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This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s
equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady
water wave problems. The starting point for the numerical scheme is the boundary integral equation
reformulation of this problem as an integral equation of the second kind on the real line in Prestonet al.
(2008,J. Int. Equ. Appl., 20, 121–152). We present a Nyström method for numerical solution of this
integral equation and show stability and convergence, and we present and analyse a numerical scheme
for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity
from the velocity potential on the surface, a key computational step in unsteady water wave simulations.
In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface
is infinitely smooth. The theoretical results are illustrated by numerical experiments.

Keywords: water waves; Nystr̈om method; Laplace’s equation; nonperiodic surfaces.

1. The formulation of the water wave problem

The fluid motion in a classical two-dimensional water wave problem is well modelled as the motion
under the influence of gravity of an incompressible, inviscid and irrotational fluid. As the fluid is irrota-
tional, the flow can be described as a potential flow and the velocityv throughout the fluid is given by

v = (v1, v2) = ∇φ, (1.1)

whereφ is thevelocity potential. Under the standard assumptions of water wave theory, the velocity
potential satisfies Laplace’s equation in the fluid

Δφ = 0, (1.2)

and, in the absence of surface tension, Bernoulli’s equation

∂φ

∂t
= −

1

2
|∇φ|2 − gx2, (1.3)

wherex2 is the vertical component ofx, on the free surface.
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1124 M. D. PRESTONET AL.

We consider in this paper the case when, at each instant in time, the fluid occupies a perturbed
half-plane domain of the form

Ω := {(x1, x2): x2 < f (x1), x1 ∈ R},

where, for some constantsf− and f+, the continuous functionf satisfies

f− 6 f (x1) 6 f+ (1.4)

for x1 ∈ R, so that the fluid surfaceΓ := ∂Ω = {(x1, f (x1)): x1 ∈ R} is the graph of a bounded
function. We assume, moreover, some smoothness forΓ , namely that, for somen ∈ N0 := N ∪ {0}, the
derivatives of f up to ordern + 2 exist and are bounded and continuous. Atx = (x1, f (x1)) ∈ Γ we
definen(x) = (n1(x), n2(x)) to be the unit normal vector directed out ofΩ ands(x) = (s1(x), s2(x))
to be the unit tangent vector that has a positive horizontal component,s1(x) > 0.

Given a setG ⊂ Rm, wherem = 1 or 2, let BC(G) denote the set of real-valued functions on
G that are bounded and continuous, a Banach space under the usual supremum norm. In terms of this
notation, the main computational requirement in evolving the fluid boundary as a function of time is the
solution to the following Dirichlet boundary value problem forφ. Given boundary dataφΓ ∈ BC(Γ ),
find φ ∈ BC(Ω̄) ∩ C2(Ω) such that

Δφ = 0 inΩ and φ = φΓ onΓ. (1.5)

It was shown inPrestonet al.(2008) that this boundary value problem is well-posed and that the solution
satisfies the maximum principle

|φ(x)| 6 sup
y∈Γ

|φΓ (y)|, x ∈ Ω.

A large part of this paper will be devoted to describing and analysing a numerical scheme for (1.5)
that is a discretization of a boundary integral equation reformulation proposed recently inPrestonet al.
(2008). We will also discuss the numerical computation, by boundary integral equation methods, of the
Dirichlet-to-Neumann mapΛΓ , which is the map with inputφΓ and output∂φ∂n on Γ , whereφ is the
solution to the above boundary value problem. Given this map, we can determine the velocity on the
boundary by

v|Γ = ∇φ|Γ = DφΓ s+ΛΓ φΓ n, (1.6)

whereDφΓ = ∂φΓ
∂s is the tangential derivative ofφΓ . Hence we can evolveφΓ and the boundaryΓ (as

the graph of a functionf ) using (1.3) and the kinematic boundary condition that the surface moves with
the fluid. Precisely, onΓ , we have thatf andv = (v1, v2) satisfy

∂φ

∂t
= −

1

2
|v|2 − g f,

(1.7)∂ f

∂t
= v2 − v1 f ′.

The formulation above separates the determination of the velocity potential (1.5) at any given time
from the evolution of the two parameters, the boundary position and the Dirichlet boundary data (1.7).
This separation naturally enables the system to be modelled by explicit time-stepping numerical methods
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1125

used throughout the water wave literature, for example, Runge–Kutta and Adams–Bashforth schemes
(seeBealeet al., 1996; Hou & Zhang, 2002; Baker & Beale, 2004; Fochesato & Dias, 2006; Xu &
Guyenne, 2009). Subsequently, we will treatf andφ as only spatially dependent and suppress the time
dependence, as we concentrate on solving the boundary value problem (1.5) and calculating the velocity
(1.6) at a fixed time.

Let us spell out what the new contributions are in this paper. A main novelty is that this paper ap-
pears to be the first publication to tackle the numerical solution of the boundary value problem (1.5) in
the general case of arbitrary bounded continuous Dirichlet dataφΓ , with neither the boundaryΓ nor
φΓ assumed to be periodic. In the context of numerical simulation of periodic water waves, a numer-
ical scheme, with a complete analysis, was provided inHou & Zhang(2002) that applies to (1.5) in
the special case whenΓ andφΓ are periodic (so that, for someS > 0, we havef (s + S) = f (s),
wheres ∈ R). The boundary-integral-based scheme analysed inHou & Zhang(2002) is one source of
inspiration for the numerical method proposed and analysed in this paper. (The other is work on the nu-
merical solution of acoustic rough surface scattering problems;Meier et al., 2000; Meier, 2001; Meier
& Chandler-Wilde, 2001; Haseloh, 2004.) But we note that the restriction to periodicΓ and boundary
data in (1.5) simplifies the numerical scheme required and especially its analysis significantly. In partic-
ular, as we discuss later in the final section, with this periodicity, the operator in the boundary integral
equation formulation we describe is a compact perturbation of the identity operator, so that stability and
convergence of the type of scheme we propose follow, to a large extent, from standard arguments, for
example, based on collectively compact operator theory (Atkinson, 1997).

A main motivation in designing an effective numerical scheme for (1.5) and for computing the
Dirichlet-to-Neumann map is to provide a tool for the main computational problem at each time step
for problems of simulation of nonperiodic water waves. We note, however, that our method does apply
in the special case when the surface is periodic. An attraction of our numerical scheme and our analysis
in that case is that it is clear from our results that our scheme is stable and convergent uniformly with
respect to the periodS. Thus the condition number of the linear system and the error in the numerical
scheme remain bounded in the limit asS → ∞. We also note that throughout we take care to prove
stability results and error bounds that are uniform with respect to the surfaceΓ , provided thatf lies in
a certain constrained set, defined by the requirement (1.4) and by bounds on derivatives off . Of course,
our motivation here is again the application to the simulation of time-dependent water waves, wheref
varies in some constrained set as a function of time.

The structure of the paper is as follows. Section2 recalls the integral equation formulation from
Prestonet al. (2008) that we will discretize. The main new results in this section are mapping proper-
ties of the integral operator, regularity results for the solution of the boundary integral equation and an
explicit representation for and mapping properties of the Dirichlet-to-Neumann map. In Section3 we
turn to discretization and numerical analysis. Section3.1analyses a Nyström method for the boundary
integral equation based on discretization of the integral operator, which is parameterized so that the
integration is on the real line, by the trapezium rule. This analysis uses results fromMeier (2001) and
Meier & Chandler-Wilde(2001). In Section3.2 we discuss a discrete approximation to the derivative
of a continuously differentiable function on the real line based on localization and trigonometric in-
terpolation. In Section3.3 we use the methods and results of Section3.2 to formulate and analyse an
approximate Nystr̈om method that is superalgebraically convergent when the Dirichlet dataφΓ andΓ
are smooth (in particular,f ∈ C∞(R)) but that does not require, as does the method of Section3.1,
access to the first and second derivatives off but only access to sampled values off on a uniform
grid. Our intention is that this scheme in Section3.3 should be of value in a time-stepping scheme for
the water wave problem. In Section3.4 we derive and analyse similar methods for approximating the
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1126 M. D. PRESTONET AL.

Dirichlet-to-Neumann mapΛΓ , and hence for approximating the surface velocityv. Finally, in Section
4 we illustrate the theoretical convergence results by numerical examples.

This paper is restricted to analysis of numerical methods connected to the two-dimensional water
wave problem. There has been considerable recent interest in the numerical solution of (nonperiodic)
three-dimensional water wave problems (e.g.,Hou & Zhang, 2002; Fochesato & Dias, 2006; Xu &
Guyenne, 2009), and it would be an interesting and nontrivial project to develop analogous numerical
analysis to that presented in this paper for the three-dimensional case.

1.1 Notation

We collect here various notation used throughout, and, in particular, definitions of various function
spaces that are necessary for the numerical analysis. Given an open or closed setG ⊂ Rm, wherem = 1
or 2, andn ∈ N0, let BCn(G) denote the set of functionsφ: G → R that are bounded and continuous
and have (partial) derivatives up to ordern that are all bounded and continuous. HereBCn(G) is a
Banach space under the usual norm. We will abbreviateBC0(G) by BC(G). For 0 < α 6 1 let
BC0,a(G) ⊂ BC(G) denote the Banach space of functions that are bounded and uniformly Hölder
continuous with indexα and let BC1,α(G) denote the Banach space of functionsψ ∈ BC1(G) for
which∇ψ ∈ BC0,α(G).

