sN+1) \leq 1, we see
that, for x > 0, (61) holds and also x| TN

h,\alpha [fz]| \leq sN+1c(h,N). From these bounds

and that | w(z)|  - 1 \leq 1 +
\surd 
2\pi x for 0 \leq y \leq x by (32), the bound (62) follows.
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The following corollary summarizes and simplifies, at the cost of a little sharpness,
the results of Propositions 2.8 and 2.9 and this subsection.

Corollary 2.10. Suppose \alpha = 0 or 1/2, z = x + iy with x \geq 0, y \geq 0, and
either y \geq x or | z  - sk| \geq h/4 for k \geq N + 1. Then, for N \in \BbbN 0,

| TN
h,\alpha [fz]| \leq c(h,N, 0) =

2
\surd 
2 (1 + 2h\tau N+1) (h+ 4\tau N+1)

\pi h \tau 2N+1

e - \tau 2
N+1 , and also(65)

| TN
h,\alpha [fz]| 
| w(z)| 

\leq (1 +
\surd 
2\pi \tau N+1) c(h,N, 0), provided h \geq 1/(N + 1).(66)

Proof. Proposition 2.8 implies the above bounds hold when y \geq x. If y \leq x, the
above bounds are immediate from Proposition 2.9 in the case \alpha = 0. They hold also
when \alpha = 1/2 as (i) c(h,N, 1/2) \leq c(h,N, 0), since s - me - s2 decreases as s increases
on (0,\infty ) for m = 0, 1, 2; (ii) tN+1c(h,N, 1/2) \leq \tau N+1c(h,N, 0) if \tau N+1 \geq 1 (i.e.,

h \geq 1/(N + 1)), since also se - s2 decreases as s increases on [1,\infty ).

2.4. Proof of the main theorem. In this subsection we bring together the
bounds on the error in the trapezoidal rule approximation (Corollary 2.7) and on the
truncation error (Corollary 2.10) to bound the errors in the truncated trapezoidal rule
approximation (54) and its modification (56). Clearly,

| w(z) - INh,\alpha [fz]| \leq | w(z) - Ih,\alpha [fz]| + | TN
h,\alpha [fz]| and(67)

| w(z) - I\ast ,Nh,\alpha [fz]| \leq | w(z) - I\ast h,\alpha [fz]| + | TN
h,\alpha [fz]| .(68)

Applying Corollaries 2.7 and 2.10 it follows that, for \alpha = 0 and 1/2 and z = x + iy
with x \geq 0, 0 \leq y \leq max(x, \pi /h),

| w(z) - I\ast ,Nh,\alpha [fz]| \leq ca
e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

+ c(h,N, 0), where(69)

c(h,N, 0) :=
2
\surd 
2 (1 + 2h\tau N+1) (h+ 4\tau N+1)

\pi h \tau 2N+1

e - \tau 2
N+1 ,

provided y \geq x or | z  - sk| \geq h/4 for k \geq N + 1. Similarly, applying Corollaries 2.7
and 2.10,

| w(z) - INh,\alpha [fz]| \leq ca
e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

+ c(h,N, 0)(70)

for \alpha = 0 and 1/2 if z = x+ iy with x \geq 0 and y \geq max(x, \pi /h).
We choose the step size h, as a function of N , to approximately balance the

contributions from the trapezoidal rule error and the truncation error in the above

error bounds. Precisely, we choose h so that the exponents of e - \pi 2/h2

and e - \tau 2
N+1

are equal; i.e., we define h :=
\sqrt{} 
\pi /(N + 1) as in (11). With this choice of h we have

\pi /h = \tau N+1 =
\sqrt{} 
(N + 1)\pi ,

(71) c(h,N, 0) =
2
\surd 
2 (1 + 2\pi ) (5 + 4N)

\pi 2(N + 1)
e - (N+1)\pi \leq 10

\surd 
2 (1 + 2\pi )

\pi 2
e - (N+1)\pi ,

and

(72)
e - \pi 2/h2

1 - e - 2\pi 2/h2+
\surd 
2\pi /h

=
exp( - (N + 1)\pi )

1 - exp
\Bigl( 
 - 2(N + 1)\pi +

\sqrt{} 
2(N + 1)\pi 

\Bigr) \leq c\ast e - (N+1)\pi ,
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COMPUTATION OF THE COMPLEX ERROR FUNCTION 2361

where

(73) c\ast :=
\Bigl( 
1 - exp

\Bigl( 
 - 2\pi +

\surd 
2\pi 
\Bigr) \Bigr)  - 1

\approx 1.0234.

