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This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s
equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady
water wave problems. The starting point for the numerical scheme is the boundary integral equation
reformulation of this problem as an integral equation of the second kind on the real line in Rreaton
(2008, J. Int. Equ. Appl. 20, 121-152). We present a Ny&tn method for numerical solution of this
integral equation and show stability and convergence, and we present and analyse a numerical scheme
for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity
from the velocity potential on the surface, a key computational step in unsteady water wave simulations.
In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface
is infinitely smooth. The theoretical results are illustrated by numerical experiments.

Keywords water waves; Nystim method; Laplace’s equation; nonperiodic surfaces.

1. The formulation of the water wave problem

The fluid motion in a classical two-dimensional water wave problem is well modelled as the motion
under the influence of gravity of an incompressible, inviscid and irrotational fluid. As the fluid is irrota-
tional, the flow can be described as a potential flow and the veladhiyoughout the fluid is given by

V= (v1,02) = Vo, (1.1)

where¢ is thevelocity potential Under the standard assumptions of water wave theory, the velocity
potential satisfies Laplace’s equation in the fluid

Ap =0, (1.2)
and, in the absence of surface tension, Bernoulli's equation

9 v - .
= IV - g, (13)

wherex; is the vertical component of, on the free surface.
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1124 M. D. PRESTONET AL.

We consider in this paper the case when, at each instant in time, the fluid occupies a perturbed
half-plane domain of the form

Q 1= {(x1, X2): X2 < f(x1), X1 € R},
where, for some constanfs and f., the continuous functiori satisfies
fo < f(x) < fy (1.4)

for x; € R, so that the fluid surfac& := 6Q = {(x1, f(X1)): x1 € R} is the graph of a bounded
function. We assume, moreover, some smoothnesk foamely that, for some € Ng := N U {0}, the
derivatives off up to ordem + 2 exist and are bounded and continuousxAt (x1, f(x1)) € I we
definen(x) = (n1(x), n2(Xx)) to be the unit normal vector directed out@fands(x) = (s1(x), S2(X))
to be the unit tangent vector that has a positive horizontal compaséxy,> 0.

Given a setG c R™, wherem = 1 or 2, letBC(G) denote the set of real-valued functions on
G that are bounded and continuous, a Banach space under the usual supremum norm. In terms of this
notation, the main computational requirement in evolving the fluid boundary as a function of time is the
solution to the following Dirichlet boundary value problem forGiven boundary daté, € BC(I),
find¢ € BC(Q) N C?(RQ) such that

Ap=0inQ and ¢ =¢r onr. (1.5)

It was shown irPrestoret al. (2008 that this boundary value problem is well-posed and that the solution
satisfies the maximum principle

lp(X)| < suplér(y)], Xe Q.
yel’

A large part of this paper will be devoted to describing and analysing a numerical scherheé¥or (
that is a discretization of a boundary integral equation reformulation proposed recepiisioret al.
(2008. We will also discuss the numerical computation, by boundary int(igral equation methods, of the
Dirichlet-to-Neumann mapt i, which is the map with inpu$, and outputgn on I, where¢ is the
solution to the above boundary value problem. Given this map, we can determine the velocity on the
boundary by

VIr =V@lr = Dérs+ Arérn, (1.6)

whereD¢r = %% is the tangential derivative ¢f;-. Hence we can evolv¢, and the boundary” (as
the graph of a functiorf ) using (.3) and the kinematic boundary condition that the surface moves with
the fluid. Precisely, od”, we have thatf andv = (v1, v2) satisfy

o9 1.2

L = —qaf

p 5 VI”—of,

of o (1.7)
E—Dz—l)]_ .

The formulation above separates the determination of the velocity potehBph( any given time
from the evolution of the two parameters, the boundary position and the Dirichlet boundar{.data (
This separation naturally enables the system to be modelled by explicit time-stepping numerical methods
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1125

used throughout the water wave literature, for example, Runge—Kutta and Adams—Bashforth schemes
(seeBealeet al, 1996 Hou & Zhang 2002 Baker & Beale 2004 Fochesato & Dias2006 Xu &
Guyenneg2009. Subsequently, we will treat and¢ as only spatially dependent and suppress the time

dependence, as we concentrate on solving the boundary value prdb&and calculating the velocity 9
(1.6) at a fixed time. 2