For S> 0 andn ∈ N0 let BCn
S(R) ⊂ BCn(R) denote the set of those functionsφ ∈ BCn(R) that

are periodic with periodS. We abbreviateBC0
S(R) by BCS(R) and letBC∞

S (R) :=
⋂

n∈N BCn
S(R).

For p > 0 letwp(s) := (1 + |s|)p, wheres ∈ R, and letBCn
p(R) ⊂ BCn(R) denote the Banach space

BCn
p(R) :=

{

u ∈ BCn(R): ‖u‖BCn
p(R) := sup

m=0,...,n
‖wpu(m)‖BCn(R) < ∞

}

and letBC∞
p (R) :=

⋂
n∈N BCn

p(R).
Throughout,e1, e2 ande3 will be the standard unit coordinate vectors inR3. We will use the same

notatione1 ande2 for the unit vectorse1 = (1, 0) ande2 = (0, 1) in R2.

2. The boundary integral formulation and the Dirichlet-to-Neumann map

ChooseH > f+ and letΩH denote the half-planeΩH := {(x1, x2): x1 ∈ R, x2 < H} and letΓH :=
∂ΩH = {(x1, H): x1 ∈ R}. Note that the half-planeΩH contains the perturbed half-plane domainΩ.
We define the Dirichlet Green’s function for the half-planeΩH by

ΦH (x, y) := Φ(x, y)−Φ(x, yr ), x, y ∈ R2, x 6= y,

where

Φ(x, y) := −
1

2π
ln |x − y|

is the fundamental solution to Laplace’s equation in two dimensions andyr := (y1, 2H − y2) is the
reflection ofy in ΓH .

In Prestonet al. (2008) it was proposed to look for a solution to the boundary value problem (1.5)
in the form of a double-layer potential

φ(x) :=
∫

Γ

∂ΦH (x, y)

∂n(y)
μΓ (y)ds(y), x ∈ Ω, (2.1)
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1127

for some densityμΓ ∈ BC(Γ ). Note that the half-plane Green’s function is used in the definition (2.1)
in place of the usual standard fundamental solutionΦ. The following theorem was presented inPreston
et al. (2008, Theorem 3.1).

THEOREM2.1. The double-layer potential (2.1) with densityμΓ ∈ BC(Γ ) satisfies the boundary value
problem (1.5) if and only ifμΓ satisfies the second kind integral equation

μΓ (x)−
∫

Γ

∂ΦH (x, y)

∂n(y)
μΓ (y)ds(y) = −2φΓ (x), x ∈ Γ. (2.2)

Defining the integral operatorKΓ by

(KΓ ψΓ )(x) := 2
∫

Γ

∂ΦH (x, y)

∂n(y)
ψΓ (y)ds(y),

we can rewrite (2.2) in operator notation as

(I − KΓ )μΓ = −2φΓ .

The point of usingΦH rather thanΦ in (2.1) is that this choice ensures that the integrals (2.1) and
(2.2) are well defined for allμΓ ∈ BC(Γ ), and, indeed, thatKΓ is a bounded operator onBC(Γ ).
FromPrestonet al.(2008, Theorem 3.4) we have, moreover, the following theorem on the boundedness
of the inverse mapping(I − KΓ )−1.

THEOREM 2.2. The mapping(I − KΓ ): BC(Γ ) → BC(Γ ) is invertible with a bounded inverse.
Precisely, givenC f > 0, for some constantC > 0 depending only onf±, H andC f , it holds that

‖(I − KΓ )
−1‖ 6 C

whenever‖ f ‖BC2(R) 6 C f .

It is convenient to introduce an isometric isomorphismJΓ : BC(Γ ) → BC(R), defined by
(JΓ aΓ )(σ ) = aΓ (σ, f (σ )), whereσ ∈ R, for everyaΓ ∈ BC(Γ ). Let μ ∈ BC(R) be defined by
μ := JΓ μΓ , whereμΓ is the solution of (2.2), let φ0 ∈ BC(R) be defined byφ0 := JΓ φΓ and letkΩ
be defined, forx ∈ R2 andσ ∈ R, by

kΩ(x, σ )=
∂ΦH (x, y)

∂n(y)

∣
∣
∣
∣
y=(σ, f (σ ))

w(σ)

= −
1

2π

(
x − (σ, f (σ ))

|x − (σ, f (σ ))|2
−

x − (σ, 2H − f (σ ))

|x − (σ, 2H − f (σ ))|2

)
∙ n(σ )w(σ), (2.3)

wherew(σ) :=
√

1 + f ′(σ )2 and n(σ ) := n((σ, f (σ ))) = (− f ′(σ ), 1)/w(σ), and we note that
s(σ ) := s((σ, f (σ ))) = (1, f ′(σ ))/w(σ). We can then rewrite (2.1) as

φ(x) =
∫

R
kΩ(x, σ )μ(σ)dσ, x ∈ Ω, (2.4)

and (2.2) as

μ(τ)−
∫

R
k(τ, σ )μ(σ)dσ = −2φ0(τ ), τ ∈ R, (2.5)
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1128 M. D. PRESTONET AL.

wherek(τ, σ ) := kΩ((τ, f (τ )), σ ), for τ 6= σ , while

k(τ, τ ) =
−1

2π

(
f ′′(τ )

ω(τ)2
+

1

f (τ )− H

)
, τ ∈ R.

We will abbreviate (2.5) in operator form as

(I − K )μ = −2φ0, (2.6)

whereK := JΓ KΓ J−1
Γ is the integral operator given by

(Kμ)(τ) =
∫

R
k(τ, σ )μ(σ)dσ, τ ∈ R.

We now prove a mapping property for the integral operatorK and show that the smoothness of its
kernelk is linked to the smoothness of the boundary. Let

r1(τ, σ ) :=
∫ 1

0
f ′(σ + (τ − σ)ξ)dξ

and

r2(τ, σ ) :=
∫ 1

0
f ′′(σ + (τ − σ)ξ)(1 − ξ)dξ (2.7)

for τ, σ ∈ R, and note that, by Taylor’s theorem (e.g.,Hardy, 1958, pp. 327–328), forf ∈ C2(R) it
holds that

f (τ ) = f (σ )+ (τ − σ)r1(τ, σ ) = f (σ )+ (τ − σ) f ′(σ )+ (τ − σ)2r2(τ, σ ). (2.8)

THEOREM 2.3. If f ∈ BCn+2(R) and ‖ f ‖BCn+2(R) 6 C f for somen ∈ N0 and C f > 0, then
k ∈ BCn(R2) and, fori, j ∈ N0 with i + j 6 n, we have

∣
∣
∣
∣
∂ i + j

∂σ i ∂τ j
k(τ, σ )

∣
∣
∣
∣ 6

Ck

1 + |σ − τ |2
for σ, τ ∈ R,

whereCk depends only onn, f±, H andC f . Furthermore,K : BC(R) → BCn(R) and there exists
CK > 0 depending only onn, f±, H andC f such that‖K‖ 6 CK .

Proof. Forσ, τ ∈ R2, whereσ 6= τ , by Taylor’s theorem (Hardy, 1958) we have

∂Φ(x, y)

∂n(y)

∣
∣
∣
∣
x=(τ, f (τ )),y=(σ, f (σ ))

= −
1

2πw(σ)

−(τ − σ) f ′(σ )+ ( f (τ )− f (σ ))

(τ − σ)2 + ( f (τ )− f (σ ))2

= −
1

2πw(σ)

r2(τ, σ )

1 + r1(τ, σ )2
. (2.9)

Given f ∈ BCn+2(R), it is clear thatw ∈ BCn+1(R), r1 ∈ BCn+1(R2) andr2 ∈ BCn(R2). Hence
k ∈ BCn(R). Moreover, there exists a constantCk > 0 that is dependent only onn, f±, H andC f such
that‖k‖BCn(R) 6 Ck.
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1129

Now ΦH (x, y) satisfies Laplace’s equation as a function of bothx and y in Ω̄H and, byPreston
et al. (2008, Lemma 2.1), we have forx, y ∈ Ω̄H with x 6= y andy2 > f− − 1 that

|∇yΦH (x, y)| 6
3(H − f− + 1)

π |x − y|2
. (2.10)

Then, from the regularity estimates inGilbarg & Trudinger(1977, Theorem 3.9) for solutions to elliptic
partial differential equations, whereDn∇yΦH (x, y) denotes any partial derivative of∇yΦH (x, y) of
order less than or equal ton with respect to the components ofx andy, we have

|Dn∇yΦH (x, y)| 6
Cn

|x1 − y1|2
(2.11)

for x, y ∈ Ω̄H , |x1 − y1| > 1 andx2, y2 ∈ [ f−, f+], whereCn > 0 depends only onn, f± and H .
Since we have already shown that‖k‖BCn(R2) 6 Ck, it follows that, for someC > 0 depending only on
n, f±, H andC f , we have

∣
∣
∣
∣
∂ i + j

∂σ i ∂τ j
k(τ, σ )

∣
∣
∣
∣ 6

C

1 + |σ − τ |2
, i + j 6 n,

for σ, τ ∈ R, as required.
The remainder of the result now follows fromMeieret al. (2000, Theorem 2.4(a)). �
We now turn to the Dirichlet-to-Neumann mapΛΓ . We first note that it was shown inPrestonet al.