This leads to our main theorem.

Theorem 2.11. Suppose \alpha = 0 or 1/2, N \in \BbbN 0, h is defined by (11), and z =
x+ iy. If \pi /h \geq y \geq x \geq 0 or 0 \leq y \leq x and | z  - sk| \geq h/4 for k \geq N + 1, then

(74) | w(z) - I\ast ,Nh,\alpha [fz]| \leq C1 e
 - \pi N and

| w(z) - I\ast ,Nh,\alpha [fz]| 
| w(z)| 

\leq C2

\surd 
N + 1 e - \pi N ,

where

C1 :=
2(2e +

\surd 
\pi )

e\pi 
\surd 
e\pi 
\bigl( 
1 - exp

\bigl( 
 - 2\pi +

\surd 
2\pi 
\bigr) \bigr) + 10

\surd 
2 (1 + 2\pi )

e\pi \pi 2
\approx 0.6692 and(75)

C2 :=
2
\surd 
2 (1 +

\surd 
\pi )(2e +

\surd 
\pi )

e\pi 
\surd 
e
\bigl( 
1 - exp

\bigl( 
 - 2\pi +

\surd 
2\pi 
\bigr) \bigr) + 10(1 + 2\pi )(2\pi +

\surd 
2)

e\pi \pi 2
\approx 3.971.(76)

Further, if x \geq 0 and y \geq max(x, \pi /h), then

(77) | w(z) - INh,\alpha [fz]| \leq C1 e
 - \pi N and

| w(z) - INh,\alpha [fz]| 
| w(z)| 

\leq C2

\surd 
N + 1 e - \pi N .

Proof. The bounds on | w(z)  - I\ast ,Nh,\alpha [fz]| and | w(z)  - INh,\alpha [fz]| follow from (69),
(70), (71), (72), and the definitions, (47) and (73), of ca and c\ast . With h defined by
(11), it follows that h \geq 1/(N + 1) and

1 +
\surd 
2\pi \tau N+1 = 1 + \pi 

\sqrt{} 
2(N + 1) \leq 

\surd 
2 + 2\pi \surd 

2

\surd 
N + 1.

Thus Corollaries 2.7 and 2.10, together with (67), (68), (71), and (72), imply, with

h defined by (11), that | w(z) - I\ast ,Nh,\alpha [fz]| /| w(z)| and | w(z) - INh,\alpha [fz]| /| w(z)| are both
bounded above by\Biggl( 

crc
\ast 

h
+

10(1 + 2\pi )(2\pi +
\surd 
2)

\pi 2

\surd 
N + 1

\Biggr) 
e - (N+1)\pi = C2

\surd 
N + 1 e - \pi N ,

under their respective constraints on x and y.

The above theorem justifies approximating w(z) by INh,\alpha [fz], with \alpha = 0 or 1/2,
if h is given by (11), x \geq 0, and y \geq max(x, \pi /h); we choose, arbitrarily, the
midpoint rule--based approximation wM

N (z) := INh,1/2[fz] given explicitly by (12). If

y < max(x, \pi /h), the above theorem suggests approximating by I\ast ,Nh,\alpha [fz], with \alpha = 0
or 1/2. For 0 \leq x \leq y < \pi /h we choose the modified midpoint rule--based approx-

imation wMM
N (z) := I\ast ,Nh,1/2[fz] given explicitly by (13). This choice ensures that the

distance of z from the set of quadrature points \{ t0, . . . , tN\} is \geq h/(2
\surd 
2), so that

the size of the largest term in the sum (12) does not exceed 1/(\pi 
\surd 
2) and there is

no loss of precision through cancellation between the two terms in the sum (13). For
0 \leq y < x we approximate either by wMM

N (z) or by the modified trapezoidal-based

approximation wMT
N (z) := I\ast ,Nh,0 [fz], written explicitly in (14). Which of these we use
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is determined by the rule (10). This rule ensures that | z  - sk| \geq h/4 for k \in \BbbN 0,
where sk = tk when \alpha = 1/2, and sk = \tau k when \alpha = 0, so that Theorem 2.11 applies
and, in the use of both (13) and (14), we avoid loss of precision through cancellation
between nearly equal terms.

Proof of Theorem 1.1. Noting the discussion in the above paragraph, we see that
the bounds in Theorem 1.1 follow, for x \geq 0, y \geq 0, immediately from those in
Theorem 2.11. That the absolute error bound holds in the whole complex plane, and
that the bound on the relative error holds in \{ z : y \geq 0\} , follows from the bounds in
the first quadrant and the symmetry relations and definitions (4) and (16).