Let us spell out what the new contributions are in this paper. A main novelty is that this paper ap-§
pears to be the first publication to tackle the numerical solution of the boundary value prdlfipin ( 3
the general case of arbitrary bounded continuous Dirichlet glatavith neither the boundary™ nor 3
¢r assumed to be periodic. In the context of numerical simulation of periodic water waves, a numer-i
ical scheme, with a complete analysis, was providetiau & Zhang (2002 that applies to 1.5 in §’
the special case wheh and ¢, are periodic (so that, for sont® > 0, we havef(s+ S) = f(s), 5
wheres € R). The boundary-integral-based scheme analysétbin & Zhang(2002 is one source of fg
inspiration for the numerical method proposed and analysed in this paper. (The other is work on the nu%

merical solution of acoustic rough surface scattering probléneser et al, 200Q Meier, 2001, Meier

& Chandler-Wilde 2001, Haseloh 2004) But we note that the restriction to periodicand boundary

data in (.5 simplifies the numerical scheme required and especially its analysis significantly. In partic-
ular, as we discuss later in the final section, with this periodicity, the operator in the boundary integral5
equation formulation we describe is a compact perturbation of the identity operator, so that stability an@
convergence of the type of scheme we propose follow, to a large extent, from standard arguments, foas
example, based on collectively compact operator thedtlirison, 1997).

A main motivation in designing an effective numerical scheme 105)(and for computing the
Dirichlet-to-Neumann map is to provide a tool for the main computational problem at each time step 2
for problems of simulation of nonperiodic water waves. We note, however, that our method does applyz
in the special case when the surface is periodic. An attraction of our numerical scheme and our analysig
in that case is that it is clear from our results that our scheme is stable and convergent uniformly with=
respect to the perio8. Thus the condition number of the linear system and the error in the numerical
scheme remain bounded in the limit 8s— oo. We also note that throughout we take care to prove
stability results and error bounds that are uniform with respect to the surfagmvided thatf lies in
a certain constrained set, defined by the requirermiedt&nd by bounds on derivatives 6f Of course,
our motivation here is again the application to the simulation of time-dependent water waves fwhere
varies in some constrained set as a function of time.

The structure of the paper is as follows. Sectibrecalls the integral equation formulation from
Prestoret al. (2008 that we will discretize. The main new results in this section are mapping proper-
ties of the integral operator, regularity results for the solution of the boundary integral equation and a
explicit representation for and mapping properties of the Dirichlet-to-Neumann map. In Sget®n
turn to discretization and numerical analysis. Secdnanalyses a Nysim method for the boundary
integral equation based on discretization of the integral operator, which is parameterized so that th
integration is on the real line, by the trapezium rule. This analysis uses resultd/fegen(2001) and
Meier & Chandler-Wilde(200J). In Section3.2 we discuss a discrete approximation to the derivative
of a continuously differentiable function on the real line based on localization and trigonometric in-
terpolation. In Sectior3.3 we use the methods and results of SecBdhito formulate and analyse an
approximate Nystim method that is superalgebraically convergent when the Dirichlet/gatand I
are smooth (in particularf € C°(R)) but that does not require, as does the method of Se8tihn
access to the first and second derivatives dfut only access to sampled values fofon a uniform
grid. Our intention is that this scheme in Sect®B should be of value in a time-stepping scheme for
the water wave problem. In Secti@¥4 we derive and analyse similar methods for approximating the
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1126 M. D. PRESTONET AL.

Dirichlet-to-Neumann magpt -, and hence for approximating the surface veloeitfinally, in Section
4 we illustrate the theoretical convergence results by numerical examples.

This paper is restricted to analysis of numerical methods connected to the two-dimensional water
wave problem. There has been considerable recent interest in the numerical solution of (nonperiodic)
three-dimensional water wave problems (et§pu & Zhang 2002 Fochesato & Dias2006 Xu &
Guyenne 2009, and it would be an interesting and nontrivial project to develop analogous numerical
analysis to that presented in this paper for the three-dimensional case.

1.1 Notation

We collect here various notation used throughout, and, in particular, definitions of various function
spaces that are necessary for the numerical analysis. Given an open or clésed B&t, wherem = 1
or 2, andn e Ny, let BC"(G) denote the set of functiorns G — R that are bounded and continuous
and have (partial) derivatives up to orderthat are all bounded and continuous. H&€E"(G) is a
Banach space under the usual norm. We will abbrevig®®(G) by BC(G). For 0 < a < 1 let
BC%3(G) c BC(G) denote the Banach space of functions that are bounded and uniforiidgiH
continuous with index: and letBC1*(G) denote the Banach space of functionse BCY(G) for
which Vi € BC%%(G).