(2008) that I − KΓ is also a bijection onBC1,α(Γ ) for α ∈ (0, 1) in the case thatf ∈ BC2(R) and
that, analogously to Theorem2.2, as an operator onBC1,α(Γ ), we have

‖(I − KΓ )
−1‖ 6 C,

whereC depends only onf±, H andC f . Furthermore, it was shown inPrestonet al. (2008) that, if
μ ∈ BC1,α(Γ ), thenφ given by (2.1) satisfiesφ ∈ BC1,α(Ω̄) with

‖φ‖BC1,α(Ω̄) 6 C‖μ‖BC1,α(Γ ),

whereC, again, depends only onf±, H andC f . The above results, combined withPrestonet al.(2008,
Theorem 3.1), imply that the Dirichlet-to-Neumann mapΛΓ is a bounded operator fromBC1,α(Γ ) to
BC0,α(Γ ) with ‖ΛΓ ‖ 6 CΛ, whereCΛ depends only onf±, H andC f . Moreover, explicitly,

∂φ

∂n

∣
∣
∣
∣
Γ

= ΛΓ φΓ = MΓ (I − KΓ )
−1φΓ , (2.12)

where the bounded operatorMΓ : BC1,α(Γ ) → BC0,α(Γ ) is given by

MΓ μΓ (x) =
∂

∂n(x)

∫

Γ

∂ΦH (x, y)

∂n(y)
μΓ (y)ds(y), x ∈ Γ.

We now derive an alternative, more easily computable, expression forMΓ μΓ .
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1130 M. D. PRESTONET AL.

THEOREM 2.4. IfμΓ ∈ BC1,α(Γ ) then, forx ∈ Γ , we have

MΓ μΓ (x) =
∫

Γ
mΓ [μΓ ](x, y)ds(y),

where

mΓ [μΓ ](x, y)=
∂ΦH (x, y)

∂s(y)

(
n(x) ∙ n(x)

∂μΓ

∂s
(x)− n(x) ∙ n(y)

∂μΓ

∂s
(y)

)

+
(
∂ΦH (x, y)

∂n(y)
n(x) ∙ s(y)− γ (x, y)n1(x)

)
∂μΓ

∂s
(y)

+
(
∂γ (x, y)

∂n(x)
n2(y)−

∂γ (x, y)

∂s(x)
n1(y)

)
μΓ (y),

γ (x, y)=
x2 + y2 − 2H

π |x − yr |2

and ∂μΓ∂s denotes the tangential derivative ofμΓ .

Proof. Let μΓ ∈ BC1,α(Γ ) and φ be the double-layer potential given by (2.1). Now, since
∂
∂x2
Φ(x, yr ) = ∂

∂y2
Φ(x, yr ) and ∂

∂x1
Φ(x, yr ) = − ∂

∂y1
Φ(x, yr ), it holds that

∇xΦH (x, y)+ ∇yΦH (x, y) = −2e2
∂

∂y2
Φ(x, yr ) = γ (x, y)e2 (2.13)

and

∂ΦH (x, y)

∂n(y)
= −∇x ∙ (ΦH (x, y)n(y))+ n2(y)γ (x, y).

It is convenient at this point to regard our two-dimensional vectors above as the first two components of
three-dimensional vectors with zero third component in the direction of the standard coordinate direction
e3 and note thate3 = s(y) ∧ n(y) = e1 ∧ e2. This enables us to use the vector identity∇ ∧ ∇ ∧ A =
−ΔA + ∇∇ ∙ A and gives

∇φ(x)= −
∫

Γ
∇x ∧ ∇x ∧ (ΦH (x, y)n(y))μΓ (y)ds(y)

+
∫

Γ
n2(y)∇xγ (x, y)μΓ (y)ds(y).

Now, using (2.13), we have

∇x ∧ (ΦH (x, y)n(y))= −n(y) ∧ ∇xΦH (x, y)

= n(y) ∧ ∇yΦH (x, y)− γ (x, y)n(y) ∧ e2

= −
∂ΦH (x, y)

∂s(y)
e3 − γ (x, y)n1(y)e3
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1131

and

∇x ∧ ∇x ∧ (ΦH (x, y)n(y))= e3 ∧
∂

∂s(y)
∇xΦH (x, y)+ n1(y)e3 ∧ ∇xγ (x, y).

Thus, interchanging the order of differentiation and then integrating by parts, we have

∇φ(x)= e3 ∧
∫

Γ
∇xΦH (x, y)

∂μΓ

∂s
(y)ds(y)

−
∫

Γ
(n1(y)e3 ∧ ∇xγ (x, y)− n2(y)∇xγ (x, y))μΓ (y)ds(y).

Clearly, the second integral is continuous inΩ̄ and, since∂μΓ∂s ∈ BC0,α(Γ ), by applying Theorem 6.18
of Kress(1999) we see that the first integral can be continuously extended fromΩ to Ω̄. Thus, taking
the limit asx approachesΓ and using Theorem 6.18 ofKress(1999), we see that

∂φ

∂n
(x)= n(x) ∙

(
e3 ∧

∫

Γ
∇xΦH (x, y)

∂μΓ

∂s
(y)ds(y)

)

− n(x) ∙
(∫

Γ
(n1(y)e3 ∧ ∇xγ (x, y)− n2(y)∇xγ (x, y))μΓ (y)ds(y)

)

= n(x) ∙
(

e3 ∧
∫

Γ
(−∇yΦH (x, y)+ γ (x, y)e2)

∂μΓ

∂s
(y)ds(y)

)

+
∫

Γ

(
∂γ (x, y)

∂n(x)
n2(y)−

∂γ (x, y)

∂s(x)
n1(y)

)
μΓ (y)ds(y),

where the first integrals in each line are to be understood as Cauchy principal values and note that we
have applied (2.13) again. Now, splitting∇yΦH (x, y) into its normal and tangential components, we
have

∂φ

∂n
(x)= −n(x) ∙

(
e3 ∧

∫

Γ

(
n(y)

∂ΦH (x, y)

∂n(y)
+ s(y)

∂ΦH (x, y)

∂s(y)

)
∂μΓ

∂s
(y)ds(y)

)

−
∫

Γ
γ (x, y)n1(y)

∂μΓ

∂s
(y)ds(y)

+
∫

Γ

(
∂γ (x, y)

∂n(x)
n2(y)−

∂γ (x, y)

∂s(x)
n1(y)

)
μΓ (y)ds(y)

=
∫

Γ

(
n(x) ∙ s(y)

∂ΦH (x, y)

∂n(y)
− n(x) ∙ n(y)

∂ΦH (x, y)

∂s(y)

)
∂μΓ

∂s
(y)ds(y)

−
∫

Γ
γ (x, y)n1(y)

∂μΓ

∂s
(y)ds(y)

+
∫

Γ

(
∂γ (x, y)

∂n(x)
n2(y)−

∂γ (x, y)

∂s(x)
n1(y)

)
μΓ (y)ds(y). (2.14)
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1132 M. D. PRESTONET AL.

Finally, we have the identity
∫

Γ

∂ΦH (x, y)

∂s(y)
ds(y) = 0, x ∈ Γ,

where the integral is understood as a Cauchy principal value, and therefore we can subtract the term

∂μΓ

∂s
(x)

∫

Γ

∂ΦH (x, y)

∂s(y)
ds(y)

from (2.14) and hence the result is proven. �
We now define the equivalent integral operator overR to MΓ , namelyM : BC1,α(R) → BC0,α(R),

given byM := JΓ MΓ J−1
Γ . In the case thatf ∈ BC2(R), for ψ ∈ BC2(R) andτ, σ ∈ R let

pψ(σ) :=
n(σ )ψ ′(σ )

ω(σ)
, qψ(τ, σ ) :=

∫ 1

0
p′
ψ(σ + (τ − σ)ξ)dξ,

noting that

qψ(τ, σ ) =
pψ(τ)− pψ(σ )

τ − σ
, σ 6= τ. (2.15)

Furthermore, let

m[ψ ](τ, σ )= mΓ [ J−1
Γ ψ(τ, f (τ ))](σ, f (σ ))ω(σ)

= m1[ψ ](τ, σ )+ m2[ψ ](τ, σ )+ m3[ψ ](τ, σ ), (2.16)

where

m1[ψ ](τ, σ )

:=






1

2π

(
(τ − σ, f (τ )− f (σ ))

(τ − σ)2 + ( f (τ )− f (σ ))2
−

(τ − σ, 2H − f (τ )− f (σ ))

(τ − σ)2 + (2H − f (τ )− f (σ ))2

)

∙ (n(τ ) ∙ (pψ(τ)− pψ(σ))s(σ )+ n(τ ) ∙ s(σ )pψ(σ)), σ 6= τ,

1

2πω(τ)
qψ(τ, τ ) ∙ n(τ ) =

1

2πω(τ)
p′
ψ(τ) ∙ n(τ ), σ = τ,

m2[ψ ](τ, σ )

:=
1

π

(
(2(τ − σ)(2H − f (τ )− f (σ )), (τ − σ)2 + (2H − f (τ )− f (σ ))2)

((τ − σ)2 + (2H − f (τ )− f (σ ))2)2

)

∙ (n(τ )n2(σ )+ s(τ )n1(σ ))ω(σ)ψ(σ)

and

m3[ψ ](τ, σ ) :=
1

π

(
2H − f (τ )− f (σ )

((τ − σ)2 + (2H − f (τ )− f (σ ))2)2

)
n1(τ )ψ

′(σ ).
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1133

Then, by Theorem2.4, for τ ∈ R we have

(Mμ)(τ) =
∫

R
m[μ](τ, σ )dσ. (2.17)

The Dirichlet-to-Neumann map,Λ := JΓ ΛΓ J−1
Γ , is then given by

Λ = M(I − K )−1.