3. Survey of existing methods. There are a number of other schemes for the
computation of w(z) for complex z, and we briefly summarize the best of these, making
connections with (10). Most use variations on polynomial or rational approximation,
with different schemes in different regions of the first quadrant (leading, through
(4), to approximation in the whole complex plane). Indeed, our own approximation
(10) uses three formulae (12)--(14), with (12) rational and (13)--(14) rational with
meromorphic corrections in terms of exponential functions.

Gautschi [10] advocated, for larger z, the rational approximation

(78) w(z) \approx i/
\surd 
\pi 

z - 
1/2

z - 
2/2

z - 
3/2

z - 
\cdot \cdot \cdot (n - 1)/2

z
,

the nth convergent of the beautiful Laplace continued fraction representation for w(z)
(specifically suggesting n = 9). Gautschi notes that (i) by construction the nth
convergent is asymptotically accurate, with error O(| z|  - 2n - 1) as | z| \rightarrow \infty , uniformly
in the first quadrant; (ii) the nth convergent converges to w(z) as n\rightarrow \infty if and only
if Im(z) > 0; (iii) remarkably, for Im(z) > 0, the nth convergent coincides with the
approximation obtained by approximating (3) by an n-point Gauss--Hermite rule. For
smaller z Gautschi [10] proposed (rational) approximations that are truncated Taylor
expansions with the coefficients approximated by convergents of continued fractions.

This methodology, carefully tuned, is the basis of TOMS Algorithm 680 (Poppe
and Wijers [19]) which achieves a relative error of 10 - 14 over nearly all the complex
plane using, in the first quadrant, (i) Maclaurin polynomials of degree \leq 55 for the
odd function erf( - iz) (substituted into (2)) in an ellipse around the origin; (ii) the
convergents (78) with n \leq 18 outside a larger ellipse; (iii) the more expensive mix
of Taylor expansion and continued fraction calculation proposed by Gautschi [10] in
between. This algorithm has been used as a benchmark by several later authors.

Weideman [25, 26] proposed (the derivation starts from (3)) the single rational
approximation

(79) w(z) \approx 1\surd 
\pi (L - iz)

+
2

(L - iz)2

N - 1\sum 
n=0

an+1

\biggl( 
L+ iz

L - iz

\biggr) n

for Im(z) \geq 0,

where the size of N controls the accuracy of the approximation, L := 2 - 1/4N1/2,
and the an are discrete Fourier coefficients that can be precomputed by the FFT.
He argues, based on operation counts, that, for intermediate values of | z| , the work
required to compute w(z) to 10 - 14 relative accuracy is much smaller for (79) than for
the Poppe and Wijers algorithm [19].

Zaghloul and Ali proposed a method (see TOMS Algorithm 916 [29] and the
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refinements in [27], and cf. [20] and [3, (7.1.29)]) starting from

(80) erf(z) = erf(x) +
2e - x2

\surd 
\pi 

\int y

0

et
2

sin(2xt) dt+
2i e - x2

\surd 
\pi 

\int y

0

et
2

cos(2xt) dt

for z = x+ iy. They approximate

w(z) \approx u(x, y) + iv(x, y), x, y \geq 0,(81)

where

u(x, y) := e - x2

erfcx(y) cos(2xy) +
2a sin2(xy)

\pi y
e - x2

+
ay

\pi 
( - 2 cos(2xy)S1 + S2 + S3) ,

v(x, y) :=  - e - x2

erfcx(y) sin(2xy) +
a sin(2xy)

\pi y
e - x2

+
a

\pi 
(2y sin(2xy)S1  - S4 + S5) ,

erfcx(y) := ey
2

erf(y), and Sj , j = 1, . . . , 5, are the following summations reminiscent
of the trapezoidal rule approximations (6):

S1 :=

\infty \sum 
k=1

\biggl( 
1

a2k2 + y2

\biggr) 
e - (a2k2+x2), S2 :=

\infty \sum 
k=1

\biggl( 
1

a2k2 + y2

\biggr) 
e - (ak+x)2 ,

S3 :=

\infty \sum 
k=1

\biggl( 
1

a2k2 + y2

\biggr) 
e - (ak - x)2 , S4 :=

\infty \sum 
k=1

\biggl( 
ak

a2k2 + y2

\biggr) 
e - (ak+x)2 ,

S5 :=

\infty \sum 
k=1

\biggl( 
ak

a2k2 + y2

\biggr) 
e - (ak - x)2 .