ForS > 0 andn € Np let BC2(R) c BC"(R) denote the set of those functiopise BC"(R) that
are periodic with periods. We abbreviateBcg(]R) by BCs(R) and letBCZ(R) := (\pey BCAR).
Forp > Oletwp(s) := (1 +|s])P, wheres € R, and letBC(R) ¢ BC"(R) denote the Banach space

BCH([R) := {u e BC'R): lullscyr) = sup lwpu™|lgenm) < oo]

m=0,...,n

and 1etBC°(R) := oy BCH(R).
Throughouter, e andes will be the standard unit coordinate vectorsiA. We will use the same
notatione; ande, for the unit vectore; = (1, 0) ande, = (0, 1) in R2.

2. The boundary integral formulation and the Dirichlet-to-Neumann map

ChooseH > f, and letQy denote the half-plan®y := {(x1, X2): X1 € R, X2 < H} and let/'y =
002y = {(x1, H): X1 € R}. Note that the half-plan®y contains the perturbed half-plane doma&in
We define the Dirichlet Green'’s function for the half-pla@g by

DX, y) = DX, Y) — DX, Y), X, yeR% x#y,

where
1
D(X,y) = o Injx —y|
T

is the fundamental solution to Laplace’s equation in two dimensionsyane: (y1, 2H — y») is the
reflection ofy in I'y.

In Prestoret al. (2008 it was proposed to look for a solution to the boundary value probleB) (
in the form of a double-layer potential

oD R
$(x) = /r %y)y)ww)ds(y), xe Q. 2.1)
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1127

for some density: - € BC(I”). Note that the half-plane Green'’s function is used in the defini2o (
in place of the usual standard fundamental soluthorT he following theorem was presentedireston
et al. (2008 Theorem 3.1).

THEOREMZ2.1. The double-layer potentidé.() with densityu € BC(I") satisfies the boundary value
problem (.5) if and only if x i satisfies the second kind integral equation

uﬂm—ﬁg%%%hﬂwww=—wﬂ& xerl. (2.2)
Defining the integral operatdf{ - by
. OPH (X, Y)
(Kryr)(x) =2 /F Ly (yasty),

we can rewrite Z.2) in operator notation as

(I =Kppur =-2¢r.

The point of usingby rather than® in (2.1) is that this choice ensures that the integrald)(and
(2.2) are well defined for allu ; € BC(I"), and, indeed, thaK  is a bounded operator cBC(I").

FromPrestoret al. (2008 Theorem 3.4) we have, moreover, the following theorem on the boundedness

of the inverse mapping — Kr)™L.

THEOREM 2.2. The mappindl — Ky): BC(I") —» BC(I") is invertible with a bounded inverse.
Precisely, giverCs > 0, for some constar@ > 0 depending only orf., H andCy, it holds that

10 —Km)t<c
whenevel| f || Bc2®) < Ct.
It is convenient to introduce an isometric isomorphistn: BC(I') — BC(R), defined by
(Jrar)(c) = ar(o, (o)), wheres € R, for everyay € BC(I'). Let u € BC(R) be defined by

u = Jdrur, whereu i is the solution of2.2), let oo € BC(RR) be defined bybg := Jr¢r and letkg
be defined, fox € R ands € R, by

D 5
kﬂxw=3§%%3

w(o)
y=(0.1(@)

1 ( x=(o, f(0)) X —(0,2H — f(0))
__Z<w—wanﬁ_m—wiH—nmm

wherew(s) = /1+ f/(¢)2 andn(e) := n((o, f(c))) = (—f'(c),1)/w(s), and we note that
s(o) :=s((o, f(c))) = (1, f'(0))/w(c). We can then rewrite2(1) as

) -n(o)w(o), (2.3)

¢ (X) =/ng(x,a),u(a)d0', X € Q, (2.4)

and @.2) as

u(r) — /]R kK(z,o)u(o)do = —2¢0(r), 7 €R, (2.5)
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1128 M. D. PRESTONET AL.

wherek(z, o) = ko ((z, f (7)), o), for z £ o, while

=1 /1"(x) 1
k(r’r)_g(a)(r)z—i_f(r)—H)’ 7 e R.