We now prove a result similar to Theorem2.3 by showing that the smoothness ofm[μ](∙, ∙) is
dependent on the smoothness off andμ and that the operatorM mapsBCn+2(R) continuously into
BCn(R).

THEOREM 2.5. If f ∈ BCn+2(R), ‖ f ‖BCn+2(R) 6 C f andμ ∈ BCn+2(R) for somen ∈ N0 and
C f > 0, thenm[μ](∙, ∙) ∈ BCn(R2) and, fori, j ∈ N0 with i + j 6 n, we have

∣
∣
∣
∣
∂ i + j

∂σ i ∂τ j
m[μ](τ, σ )

∣
∣
∣
∣ 6

Cm

1 + |σ − τ |2
‖μ‖BCn+2(R), σ, τ ∈ R,

whereCm depends only onn, f±, H andC f . Furthermore,M : BCn+2(R) → BCn(R) and there exists
CM > 0, depending only onn, f±, H andC f , such that‖M‖ 6 CM .

Proof. For τ, σ ∈ R let p(σ ) := pμ(σ ) andq(τ, σ ) := qμ(τ, σ ) and writem1[μ](τ, σ ) as

m1[μ](τ, σ ) = m1,1[μ](τ, σ )+ m1,2[μ](τ, σ )

on recalling equation (2.16) and where

m1,1[μ](τ, σ ) :=






1

2π

(τ − σ, f (τ )− f (σ ))

(τ − σ)2 + ( f (τ )− f (σ ))2
∙ s(σ )(p(τ )− p(σ )) ∙ n(τ ),

σ 6= τ,

1

2πω(τ)
p′(τ ) ∙ n(τ ), σ = τ,

and

m1,2[μ](τ, σ ) :=
1

2π

(τ − σ, 2H − f (τ )− f (σ ))

(τ − σ)2 + (2H − f (τ )− f (σ ))2
∙ s(σ )(p(τ )− p(σ )) ∙ n(τ )

+ k(τ, σ )
n(τ ) ∙ s(σ )ψ ′(σ )

(ω(σ))2
.

If f ∈ BCn+2(R) then n1, n2, s1, s2, w ∈ BCn+1(R) and, by Theorem2.3, k ∈ BCn(R2), which
implies thatm1,2[μ](∙, ∙),m2[μ](∙, ∙),m3[μ](∙, ∙) ∈ BCn(R2).

It remains to show thatm1,1[μ](∙, ∙) has the required continuity. Now, forτ, σ ∈ R, whereτ 6= σ ,
using (2.8) and (2.15), we have

m1,1[μ](τ, σ )=
1

2πω(σ)

τ − σ + ( f (τ )− f (σ )) f ′(σ )

(τ − σ)2 + ( f (τ )− f (σ ))2
(p(τ )− p(σ )) ∙ n(τ )

=
1

2πω(σ)

1 + f ′(σ )r1(τ, σ )

1 + r1(τ, σ )2
q(τ, σ ) ∙ n(τ ),
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1134 M. D. PRESTONET AL.

and, sincer1(τ, τ ) = f ′(τ ) andq(τ, τ ) = p′(τ ), the same formula applies forτ = σ . In the proof
of Theorem2.3 we have already observed thatr1 ∈ BCn+1(R2), and clearlyp ∈ BCn+1(R), so that
q ∈ BCn(R2). Thusm1,1[μ](∙, ∙) ∈ BCn(R). Som[μ](∙, ∙) ∈ BCn(R2). Moreover, using the above
proof of Theorem2.3, we see that there exists a constantCm > 0, depending only onn, f±, H andC f ,
such that‖m[μ](∙, ∙)‖BCn(R) 6 Cm‖μ‖BCn+2(R).

Since also the bounds (2.10) and (2.11) hold, we see that, forτ, σ ∈ R, we have

∣
∣
∣
∣
∂ i + j

∂σ i ∂τ j
m[μ](τ, σ )

∣
∣
∣
∣ 6

C

1 + |σ − τ |2
‖μ‖BCn+2(R), i + j 6 n,

whereC depends only onn, f±, H and C f . Hence, byMeier et al. (2000, Theorem 2.4(a)) again
(takingb = m[μ](∙, ∙) and lettingφ ≡ 1 in the definition ofMb in the notation ofMeier et al. (2000)),
M : BCn+2(R) → BCn(R) and‖M‖ 6 CM , as required. �

We can now rewrite the velocity on the surface, given by (1.6), with respect to the horizontal
component of the surface by using the isometric isomorphismJΓ . Let ννν: R → R2 be defined by
ννν = (ν1, ν2) := JΓ v|Γ . Then, from (1.6) and (2.17), we have

ννν(τ ) =
φ′

0(τ )

ω(τ)
s(τ )+ (Mμ)(τ)n(τ ), τ ∈ R. (2.18)

REMARK 2.6. It follows from Theorems2.3and2.5that, if the surface and boundary data are infinitely
smooth (i.e.,f, φ0 ∈ BC∞(R)), then the density and hence velocity, given by (2.18), are also smooth
(i.e.,μ ∈ BC∞(R) andννν ∈ BC∞(R)× BC∞(R)).

3. Discretization and the Nystr̈om method

In this section we propose and analyse a discretization of the integral equation (2.6) and of the expres-
sion for the normal velocity (2.12). To carry out this discretization we need two operators, a numerical
integration or quadrature operator to approximate the integrals found in (2.6) and (2.12) and a discrete
derivative operator to determine approximations tof ′ andμ′. We initially consider a partially discrete
system in which just the quadrature operator is applied and use results fromMeier et al. (2000) to
show stability and convergence for this initial scheme, where the key feature is the assumption that we
can know or calculatek exactly. Then we define and analyse a more fully discrete scheme in which
we use a trigonometric discrete derivative operator to numerically calculatek̃, an approximation tok.
Throughout, the discretization step length will beh := 2π/N, for some evenN ∈ N.

3.1 Quadrature operator and the initial Nyström scheme

It is well known that the trapezium rule is superalgebraically convergent forC∞ periodic functions. It is
also superalgebraically convergent forC∞ integrands defined on the whole real line (which decay suf-
ficiently rapidly at infinity for the integral to be well defined). Let us define a trapezium rule quadrature
operator by

Ihu := h
∑

j ∈Z

u( jh).

The following theorem establishes superalgebraic convergence in the caseu ∈ BC∞
p (R).
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1135

LEMMA 3.1 (Meier et al., 2000, Theorem 3.9). Ifu ∈ BCn
p(R), n ∈ N, n is even andp > 1, then, for

h > 0, we have
∣
∣
∣
∣

∫ ∞

−∞
u(σ )dσ − Ihu

∣
∣
∣
∣ 6 C‖u‖BCn

p(R)h
n,

whereC > 0 depends only onn and p.

Applying Ih to (2.6), we define a Nystr̈om method approximationμN ∈ BCn(R) toμ by

μN = φ0 + KNμN, (3.1)

where

KNψ(τ) := IN(k(τ, ∙)ψ(∙)) = h
∑

j ∈Z

k(τ, jh)ψ( jh), τ ∈ R.

Explicitly, (3.1) is

μN(τ ) = φ0(τ )+ h
∑

j ∈Z

k(τ, jh)μN( jh), τ ∈ R. (3.2)

The valuesμN(ih), wherei ∈ Z, are determined by settingτ = ih and solving the resultant infinite set
of linear equations.

Meier et al. (2000) proved results on the convergence of Nyström methods for second kind integral
equations of the form

x(τ ) = y(τ )+
∫ ∞

−∞
(a(τ, σ ) ln |τ − σ | + b(τ, σ ))x(σ )dσ, τ ∈ R,

wherea, b ∈ Cn(R2) anda(τ, σ ) andb(τ, σ ) decay like|τ − σ |−p as|τ − σ | → ∞ for somep > 1.
We can apply the results ofMeier et al. (2000) by takinga = 0 andb = k ∈ BCn(R2). Theorems
2.2 and 2.3 show that the two conditionsC′′

n and E of Meier et al. (2000) are satisfied, and so the
following three theorems on the stability and convergence of the Nyström approximation (3.1) follow
from Theorems 2.2, 2.8 and 3.13 inMeieret al. (2000).