(82)

The authors have supplied us with their MATLAB implementation Faddeyeva\.v2(z,M)
[27], where the parameter M is the number of accurate significant figures required,
and the code enforces 4 \leq M \leq 13. In this code the choice a = 1/2 is made and the
sums in (82) are truncated, the number of terms retained depending on M . Zaghloul
and Ali [29] (see also [27]) present numerical evidence that the approximation (81),
with a = 1/2 and appropriate truncation of the infinite sums (82), is more accurate
and faster than TOMS Algorithm 680 [19]. This algorithm and code have been used
by Zaghloul [28] to benchmark a more efficient, low accuracy (< 4\times 10 - 5 maximum
relative error in both real and imaginary parts) approximation to w(z) for z in the
first quadrant.

Abrarov, Quine, and Jagpal [2] (also see [1]) proposed recently another method
for computing w(z) using modified rational approximations, namely

w(z) \approx 

\left\{     
\psi 1(z) if z \in D1,

\psi 2(z) if z \in D2,

\psi 3(z) if z \in D3,

(83)

where D1 := \{ z = x+iy : | z| < 8 and y > 0.05x\} , D2 := \{ z = x+iy : | z| < 8 and y \leq 
0.05x\} , D3 := \{ z : | z| \geq 8\} ,

\psi 1(z) :=

M\sum 
m=1

Am +Bm(z + i\alpha /2)

C2
m  - (z + i\alpha /2)2

, \psi 2(z) := e - z2

+ z

M+2\sum 
m=1

\alpha m  - \beta mz
2

\gamma m  - \theta mz2 + z4
,(84)

the coefficients Am, Bm, Cm, \alpha m, \beta m, \gamma m, and \theta m are specified in [2], and \psi 3(z)
is approximately (78) with n = 10 (see [2, equation (9)]). Abrarov, Quine, and
Jagpal [2] present numerical evidence to show that (83) achieves an accuracy of 10 - 13

using \alpha = 2.75 and M = 23 in (84).
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Fig. 2. Maximum absolute and relative errors in the approximation (10) and the error bounds
of Theorem 1.1, plotted against N , with wN (z) calculated in standard double precision (D.P.) and
in quadruple precision (Q.P.). The maxima are taken over a large number of points z in the first
quadrant, ranging from exponentially small to exponentially large (see text for details).

4. Numerical results. In this section we show calculations that illustrate and
support Theorem 1.1, and that compare the accuracy and efficiency of our approx-
imation wN (z) given by (10) to those of the approximations (79), (81), and (83).
We omit comparison with the method of [28] because of its limited accuracy, and we
omit comparison with the older algorithm of [19] because of evidence, discussed in
section 3, that the approximation (81) is superior.

In Figure 2 we plot estimates of the maximum values in the first quadrant of the
absolute and relative errors in our approximation (10) to w(z). We show results for two
implementations. The first of these uses the MATLAB code wTrap(z,N), provided in
Table SM1 of the supplementary material to this paper, which computes our approx-
imation wN (z) using standard double precision arithmetic in MATLAB. The second
implementation uses the MATLAB code wTrap\.Q(z,N) in Table SM4 of the sup-
plementary material, which computes wN (z) in quadruple precision arithmetic using
the Multiprecision Computing Toolbox ADVANPIX (http://www.advanpix.com). In
each case the maximum values we plot are discrete maxima taken over the 1, 602, 801
points z = 10pei\theta , with p =  - 6(0.0006)6 and \theta = 0(\pi /1600)\pi /2, a superset of the
40, 401 test values in Weideman [25, 26]. Whichever approximation for wN (z) is
used, we use as the exact value for w(z) the approximation w20(z), given by (10)
and computed by a call to wTrap\.Q(z,N) with N = 20. This approximation is pre-
dicted by Theorem 1.1 to have absolute and relative errors of < 3.5 \times 10 - 28 and
< 9.4 \times 10 - 27, respectively, throughout the first quadrant. We expect these error
bounds to be achieved working in quadruple precision arithmetic where the machine
epsilon is 2 - 112 \approx 1.9\times 10 - 34.

We observe in Figure 2 the rate of exponential convergence predicted by Theo-
rem 1.1. When evaluated in standard double precision arithmetic the approximation
wN (z) achieves, with N = 11 over this set of discrete points in the first quadrant,
maximum absolute and relative errors which are < 2\times 10 - 15.

In Table 1 we compare the accuracy and efficiency of our approximation and
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Table 1
Maximum absolute and relative errors for the MATLAB codes implementing the approximations

(10), (79), (83), and (81). The computing times are mean and s.d. of 25 executions.