We will abbreviate 2.5) in operator form as
(I = K)u = =240, (2.6)

whereK = Jp KpJ;l is the integral operator given by

(Ku)(7) :/Rk(r,a),u(a)da, T eR.

We now prove a mapping property for the integral oper#taand show that the smoothness of its
kernelk is linked to the smoothness of the boundary. Let

1
ri(z,o) :=/0 f'(c + (r —0)O)d¢

and
1
ra(r, o) = /O (0 + (r — 0)O) (L= ) 2.7)

for 7,0 € R, and note that, by Taylor's theorem (e.Hardy, 1958 pp. 327-328), forf € C2(R) it
holds that

fr)=f(0)+ (t —o)1(t,0)=fo)+(r —0)f'(6) + (r — a)zrz(r, o). (2.8)

THEOREM 2.3. If f € BC™?2(R) and I fllgcrrzwy < Ct for somen € No andCt > O, then
k € BC"(R?) and, fori, j € Nowithi + j < n, we have

aiti
doiori

Cx

< —— foro, 7t eR,
S 14100 —1)?

k(r,a)‘

whereCy depends only om, fi, H andC¢. FurthermoreK: BC(R) — BC"(R) and there exists
Ck > 0depending only on, fi, H andC+ such that|K| < Ck.

Proof. Foro, © € R?, whereo # 7, by Taylor’s theoremHardy, 1958 we have

_ 1 -(@-0)f'(e)+(f(z) — f(0))

0P (X, )
x=(z, t (2)),y=(0, f (c)) 2rw(e)  (r—0)2+ (f(2) = f(0))?

on(y)

. 1 ra(z, o)
 2rw(o)1+r1(1,0)2 (2.9)

Given f € BC"2(R), it is clear thatw € BC™1(R), r; € BC""1(R?) andr, € BC"(R?). Hence
k e BC"(R). Moreover, there exists a consta&y > 0 that is dependent only an) fL, H andC; such
that|[k[lgcnr) < Ck.
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1129

Now @y (X, y) satisfies Laplace’s equation as a function of betandy in Qu and, byPreston
et al. (2008 Lemma 2.1), we have fot, y € Qn with X ## y andy, > f_ — 1 that

3(H — f_ +1)

V& <
| y H(Xy Y)| 7T|X_y|2

(2.10)

Then, from the regularity estimates@ilbarg & Trudingern(1977 Theorem 3.9) for solutions to elliptic
partial differential equations, whe®,Vy®n (X, y) denotes any partial derivative &, dn (X, y) of
order less than or equal towith respect to the componentsxfandy, we have

Cn

[DnVy@PH(X, V< ———
ny X1 — y1l?

(2.11)

for x,y € Qn, |x1 —y1| > 1 andxp, y» € [f_, f,], whereC, > 0 depends only on, f+ andH.
Since we have already shown thi&| gcn(r2) < Ck, it follows that, for someC > 0 depending only on
n, {1, H andC¢, we have

ai-‘rj
doiori

C
g—’
1+ |6 —7|?

i+j<n,

k(r,o)‘

foro, r € R, as required.
The remainder of the result now follows frodheier et al. (200Q Theorem 2.4(a)). O
We now turn to the Dirichlet-to-Neumann mafy-. We first note that it was shown Prestoret al.
(2008 that| — K is also a bijection orBCY*(I") for a € (0, 1) in the case thaf ¢ BC?(R) and
that, analogously to Theoreh2, as an operator oBCL-%(I"), we have

I -Kp™ i <c,

whereC depends only orf., H andC. Furthermore, it was shown iRrestonet al. (2008 that, if
u € BCL%(IN), theng given by @.1) satisfiesp € BCL%(Q) with

||¢||Bcl,a([}) < C”ﬂ”BClya(r),

whereC, again, depends only ofi.,, H andC+. The above results, combined wiestoret al. (2008
Theorem 3.1), imply that the Dirichlet-to-Neumann map is a bounded operator froRCL-*(I") to
BCY%* (") with || 4 || < C4, whereC, depends only orf., H andC. Moreover, explicitly,

o9

| =Arér=Mr( - Kr)Yér, (2.12)

I

where the bounded operatit: BC-*(I") — BC%*(I") is given by

0 OPH (X, Y)
Mrsr(0 = S /F D ()Y, X T

We now derive an alternative, more easily computable, expressiov far-.
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1130 M. D. PRESTONET AL.