THEOREM 3.2. If f ∈ BC3(R) and‖ f ‖BC3(R) 6 C f for someC f > 0, thenKN : BC(R) → BC(R)
is bounded and

‖KN‖ 6 C,

whereC depends only onf±, H andC f .

THEOREM 3.3. If f ∈ BC3(R) and‖ f ‖BC3(R) 6 C f for someC f > 0, then there exist̄N ∈ N and
C > 0 such that, for allN > N̄, we have that(I − KN)

−1: BC(R) → BC(R) is bounded and

‖(I − KN)
−1‖ 6 C, (3.3)

whereC depends only onf±, H andC f . Furthermore, ifφ0 ∈ BC(R) then, forN > N̄, (3.1) has a
unique solutionμN ∈ BC(R) and

‖μN‖BC(R) 6 C‖φ0‖BC(R).
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1136 M. D. PRESTONET AL.

THEOREM3.4. If f ∈ BCn+2(R), φ0 ∈ BCn(R) and‖ f ‖BCn+2(R) 6 C f for someC f > 0 andn ∈ N0

with n even, then there exists̄N ∈ N such that, for allN > N̄, we have

‖μ− μN‖BCn(R) 6 C‖φ0‖BCn(R)h
n, N > N̄,

for someC > 0 depending only onn, f±, H andC f .

3.2 Discrete derivative operator

It is convenient in this section to utilize the following summation notation:

N/2∑

j =−N/2

′′
u j :=

1

2
(u−N/2 + uN/2)+

N/2−1∑

j =−N/2+1

u j .

For u ∈ BC2π (R) let uh ∈ BC2π (R) be the trigonometric polynomial given by

uh(σ ) =
N/2∑

k=−N/2

′′
ûk eikσ , σ ∈ R, (3.4)

where the coefficientŝuk are given by

ûk =
1

N

N/2∑

l=−N/2

′′
u(lh)e−ilkh, k = −

N

2
, . . . ,

N

2
.

It is a standard result thatuh interpolatesu at jh, where j ∈ Z, i.e.,uh( jh) = u( jh), where j ∈ Z. We
can use the fast Fourier transform to calculate the coefficientsûk.

THEOREM 3.5 (Meinardus, 1967, Theorem 41). Ifu ∈ BCn
2π (R) anduh is defined by (3.4), then

‖u − uh‖BCm
2π (R)

6 Cn‖u‖BCn(R)h
n−m

for m = 0, 1, . . . , n − 1, where the constantCn > 0 depends only onn. In particular, ifu ∈ BC∞
2π (R)

then uh exhibits superalgebraic convergence, i.e.,‖u − uh‖BC2π (R) = o(hn) as h → ∞ for
all n ∈ N.

Let us define a discrete approximatemth-order differential operatoṙDm
h : BC2π (R)→ BC2π (R), for

m ∈ N0, by

Ḋm
h u(σ ) := u(m)h (σ ) =

N/2∑

k=−N/2

′′
(ik)mûk eikσ , σ ∈ R. (3.5)

Note thatḊ0
hu = uh. We now investigate the accuracy ofḊm

h u as an approximation to themth derivative
of u. The following follows immediately from Theorem3.5.
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1137

COROLLARY 3.6. If u ∈ BCn
2π (R) then, form = 1, . . . , n − 1, we have

‖u(m) − Ḋm
h u‖BC2π (R) 6 Cn‖u‖BCn

2π (R)
hn−m.

Let χ ∈ BC∞(R) be a ‘cut-off’ function, compactly supported about 0, satisfying 06 χ(σ) 6
1, χ(σ) = χ(−σ), χ(σ) = 0 if |σ | > π andχ(σ) = 1 if |σ | 6 1, whereσ ∈ R. We further
define the translation operatorTσ : BC(R) → BC(R) by (Tσu)(τ ) = u(τ − σ) for σ, τ ∈ R, and a
2π -periodic extension operatorE: BC(R) → L∞(R) by the requirements that(Eu)(σ ) = u(σ ),
where−π < σ 6 π , and(Eu)(σ + 2π) = (Eu)(σ ), whereσ ∈ R. Using E, χ , Tσ and Ḋm

h , we can
define a discrete differential operatorDm

h on BC(R) by

(Dm
h u)(σ ) = (Ḋm

h E(χTσu))(0), σ ∈ R. (3.6)

THEOREM 3.7. If u ∈ BCn(R) then, form = 1, . . . , n − 1, we have

‖u(m) − Dm
h u‖BC(R) 6 Cn‖u‖BCn(R)h

n−m,

whereCn depends only onn andχ .

Proof. The operatorTσ : BCn(R) → BCn(R), whereσ ∈ R, is bounded with‖Tσu‖BCn(R) = ‖u‖BCn(R)
for σ ∈ R. The mappingBCn(R) → BCn

2π (R), u → E(χu) is bounded with‖E(χu)‖BCn
2π (R)

6
C‖u‖BCn(R), where C depends only onn and χ . Hence the mappingBCn(R) → BCn

2π (R),
u → E(χTσu) is bounded with‖E(χTσu)‖BCn

2π (R)
6 C‖u‖BCn(R), whereC depends only onn

andχ . Furthermore, for allσ ∈ R we haveu(σ + δ) = E(χTσu)(δ), where|δ| 6 1. Therefore, by
Corollary3.6, the results hold. �

From the definition of the discrete derivative operator, through equations (3.5) and (3.6), it is clear
that, foru ∈ BC(R) andm ∈ N0, the valuesDm

h u( jh), where j ∈ Z, depend only on the values ofu(x)
at x = jh, where j ∈ Z. To make this explicit, for̃u = {ũ j } j ∈Z ∈ l∞(Z) we defineENũ ∈ BC(R) to
be the piecewise linear function satisfyingENũ( jh) = ũ j , where j ∈ Z. DefineD̃m

h : l∞(Z) → l∞(Z)
by

(D̃m
h ũ) j = Dm

h ENũ( jh), j ∈ Z. (3.7)

Then, explicitly,

(D̃m
h ũ) j =

N/2∑

k=−N/2

′′
(ik)mck, (3.8)

where

ck =
1

N

N/2∑

l=−N/2

′′
χ(lh)e−iklhũl− j .

In Section3.4 we will need to approximate derivatives fromapproximationsto functions at the
interpolation pointsjh. The final theorem of this section details how this additional approximation
affects the accuracy of the discrete derivative operator.
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1138 M. D. PRESTONET AL.

THEOREM 3.8. Suppose thatu ∈ BCn(R) for somen ∈ N, that, for N ∈ N, we haveũN :=
{ũ j,N} j ∈Z ∈ l∞(Z) with ũ j,N ≈ u( jh) and that, for somep ∈ N andC1 > 0, we have

max
j ∈Z

|u( jh)− ũ j,N | 6 C1‖u‖BCn(R)h
p

(whereh = 2π/N). Then, form = 1, . . . , n − 1, we have

max
j ∈Z

|u(m)( jh)− (D̃m
h ũN) j | 6 C‖u‖BCn(R)h

q,

whereq = min{n − m, p − m − 1} andC depends only onn, C1 andχ .

Proof. By (3.7) and (3.8) and as‖χ‖BC(R) = 1, we have

max
j ∈Z

|Dm
h u( jh)− (D̃m

h ũN) j |

= max
j ∈Z

∣
∣
∣
∣
∣
∣
∣

1

N

N/2∑

k=−N/2

′′
N/2∑

l=−N/2

′′
(ik)mχ(lh)(u((l − j )h)− ũl− j,N)e

−ihkl

∣
∣
∣
∣
∣
∣
∣

6C1‖u‖BCn(R)h
p 1

N

N/2∑

k=−N/2

′′
N/2∑

l=−N/2

′′
|k|m

6 2−mC1‖u‖BCn(R)h
pNm+1 6 2πn+1C1‖u‖BCn(R)h

p−m−1.

Combining this inequality with Theorem3.7, it follows that

max
j ∈Z

|u(m)( jh)− (D̃m
h ũN) j |

6 ‖u(m) − Dm
h u‖BC(R) + max

j ∈Z
|Dm

h u( jh)− (D̃m
h ũN) j |

6Cn‖u‖BCn(R)h
n−m + 2πn+1C1‖u‖BCn(R)h

p−m−1,

whereCn is defined as in Theorem3.7. �

3.3 The fully discrete Nyström scheme

We now define a numerical approximation to the kernelk of the integral equation by applying the
differential operator (3.6) to approximate the derivativesf ′ and f ′′ by Dh f and D2

h f , respectively.
Thus our approximation is defined forτ, σ ∈ R by

k̃(τ, σ ) =






−1

π

(τ − σ)Dh f (σ )− ( f (σ )− f (τ ))

(τ − σ)2 + ( f (τ )− f (σ ))2
+ k̃r (τ, σ ), σ 6= τ,

−1

2π

D2
h f (τ )

1 + (Dh f (τ ))2
+ k̃r (τ, τ ), σ = τ,
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1139

where

k̃r (τ, σ ) =
1

π

(τ − σ)Dh f (σ )− (2H − f (σ )− f (τ ))

(τ − σ)2 + (2H − f (τ )− f (σ ))2
.