Algorithm
Maximum
abs. error

Maximum
rel. error

Computing
time (seconds)

wTrap(z,11) 1.19\times 10 - 15 1.31\times 10 - 15 4.29 (\pm 0.08)
cef(z,40) [25] 1.33\times 10 - 15 1.33\times 10 - 15 4.20 (\pm 0.02)
fadsamp(z) [2] 3.78\times 10 - 14 3.78\times 10 - 14 5.74 (\pm 0.04)

Faddeyeva\.v2(z,13) [27] 4.07\times 10 - 15 1.71\times 10 - 13 11.00 (\pm 0.11)

our (double precision) MATLAB code wTrap(z,N) with (double precision) MATLAB
implementations of the approximations (79), (81), and (83). Results are shown in
Table 1 for the following:

1. our approximation wN (z) with N = 11 implemented by the call wTrap(z,11)
to the MATLAB code provided in Table SM1 of the supplementary material;

2. Weideman's approximation (79) with N = 40 (this choice of N ensures high
accuracy throughout the whole first quadrant; see [25, 26, Figure 8], [5, Figure
2]), implemented by the call cef(z,40) to the MATLAB code in [25, Table
1];

3. the approximation of Abrarov, Quine, and Jagpal, implemented by the call
fadsamp(z) to the MATLAB function in [2, Appendix], which uses the
method (83) with \alpha = 2.75 and M = 23 in the formulae for \psi 1(z) and
\psi 2(z);

4. the approximation (81) of Zaghloul and Ali [29], implemented by the call
Faddeyeva\.v2(z,M) with M = 13 (the maximum value permitted by the
code) to the MATLAB code described in [27]: here M is the number of
accurate significant figures required.

For these approximations Table 1 shows estimated maximum absolute and relative
errors in the first quadrant, and computation times (mean and standard deviation
of 25 executions, each measured by MATLAB timeit) running MATLAB version
9.3.0.713579 (R2017b) on a laptop with a single Intel64 Family 6 Model 78 2.40 GHz
processor (and with maxNumCompThreads set to its default value of 2). The estimated
maximum errors are discrete maxima over the same 1, 602, 801 points as above, and
we again use as the exact value the approximation w20(z) given by (10), implemented
in quadruple precision by wTrap\.Q(z,20). The computation times are for the case
where z is a matrix containing the 16, 008, 001 points z = x+iy, with x = 0(0.0025)10,
y = 0(0.0025)10.

As measured by maximum absolute and relative errors over this large discrete
set of z values covering the first quadrant, our approximation w11(z) implemented as
wTrap(z,11) is marginally the most accurate, though Weideman's approximation is
essentially as accurate and all four methods achieve < 4 \times 10 - 14 maximum absolute
error and < 2\times 10 - 13 maximum relative error.

In these specific calculations our MATLAB code is, on average over 25 realizations,
marginally slower than that of Weideman, but faster than the other two. But little
should be read into these timings beyond, possibly, that the first three of the methods
are about equally fast, and the fourth is a little slower. In particular we note the
following:

(i) Repeating these timings, even on exactly the same machine with exactly
the same version of MATLAB, will give slightly different results (see the
additional timings results table in the supplementary materials).
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(ii) These comparisons are made with the specific MATLAB implementations
published by the various proposers of the algorithms. It may be that these
timings could be reduced for any or all of these methods by better MATLAB
implementation strategies.

(iii) Our timing comparisons in Table 1 are for computing w(z) on a uniformly
distributed grid of points across the square \{ z = x + iy : 0 \leq x \leq 10, 0 \leq 
y \leq 10\} . A different choice of points would lead to different results, at least
for our approximation wN (z) and for the approximation of Abrarov, Quine,
and Jagpal, given by (83), since both these approximations use somewhat
different formulae in different regions of the first quadrant.

We leave to future publications more detailed comparisons of operation counts,
timings, and accuracy of the above methods for computing w(z) for complex z, along
the lines of [25, 26] or [29, 27]. Such publications might also study alternative, po-
tentially more efficient, implementations, for example using SIMD-aware C++ codes.
We remark that C++ implementations of the method of Zaghloul and Ali [29] and of
the continued fraction approximation (78) advocated by Gautschi [10] (which is used
in the fadsamp code of Abrarov, Quine, and Jagpal [2]) are the basis of the widely
used (though unpublished) Faddeeva Package of Johnson [13].

Acknowledgment. We would like to acknowledge the detailed and helpful com-
ments of the two anonymous referees, whose input has led to significant improvements.
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