THEOREM2.4. If ur € BCL%(I") then, forx e I, we have

My i (x) = /F mrLurl(x, y)ds(y),

where
¢ 2
rierien= 6;5—8))/) (n(x) ' n(x)ag_sr(x) — N n(y)%(y))
oDy (X, Y) our
(an—(y)n(X) -S(y) =y (X, Y)nl(X)) E(y)
9y (X, y) a7 (X, y)
. (Tw”z(” } W”M) ur ().
—2H
7oy = %

andag—sf denotes the tangential derivative of .

Proof. Let ur e BCY*(I') and ¢ be the double-layer potential given bg.). Now, since
L p(x,y) = P andaixlqﬁ(x, y) = —a%qﬁ(x, y"), it holds that

0X2
Va6 Y) + VyP 0, Y) = =26 B (k) = 7 (6. V) 2.13)
and
—ai';g) 9y (@ux yn) + nay)y (. y).

It is convenient at this point to regard our two-dimensional vectors above as the first two components of
three-dimensional vectors with zero third component in the direction of the standard coordinate direction
e3 and note thaés = s(y) A n(y) = €1 A &. This enables us to use the vector iden¥itya V A A =

—AA+ VV . Aand gives

Vp(x) = - /F Vy A Vx A (@11 (X, Y)NY) e (Y)dS(Y)

+ [ ne) Vi (Y (1))
r
Now, using .13, we have
Vx APH (X, Y)N(Y)) = =n(y) A VxPH (X, Y)

=n(Y) A Vy@H (X, y) =7 (X, Y)N(Y) A €

__9Pu(X.Y)

25y) e — 7y (X, y)ni(y)es
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A NYSTROM METHOD FOR A WATER WAVE PROBLEM 1131
and

Vi A Yy A (D1 (X, YIN(Y)) = €3 A %y)vxdm (X, Y) + N1(Y)&s A Yy (X, Y).

Thus, interchanging the order of differentiation and then integrating by parts, we have

Ve (x) = e A /F Vs (%, ) L () dsty)

- /r (N1(Y)3 A Yy (X, Y) — Na(¥)Vxy (% Y)) e (9)dS(Y).

Clearly, the second integral is continuous?rand, since‘% e BCY%«(I"), by applying Theorem 6.18
of Kress(1999 we see that the first integral can be continuously extended feoim Q. Thus, taking
the limit asx approacheg” and using Theorem 6.18 &fress(1999, we see that

0 0
2 00=n00- (e [ Veonoxn L masty)
on r os

—n(x) - (/r(nl(Y)e?: A Vxy (X, Y) = n2(y) Vxy (X, Y))ﬂF(Y)dS(Y))

=n(x) - (eg A /F(—VchH(x, )+ 7, y)ez)ag—sr(y)dS(Y))
oy (Xa y) oy (X,y)
+/r ( an(x) n2(y) — as—(x)nl(y)) mr(y)ds(y),

where the first integrals in each line are to be understood as Cauchy principal values and note that w:
have appliedZ.13 again. Now, splittingVy®y (x, y) into its normal and tangential components, we

have
op . OPH (X, Y) OPH(X, Y) dur
a—n(X) =—n(X) - (93 A /r (n(y)an—(y) +s(y) 25y) ) s (Y)dS(Y))

- [ 7o ymm L dsty)
r S

9y (X, y) oy (X, y)
+/r ( ot YT Tas) ”1(y)) pr(y)ds(y)

_ PPN aBeY)) dnr
= [ (60 st X ) ) S ) L gty
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Finally, we have the identity

ody (X9 y) _
/FT(y)dS(y)—o, xXel,

where the integral is understood as a Cauchy principal value, and therefore we can subtract the term
5#r( )/ 0DH (X, Y)
os(y)

from (2.14) and hence the result is proven. O
We now define the equivalent integral operator dke¢o M, namelyM: BC1%(R) — BC%%(R),
given byM = Jr MpJ;l. In the case thaf € BC2(R), for y € BC2(R) andz, o € R let

S(y)

/ 1
pl//(o-) = %V;)(O')’ ql//(‘L', o) ::/O p:/,(a +(r —0)O)dS,
noting that
ay(r,0) = 2O =P @ (2.15)