The fact that the functionk is bounded relies on((τ, f (τ )) − (σ, f (σ ))) andn(σ ) being perpen-
dicular to each other in the limit asτ → σ . The vector((τ, f (τ )) − (σ, f (σ ))) is not necessarily
perpendicular in the limitτ → σ to the approximation ton(σ ) obtained by replacingf ′ by Dh f .
Hencek̃ is not necessarily bounded and the convergence analysis of Theorems3.3and3.4does not hold
when replacingk by k̃. For this reason we now work on a discrete level.

For N ∈ N let L N : BC(R) → l∞(Z) be the restriction mapping defined byL Nψ = {ψ( jh): j ∈ Z}
for ψ ∈ BC(R). Clearly,‖L Nψ‖∞ 6 ‖ψ‖BC(R). Recalling thatφ0 = JΓ φΓ is the inhomogeneous
term in (2.5), letφN = L Nφ0 = {φ0( jh)} j ∈Z = {φ j } j ∈Z.

For j ∈ Z let x j = ( jh, f ( jh)) andxr
j = ( jh, 2H − f ( jh)) and let

ω j =
√

1 + (Dh f )( jh), n j = ((Dh f )( jh),−1)/ω j , sj = (1, (Dh f )( jh))/ω j , (3.9)

so thatn j and sj are approximations ton(x j ) and s(x j ). Furthermore, letki j = k(ih, jh) and
k̃i j = k̃(ih, jh) for i, j ∈ Z. We define discrete operators̄KN , K̃N : l∞(Z) → l∞(Z), related to
the integral operatorK , by

(K̄Nψ)i = h
∑

j ∈Z

ki jψ j and (K̃Nψ)i = h
∑

j ∈Z

k̃i jψ j , i ∈ Z,

and note that(K̄N L Nψ)i = KNψ(ih), wherei ∈ Z, so that from (3.2) it follows that the sequence
μ̄N := {μN( jh)} j ∈Z satisfies the equation

μ̄N = φN + K̄Nμ̄N .

The approximate Nyström scheme we are proposing is to solve, instead of this equation, the equation

μ̃N = φN + K̃Nμ̃N . (3.10)

We calculateμ̃N = {μ̃ j } j ∈Z by solving (3.10), which is the infinite set of linear equations

μ̃i = φi + h
∑

j ∈Z

k̃i j μ̃ j , i ∈ Z. (3.11)

The attraction of solving (3.11) in preference to (3.2) is that computing the coefficientsk̃i j requires only
the values off (ih), wherei ∈ Z, and not also the values off ′ and f ′′ at all the grid points.

The next result on the existence and boundedness ofK̄N and(I − K̄N)
−1 follows from Theorems

3.2 and 3.3 by standard arguments for Nyström methods (seeAtkinson, 1997, p. 113). In this (and
subsequent) theorems we will use‖∙‖∞ to denote the induced operator norm for bounded operators on
l∞(Z).
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1140 M. D. PRESTONET AL.

THEOREM 3.9. If f ∈ BC3(R), ‖ f ‖BC3(R) 6 C f andC f > 0, then there exist̄N ∈ N andC > 0
such that

‖K̄N‖∞ 6 C for N ∈ N, and ‖(I − K̄N)
−1‖∞ 6 C for N > Ñ,

whereC depends only onn, f±, H andC f .

We now show the accuracy of̃KN as an approximation tōKN .

THEOREM 3.10. If f ∈ BCn+2(R) and‖ f ‖BCn+2(R) 6 C f for someC f > 0 andn ∈ N0 and withn
even, then there existsC > 0 such that

‖K̄N − K̃N‖∞ 6 Chn+1 log(1 + N) for N ∈ N,

whereC depends only onn, f±, H andC f .

Proof. From (2.3) and the definitions ofk andk̃ we see that, fori, j ∈ Z, wherei 6= j , we have

ki j − k̃i j = −
1

2π

(
xi − x j

|xi − x j |2
−

xr
i − x j

|xr
i − x j |2

)
∙ (n(x j )ω( jh)− n jω j ),

while, from (2.7) and (2.9), for i = j we have

kii − k̃i i = −
1

2π

(
f ′′(ih)

w(ih)2
−

D2
h f (ih)

ω2
i

)

.

Lemma 2.1 ofPrestonet al. (2008) implies that
∣
∣
∣
∣

xi − x j

|xi − x j |2
−

xr
i − x j

|xr
i − x j |2

∣
∣
∣
∣ 6

c

(ih − jh)2
, i, j ∈ Z, i 6= j, (3.12)

and clearly also
∣
∣
∣
∣

xi − x j

|xi − x j |2
−

xr
i − x j

|xr
i − x j |2

∣
∣
∣
∣ 6

c

|i − j |h
, i, j ∈ Z, i 6= j, (3.13)

wherec > 0 depends only onf± andH . Combining these results with Theorem3.7, we have

‖K̄N − K̃N‖∞ = sup
i ∈Z

h
∑

j ∈Z

|ki j − k̃i j |

6 sup
i ∈Z

h

2π




∑

j ∈Z, j 6=i

∣
∣
∣
∣

xi − x j

|xi − x j |2
−

xr
i − x j

|xr
i − x j |2

∣
∣
∣
∣ |n( jh)w( jh)− n jw j |

+

∣
∣
∣
∣
∣

f ′′(ih)

w(ih)2
−

D2
h f (ih)

w2
i

∣
∣
∣
∣
∣





6 sup
i ∈Z

Ch




∑

j ∈Z,|i − j |>N

hn+1

(ih − jh)2
+

∑

j ∈Z,16|i − j |<N

hn+1

|i − j |h
+ hn
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6C



hn
∞∑

j =N

1

j 2
+ hn+1

N−1∑

j =1

1

j
+ hn+1





6Chn(2h + h log(1 + N)) 6 Chn+1 log(1 + N). �

The following is a special case of a standard Banach algebra perturbation result (e.g.,Rudin, 1991,
p. 248).

THEOREM 3.11. If (I − K̄N)
−1 exists and is bounded, and

‖K̄N − K̃N‖∞ 6
1

2‖(I − K̄N)−1‖∞
, (3.14)

then(I − K̃N)
−1 exists and is bounded with the bound given by

‖(I − K̃N)
−1‖∞ 6 2‖(I − K̄N)

−1‖∞. (3.15)

We now present the main convergence result for the numerical scheme defined by (3.10).

THEOREM 3.12. If f ∈ BCn+2(R) and‖ f ‖BCn+2(R) 6 C f for someC f > 0 andn ∈ N0 with n

even, then there exist̃N ∈ N andC > 0 such that, for allN > Ñ, a uniquely determined solution
μ̃N ∈ l∞(Z) to (3.10) exists and, forφ0 ∈ BCn(R), we have

‖L Nμ− μ̃N‖∞ 6 C‖φ0‖BCn(R)h
n,

whereC depends only onn, f±, H andC f .

Proof. By Theorems3.3 and3.10we can choosẽN such that, for allN > Ñ, (3.3) and (3.14) hold
and therefore, by Theorem3.11, (I − K̃N)

−1 exists and is bounded by (3.15). So, for N > Ñ, (3.10)
has a unique solutioñμN = (I − K̃N)

−1φN . Furthermore, from Theorem3.9, μ̄ = (I − K̄N)
−1φN .

Combining these relationships, we have

μ̄N − μ̃N = (I − K̃N)
−1(I − K̃N)μ̄N − (I − K̃N)

−1φN

= (I − K̃N)
−1(I − K̃N)μ̄N − (I − K̃N)

−1(I − K̄N)μ̄N

= (I − K̄N)
−1(K̄N − K̃N)μ̄N

and therefore, by Theorems3.3, 3.4and3.10, we have

‖L Nμ− μ̃N‖∞ 6 ‖L Nμ− μ̄N‖∞ + ‖μ̄N − μ̃N‖∞

6 ‖μ− μN‖BC(R) + ‖(I − K̄N)
−1‖∞‖K̄N − K̃N‖∞‖μ̄‖BC(R)

6C‖φ0‖BCn(R)h
n,

as required. �
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1142 M. D. PRESTONET AL.

3.4 Velocity approximation

We now analyse an approximation to the velocityννν, given by (2.18), by utilizing the discrete derivative
operator and̃μN , given by (3.10), in an approximation toM . Precisely, we will approximate velocity
values on a uniform grid, i.e., approximateνννN := L Nννν = {ννν j,N} j ∈Z.

To construct a first approximation, fori, j ∈ Z andψ ∈ BC(R) let mi j (ψ) = m[ψ ](ih, jh), where
m is given by (2.16). We define an operator̄MN : BC(R) → l∞(Z) by

(M̄Nψ)i := h
∑

j ∈Z

mi j (ψ), i ∈ Z,

so thatM̄ is a trapezium rule approximation to the operatorL N M , whereM is defined by (2.17). Then
a first approximation toνννN = {ννν j,N} j ∈Z is ν̄ννN := {ν̄νν j,N} j ∈Z, where

ν̄νν j,N =
φ′( jh)

ω( jh)
s( jh)+ (M̄μ) j n( jh), j ∈ Z. (3.16)

LEMMA 3.13. If f ∈ BCn+2(R), ‖ f ‖BCn+2(R) 6 C f for someC f > 0, andμ ∈ BCn+2(R) solves
(2.5), then

max
j ∈Z

|ννν j,N − ν̄νν j,N | 6 C‖φ0‖BCn(R)h
n,

whereC > 0 depends only onn, f±, H andC f .

Proof. The only approximation in (3.16) is in the Dirichlet-to-Neumann operatorM . By Prestonet al.
(2008, Lemma 2.1) (see (3.12)), Theorem2.5 and (2.16), we see thatm[μ](τ, ∙) ∈ BCn

p(R), where
p > 2 andτ ∈ R. Therefore, by Lemma3.1, we have

|(Mμ)(τ)− Ihm[μ](τ, ∙)| 6 Chn. �

We next construct a fully discrete approximation toνννN , using Lemma3.13to analyse its accuracy.
Recalling the approximationsω j , n j andsj introduced in (3.9) and writingx j andn j in terms of their
components asx j = (xj,1, xj,2) andn j = (n j,1, n j,2), we definem̃i j : l∞(Z)3 → l∞(Z2) by

m̃i j ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k }k∈Z)

= −
1

2π

(
xi − x j

|xi − x j |2
−

xr
i − x j

|xr
i − x j |2

)
∙

(

(n j ni ∙ sj + sj ni ∙ n j )
ψ ′

j

ω j
− sj

ψ ′
i

ωi

)

+
1

π

(
(2(xr

i,1 − xj,1)(xr
i,2 − xj,2), |xr

i − x j |2)

|xr
i − x j |4

)

∙ ((ni n j,2 − si n j,1)ω jψ j )

+
1

π

(
xr

i,2 − xj,2

|xi − xr
j |

4

)

ni,1ψ
′
j , i 6= j,
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and by

m̃ii ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k }k∈Z)

=
1

2πω2
i

(

ψ ′′
i −

(Dh f )(ih)(D2
h f )(ih)ψ ′

i

ω2
i

)

+
1

4H2π
(ωiψi + ni,1ψ

′
i ), i = j .

The point of this definition is that, whereμ is the solution to the integral equation (2.6), m̃i j (L Nμ, L Nμ
′,

L Nμ
′′) is a first approximation ofmi j (μ) obtained by approximating the derivatives off by the discrete

derivative operator (3.6). Moreover,m̃i j (μ̃N, D̃hμ̃N, D̃2
hμ̃N) is a further fully discrete approximation,

obtained by additionally approximatingL Nμ by μ̃N , given by (3.11), and computing its numerical
derivatives using (3.8). Using these approximations, we define the operatorsM̂N : BC(R) → l∞(Z) and
M̃N : l∞(Z) → l∞(Z), which are approximations tōMN andM̄N L N , respectively, by

(M̂Nμ)i := h
∑

j ∈Z

m̃i j (L Nμ, L Nμ
′, L Nμ

′′), i ∈ Z,

and

(M̃Nμ̃N)i := h
∑

j ∈Z

m̃i j (μ̃N, D̃hμ̃N, D̃2
hμ̃N), i ∈ Z. (3.17)

Using M̃Nμ̃N , we define our final fully discrete velocity approximationν̃ννN = {ν̃νν j,N} j ∈Z by

ν̃νν j,N =
(D̃hL Nφ) j

ω j
sj + (M̃Nμ̃N) j n j , j ∈ Z. (3.18)

In the last theorem of this paper we analyse the convergence ofν̃ννN to νννN .

THEOREM 3.14. Ifφ0 ∈ BCn(R), f ∈ BCn+2(R) and‖ f ‖BCn+2(R) 6 C f for someC f > 0 and some
n ∈ N0 with n even, then there existsC > 0, depending only onn, f±, H andC f , such that

max
j ∈Z

|ννν j,N − ν̃νν j,N | 6 C‖φ0‖BCn(R)h
n−2

for all N > Ñ, whereÑ is as defined in Theorem3.12.

Proof. We first note that solving the integral equation (2.6), with φ0 ∈ BCn(R) and f ∈ BCn+2(R),
gives, by Theorem2.3, μ ∈ BCn(R) and hence, by Theorem2.5, m ∈ BCn−2(R2). In the remainder
of this proof we will show the accuracy of the approximations used in (3.18) to the five components
(φ′, ω, n, s andM) of (2.18). By a straightforward application of Theorem3.7 to f ′ ∈ BCn+1(R), and
similarly to the analysis in Theorem3.10, we have the three bounds

max
j ∈Z

|ω( jh)− ω j | 6 C1hn+1, max
j ∈Z

|n( jh)− n j | 6 C2hn+1

and

max
j ∈Z

|s( jh)− sj | 6 C3hn+1, (3.19)
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1144 M. D. PRESTONET AL.

whereC1,C2 andC3 depend only onn andC f . Note that(D̃hL Nφ) j = (L N Dhφ) j for j ∈ Z, and that
φ′ ∈ BCn−1(R). Therefore, by applying Theorem3.7we also have

max
j ∈Z

|φ′( jh)− (D̃hL Nφ) j | 6 C4hn−1,

whereC4 depends only onn andC f .
All that remains is to prove the accuracy ofM̃Nμ̃N as an approximation toMμ, and to do this we

analyse the successive approximations given by (3.17). We have, by Lemma3.13with μ ∈ BCn(R),
that‖L N Mμ− M̄Nμ‖∞ 6 Chn−2. Furthermore, by (3.12), (3.13) and (3.19), we have

‖M̄Nμ− M̂Nμ‖∞ = sup
i ∈Z

h
∑

j ∈Z

|mi j (μ)− m̃i j (L Nμ, L Nμ
′, L Nμ

′′)|

6Ch



sup
i ∈Z

∑

j ∈Z, j 6=i

hn+1

(ih − jh)2
+ hn





6Chn




∑

j ∈N

1

j 2
+ h



 6 Chn,

whereC depends only onn, f±, H andC f .
Finally, by Theorem3.12, ‖L Nμ− μ̃N‖∞ 6 Chn and therefore, by Theorem3.8with p = n,

‖L Nμ
′ − D̃hμ̃‖∞ 6 Chn−2, ‖L Nμ

′′ − D̃2
hμ̃‖∞ 6 Chn−3.

Now, utilizing these bounds and (3.12), (3.13) and (3.19), we have

‖M̂Nμ− M̃Nμ̃‖∞ = sup
i ∈Z

h
∑

j ∈Z

|m̃i j (L Nμ, L Nμ
′, L Nμ

′′)− m̃i j (μ̃N, D̃hμ̃N, D̃2
hμ̃N)|

6Ch



hn−3 +
∑

| j |6N, j 6=0

hn−2 +
∑

| j |>N

hn−2

( jh)2





6Chn−2
(

1 + hN +
1

hN

)
6 Chn−2,

whereC depends only onn, f±, H andC f , as required. �

4. Numerical results

In this final section we give numerical results that illustrate the proven convergence rates. To produce
these numerical results we first reduce the infinite system (3.11) to a finite linear system, doing this by
one of two methods.

The first method is a basic truncation scheme that corresponds to replacing the range of integration
of R in (2.4) and (2.5) by the finite interval [−A, A], whereA = NAh, for someNA ∈ N. Precisely, the
numerical scheme is to compute an approximation toμ on [−A, A] by solving (3.11) with the range of
summation reduced fromZ to {−NA, . . . , NA}, i.e., by solving

μ̃i = φi + h
NA∑

j =−NA

k̃i j μ̃ j , i = −NA, . . . , NA. (4.1)
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A NYSTRÖM METHOD FOR A WATER WAVE PROBLEM 1145

Then an approximation toφ is given by (2.4) approximated by the trapezium rule, that is,

φ(x) ≈
−h

2π

NA∑

j =−NA

(
(x − x j ) ∙ n j

(x − x j )2
−
(x − xr

j ) ∙ n j

(x − xr
j )

2

)

w j μ̃ j , x ∈ Ω. (4.2)

Moreover, to approximate the velocity onΓ we use (3.17) and (3.18) with the range of summation in
(3.17) reduced to{−NA, . . . , NA}. In this paper we do not make an attempt to analyse the additional
errors introduced by these truncations of the range of summation or their stability and convergence. We
note that, inMeier (2001), Meier & Chandler-Wilde(2001), Chandler-Wildeet al. (2002), Haseloh
(2004) and Lindner (2006), this truncation process, a so-called ‘finite-section’ approximation, was
studied in detail for several related problems.