T—0

Furthermore, let

mly1(z, 0) =mr[ 37ty (, f(2)](o, (o) (o)

=mly](z, o) + my](z, o) + ma[y](z, o), (2.16)
where
ml[l//](‘[’ 0-)
i( (t —o, f(x) — f(0)) 3 (t —0,2H — () — f(0)) )
(1 =02+ (f(t) = f(0))? (1—0)2+@2H = f(z) - f(0))?
= ~(n(z) - (Py(r) — pw(a))S(ff) +n(z) - s(a)py (9)), o#r7,
1
27[ ( )ql//(T T) n('[) = ( )pz//(‘[) n(T) o =T,
ma[y](z, o)
_1{@r=0)@H - f(x) = f(0),(r —0)*+ 2H = f (1) = f(0))®
T ((t —0)2 4+ (2H — (1) — f(0))?)2
-(n(z)n2(e) + s(z)ni(o))w (o) y (o)
and

2H — f(¢) — T (o)
(r —0)?+ (2H — f (1) — f(0))?)?

1
My, 0) = ( ) N ()y(0).
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1133

Then, by Theoren2.4, for z € R we have
M) = [ mll(r.a)de, (2.17)

The Dirichlet-to-Neumann map{ := JrArJfl, is then given by
A=M(1 -K)™L

We now prove a result similar to Theorei3 by showing that the smoothness mof 1] (-, -) is
dependent on the smoothnessfoind 2 and that the operatdvl mapsBC"+2(R) continuously into
BC"(R).

THEOREM 2.5. If f € BC"™™2(R), || f|gcrremy < Ct andu e BC™2(R) for somen e Ng and
Ct > 0, thenm[x](-, -) € BC"(R?) and, fori, j € Nowithi + j < n, we have
i+]

Cm
slullgenrewy, 0,7 € R,

-m OS5
e, o) | <

dolot
whereCy, depends only on, f., H andC; . FurthermoreM: BC"t2(R) — BC"(R) and there exists
Cwm > 0, depending only on, f1, H andC+, such tha| M| < Cp.

Proof. Forz,o e Rletp(o) :=p,(c) andq(z, o) := q,(z, o) and writemy[u](z, o) as

my[u](z, 0) = mya[u](z, o) + my2lu](z, o)
on recalling equation;16 and where
1 (—o, f(r)= f(o0))
Z (T — 0_)2 + (f(‘[) — f(O'))z : S(U)(p(f) - p(O’)) : n(‘[)’
mya[ul(z,0) = o #1,
1
2rw(t)

p/(‘[) : n(‘[)s o =7,

and
(t —0,2H — f(z) — f(0))
(t —0)2+ (2H = f(r) — f(0)

n(z) - s(o)y' (o)
(0(0))?
If f € BC™2(R) thenng, ny, s1, S, w € BC™L(R) and, by Theoren2.3 k € BC"(R?), which
It remains to show thang 1[«](:, -) has the required continuity. Now, fet o € R, wherer # o,
using @.8) and .15, we have

1
my2lul(z, 0) = o 2 S(o)(p(z) = p(a)) - n(z)

+Kk(z,0)

1 T—a—i—(f(r)—f(a))f/(a)(
2t0(@) -0+ (F(@) = f@)2 "

1 14 f(o)ri(z,0)
" 2rw(o) l4+r11(r,0)?

(r) = p(0)) - n(z)

myalu](z,0) =

q(‘[, O-) ' n(T)a
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1134 M. D. PRESTONET AL.

and, since1(r,t) = f’(r) andq(z, r) = p'(r), the same formula applies far = ¢. In the proof
of Theorem2.3we have already observed thate BC"*1(R?), and clearlyp € BC"*1(R), so that
g € BC"(R?). Thusmy 1[x](-,-) € BC"(R). Som[x](-,-) € BC"(R?). Moreover, using the above
proof of Theoren®.3, we see that there exists a const@pt > 0, depending only on, fi, H andCy,

such thatim[x] (-, ) llscr®) < Cmllpllgero(w)-
Since also the bound&.0L0 and @.11) hold, we see that, for, ¢ € R, we have

I+ C .
Wm[#](‘[,ﬂ) < m”ﬂ”scnﬂ(m), I+]<n,
whereC depends only om, f1, H andC;. Hence, byMeier et al. (2000 Theorem 2.4(a)) again
(takingb = m[«](-, ) and lettingg = 1 in the definition ofM® in the notation oMeier et al. (2000),
M: BC"2(R) — BC"(R) and||M| < Cw, as required. O
We can now rewrite the velocity on the surface, given by6)( with respect to the horizontal
component of the surface by using the isometric isomorphigmLet v: R — R? be defined by
v = (v1,v2) := JrVv|y. Then, from (.6) and @.17), we have

_ $0)
()
REMARK 2.6. It follows from Theorem&.3and2.5that, if the surface and boundary data are infinitely

smooth (i.e.,f, g € BC*(R)), then the density and hence velocity, given Byl@), are also smooth
(i.e.,u € BC*®(R) andv € BC®(R) x BC*(R)).

v(1) S(t) + (Mp)(z)n(zr), 7 eR. (2.18)

3. Discretization and the Nystom method

In this section we propose and analyse a discretization of the integral equapar(d of the expres-

sion for the normal velocityd.12). To carry out this discretization we need two operators, a numerical
integration or quadrature operator to approximate the integrals fourtd@nand @.12 and a discrete
derivative operator to determine approximations tandx’. We initially consider a partially discrete
system in which just the quadrature operator is applied and use resultdvieaen et al. (2000 to

show stability and convergence for this initial scheme, where the key feature is the assumption that we
can know or calculaté& exactly. Then we define and analyse a more fully discrete scheme in which
we use a trigonometric discrete derivative operator to numerically caldulaie approximation td.
Throughout, the discretization step length willlbe= 2z /N, for some everN € N.

3.1 Quadrature operator and the initial Nystm scheme

Itis well known that the trapezium rule is superalgebraically converger@foperiodic functions. It is

also superalgebraically convergent @t integrands defined on the whole real line (which decay suf-
ficiently rapidly at infinity for the integral to be well defined). Let us define a trapezium rule quadrature
operator by

Ihu = hZu(jh).

jeZ

The following theorem establishes superalgebraic convergence in the eaBE° (R).
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1135

LEMMA 3.1 (Meieret al, 2000 Theorem 3.9). Il € BCB(R), n € N, nis even and > 1, then, for

h > 0, we have
o0
’/ U(o)de — Ihu
—00

whereC > 0 depends only on andp.

< Clull Bcg(R)hn,

Applying I, to (2.6), we define a Nystrm method approximationy € BC"(R) to u by

UN = ¢o+ Knun, (3.1)
where
Kny () = Ink(z, )y () = h 3 k(. jhy(jh). 7 eR.
jeZ
Explicitly, (3.1) is
un(t) =¢o(r) +h Zk(f, jMun(h), ek (3.2)
JeZ

The valuesun (ih), wherei € Z, are determined by setting= ih and solving the resultant infinite set
of linear equations.

Meier et al. (2000 proved results on the convergence of Ngstrmethods for second kind integral
equations of the form

xX(r) =y(r) + /00 (a(r,o)In|t —o| +b(z,0))X(c)de, 7 eR,

wherea, b € C"(R?) anda(z, o) andb(z, o) decay like|r — ¢|~P as|t — | — oo for somep > 1.
We can apply the results dfleier et al. (2000 by takinga = 0 andb = k € BC"(R?). Theorems
2.2 and 2.3 show that the two condition€/ and E of Meier et al. (2000 are satisfied, and so the
following three theorems on the stability and convergence of the Blysaipproximation3.1) follow
from Theorems 2.2, 2.8 and 3.13Nfeier et al. (2000.

THEOREM3.2. If f € BC3(R) and|| f lgc3m) < Crt for someC; > 0, thenKy: BC(R) —» BC(R)
is bounded and

IKnIl < C,

whereC depends only orf., H andCy.

THEOREM3.3. If f € BC3(R) and|| f lgc3w) < Ct for someCy > 0, then there exisN € N and
C > 0 such that, for alN > N, we have thatl — Ky)~1: BC(R) — BC(R) is bounded and

10 —Kn I <C, (3.3)

whereC depends only orfs, H andC;. Furthermore, ifpg € BC(R) then, forN > N, (3.1) has a
unique solutionuy € BC(R) and

lunllBec®) < ClidollBc®)-
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1136 M. D. PRESTONET AL.