In the second method we achieve a finite linear system by assuming (or approximating by) a periodic
boundary and periodic boundary potential, thus enabling the infinite system of equations to be reduced
to a finite system over a single period. Many other works, for example,Dold (1992), Bealeet al. (1996)
andBaker & Beale(2004), have shown results for this periodic case. To determine the discrete periodic
system we must first reformulate the infinite system given by (3.11). As the boundary and potential
are periodic, it follows, from the compactness of the operatorK̄N in (3.10) on the space of bounded
periodic sequences and the Fredholm alternative, that the solutionμN of (3.10) is also periodic. Thus,
fixing on the case that the boundary and boundary data are periodic with period 2π , then f j , φ j and
μ j all share the periodicity thataj = aj +mN for m ∈ Z, as do the dependent variablesw j , n j andsj .
Taking advantage of this periodicity, we can rewrite (3.10) as

μ̃i = φi + h
D2

h f (ih)

wi
μ̃i − h

N∑

j =1, j 6=i

μ̃ jw j ni ∙
∞∑

k=−∞

∇xΦ(x, x j +kN)

∣
∣
∣
∣
x=xi

− h
N∑

j =1

μ̃ jw j ni ∙
∞∑

k=−∞

∇xΦ(x, xr
j +kN)

∣
∣
∣
∣
x=xi

, i = 1, . . . , N.

(4.3)

It is convenient at this point to use the isomorphism ofR2 with the complex planeC, thinking of
x j = (xj,1, xj,2) andn j = (n j,1, n j,2) as pointsx j = xj,1 + ixj,2 andn j = n j,1 + in j,2 in the complex
plane. Then, applying equation (3.60) ofLinton (1999), it follows that (4.3) can be written as

μ̃i = φi + h
D2

h f (ih)

wi
μ̃i − h

N∑

j =1, j 6=i

Re

(
n̄ j cot

(
xi − x j

2

))
μ̃ jw j

+ h
N∑

j =1

Re

(
n̄ j cot

(
xi − x̄ j − 2H i

2

))
μ̃ jw j , i = 1, . . . , N,

(4.4)

and we can apply similar formulae fromLinton (1999) to obtain an analogous expression for the normal
velocity approximationM̃Nμ̃N , starting from (3.17), and an analogous approximation forφ(x) as a
finite sum, starting from (2.4) approximated by the trapezium rule with step lengthh.

In our numerical experiments we seth = 2π/N, with N = 2, 4, 8, . . . , 1024, and chooseH = 1
in the definition ofΦH throughout. We construct examples for which we know the solution analytically
by, having chosen a surface profileΓ , choosing aφ ∈ BC(Ω̄)∩C2(Ω) that satisfies (1.2) inΩ. Clearly,
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1146 M. D. PRESTONET AL.

φ then satisfies the boundary value problem (1.5) with φ0 := φ|Γ , and we can compute analytically the
normal velocity onΓ and the exact velocity potential at some test point inΩ. In the experiments below
we choose as a test pointx = (0.1,−1.2).

In our first numerical example the surfaceΓ is sinusoidal, given byΓ = {(σ, 0.2 sin(σ )): σ ∈ R},
and the velocity potential is given byφ(x) = Φ

per
H̃
(x, x∗), wherex ∈ Ω̄, and whereH̃ = 1.0 and

x∗ = (−0.2, 0.6). Here, forH ∈ R andx, y ∈ R2, we have

Φ
per
H (x, y) :=

∞∑

k=−∞

ΦH (x, y + 2πke1)

=
1

2

(
ln

(
2

∣
∣
∣
∣sin

(
x − y

2

)∣∣
∣
∣

)
− ln

(
2

∣
∣
∣
∣sin

(
x′ − y

2

)∣∣
∣
∣

))

on using equation (3.60) ofLinton (1999) again, wherex = x1 + x2i andy = y1 + y2i are the points
in the complex plane corresponding tox and y andx′ = x1 + (2H − x2)i. The 2π -periodicity ofΓ
and of the Dirichlet dataφ0 := φ|Γ imply that the infinite linear system (3.11) reduces to the finite
linear system (4.4). In Table1 and Fig.1 we tabulate and plot for this example two different relative
errors as a function ofN. The first of these is the relative error between the exact velocity potential at
x, the test point, and the velocity potential calculated numerically. The second is the relative discrete`2
error between the known normal velocity and that computed numerically, that is, the relative`2 error in

TABLE 1 Relative errors in potential at the test
point and in normal velocity, plus values of EOC,
for the first example (sinusoidal surface profile)

N Potential Normal velocity

2 4.93× 10−1 7.25× 10−1

2.62 0.44
4 8.02× 10−2 5.35× 10−1

5.93 1.70
8 1.32× 10−3 1.65× 10−1

6.97 2.46
16 1.05× 10−5 3.00× 10−2

11.60 8.00
32 3.38× 10−9 1.17× 10−4

25.20 10.13
64 8.77× 10−17 1.05× 10−7

2.13 24.86
128 2.00× 10−17 3.44× 10−15

0.03 2.27
256 1.96× 10−17 7.13× 10−16

0.01 −1.29
512 1.95× 10−17 1.74× 10−15

0.03 −1.38
1024 1.91× 10−17 4.53× 10−15
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FIG. 1. Relative errors in potential at the test point and in normal velocity for the first example (sinusoidal surface profile).

the values(M̃Nμ̃N)i sampled ati = 1, . . . , N, i.e., over one period. Estimated orders of convergence
(EOC) are also tabulated, computed by the formula

EOC= log2(Error for givenN/Error for 2N),

so that EOC= p if the error is proportional toN−p.
The numerical results in Table1 and Fig.1 are consistent with the superalgebraic convergence

predicted by Theorems3.12and3.14when f ∈ BC∞(R). Precisely, it can be seen that both approx-
imations converge at an increasingly rapid rate, the values for EOC increasing, reaching a maximum
value of over 20 before any further increase in accuracy is limited by rounding errors.

In the above example we have demonstrated, indirectly, the convergence predicted by Theorem3.12
but have not shown this convergence directly since, for the above example, we do know the true density
μ. In a second example, we consider the special case where the surface is flat, that is,Γ := {(σ, 0):
σ ∈ R}. Choosing Dirichlet dataφ0 := φ|Γ , where the velocity potentialφ is given by

φ(x) = −
1

2
(Φ

per
H (x, x∗)−Φ

per
3H (x, x∗∗)), x ∈ Ω̄,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/31/3/1123/666403 by U
niversity of R

eading user on 17 M
ay 2020



1148 M. D. PRESTONET AL.

FIG. 2. Relativè 2 error in density for the second example (flat surface).

wherex∗ = (x∗
1, x∗

2), with 0< x∗
2 < H andx∗∗ = (x∗

1, 4H − x∗
2), it follows from Prestonet al. (2008,

Theorem 4.3.1) that the densityμ in (2.4) and (2.5) is given by

μ(σ) = Φ
per
H ((σ, 0), x∗), σ ∈ R. (4.5)

As in the first example, the 2π -periodicity ofΓ and of the Dirichlet dataφ0 := φ|Γ imply that the
infinite linear system (3.11) reduces to the finite linear system (4.4). In Fig.2 we plot the relative discrete
`2 error between the known densityμ and its numerical approximation found by solving (3.11). The
numerical results plotted in this figure illustrate the superalgebraic convergence predicted by Theorem
3.12when f ∈ BC∞(R).

In our third and final example we obtain a finite linear system by truncation (so that we use (4.1)
and (4.2)), the boundaryΓ has the Gaussian profileΓ = {(σ, 0.2 exp(−σ 2)): σ ∈ R} and the boundary
data areφ0 := φ|Γ , where the potentialφ is given byφ(x) = ΦH (x, x∗), wherex ∈ Ω̄ andx∗ =
(−0.2, 0.6). The truncation is performed withA = Pπ , whereP = 1, 2, 4, . . . , 64. We present the
relative error between the exact velocity potential atx, the test point, and the velocity potential calculated
numerically using (4.2) in Table2 and, for each fixedP, values of EOC are also tabulated. It can be seen
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that the approximation given by (4.2) converges toφ(x) asN → ∞ andP → ∞ and that, for a fixed
large P (when the errors induced by the truncation are small), the values for EOC increase initially
as N increases up to nearly EOC= 9, consistent with the superalgebraic convergence predicted by
Theorems3.12and3.14when f ∈ BC∞(R). The relative errors from Table2 are plotted in Fig.3,
where, forP large, the predicted superalgebraic convergence asN increases can be observed and, for
N large, algebraic convergence asP increases can be observed. In Table3 the relativè 2 error between
the known normal velocity and that calculated by reducing the range of summation to{−NA, . . . , NA}
in (3.17) is tabulated, that is, the discrete`2 error based on comparing(M̃Nμ̃N)i with the exact normal
velocity for i = −P N/2, . . . , P N/2. The same values are plotted in Fig.4. The trends are simi-
lar to those observed in Table2 and Fig.3, except that, for the same values ofN, the relative errors
are larger and the EOC values are not so large for the normal velocity. Furthermore, asP increases
with N fixed and large, algebraic convergence is observed in Fig.4 but at a slower rate than for the
potential.

Further numerical results can be found inPreston(2007, Chapter 4).

FIG. 3. Relative error in the approximation (4.2) to the potential at the test point for the third example (Gaussian surface profile).
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FIG. 4. Relativè 2 error in normal velocity for the third example (Gaussian surface profile).
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