THEOREM3.4. If f € BC"2(R), ¢g € BC"(R) and||f||BCn+z(R) C forsomeC; > 0 andn € Ny
with n even, then there exist$ € N such that, for aIN > N, we have

lu — unllser@®) < Cligollsen@w)h”, N >N,

for someC > 0 depending only on, f., H andCjs.

3.2 Discrete derivative operator

It is convenient in this section to utilize the following summation notation:

N/2 1 N/2-1
4

z uj = —(u N/2 + UNj2) + Z uj.

j=—N/2 j=—N/2+1

Foru € BCy,; (R) letun € BCy; (R) be the trigonometric polynomial given by

N/2

un(e) = > "0k, o eR, (3.4)

k=—N/2
where the coefficientdx are given by
N/2
N N
= Z” (lh)e_llkh k:—E,,E
I_—N/2

It is a standard result that, interpolatesu at jh, wherej € Z, i.e.,un(jh) = u(jh), wherej € Z. We
can use the fast Fourier transform to calculate the coefficignts

THEOREM3.5 (Meinardus1967 Theorem 41). It € BC)_(R) andup, is defined by 8.4), then

lu—unligey ®) < CallullBen@)h™™™

form=0,1,...,n— 1, where the consta@, > 0 depends only on. In particular, ifu € BC5> (R)
then u, exhibits superalgebraic convergence, ifu,— unlgc,, ® = o(h") ash — oo for
alln e N.

Let us define a discrete approximatéh-order differential operatdbﬂ“: BCy; (R) » BCy, (R), for
m € Np, by

N/2
Dllu(@) :=u (@)= > """, o eR. (3.5)
k=—N/2

Note that[')ﬁu = up. We now investigate the accuracyﬁ‘u as an approximation to threth derivative
of u. The following follows immediately from Theoref5.
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1137

COROLLARY 3.6. Ifu e BC) (R) then,form=1,...,n—1, we have

Iu™ — Dullec,, @) < Callulscy @h™™™

Let y € BC®(R) be a ‘cut-off’ function, compactly supported about 0, satisfying Oy () <
1, y(6) = y(=0), y(6) = 0if || > # andy(c) = 1if |o] < 1, wheree € R. We further
define the translation operat®;: BC(R) — BC(R) by (T,u)(r) = u(t — o) foro,7 € R, and a
2r-periodic extension operatdE: BC(R) — L*°(R) by the requirements thdEu)(c) = u(o),
where—7 < ¢ < 7, and(Eu)(c + 27) = (Eu)(c), wheres € R. UsingE, y, T, andD™, we can
define a discrete differential operatdf' on BC(R) by

(Df'u)(o) = (DP'E(x T,u))(0), o €R. (3.6)
THEOREM3.7. Ifu e BC"(R) then, form=1,...,n — 1, we have
Iu™ — D'ullgcr) < Callullgen@)h™™™,

whereC,, depends only on andy.

Proof. The operatofl,: BC"(R) — BC"(R), wheres € R, is bounded withi T, ul gcn®) = llullgen®)
for o € R. The mappingBC"(R) — BC) (R), u — E(yu) is bounded with||E(;(u)||Bcgn(R) <
Cllullgcn(r), Where C depends only om and y. Hence the mappin8C"(R) — BCQZ(IR{),
u - E(yT,u) is bounded with||E(XTgu)||BCg”(R) < Cllullgen(ry, whereC depends only om
and y. Furthermore, for alb € R we haveu(ec + J) = E(x T,u)(d), where|s| < 1. Therefore, by
Corollary 3.6, the results hold. a

From the definition of the discrete derivative operator, through equat®8sand @.6), it is clear
that, foru € BC(R) andm € Np, the valueD{"u(jh), wherej € Z, depend only on the values vfx)
atx = jh, wherej e Z. To make this explicit, foli = {U;};cz € |°°(Z) we defineEnU € BC(R) to
be the piecewise linear function satisfyigg t(jh) = Gj, wherej e Z. Define D{{‘: [°(Z) — 1°°(Z)
by

(D'd); = DPENG(jh), | e Z. (3.7)
Then, explicitly,
N/2
Ofa; = > (ke (3.8)
k=—N/2
where
1 N/2
" —i ~
Ck = N Z x(Ih)e II(IhU|_j.
I=—N/2

In Section3.4 we will need to approximate derivatives froapproximationsto functions at the

interpolation pointsjh. The final theorem of this section details how this additional approximation

affects the accuracy of the discrete derivative operator.
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1138 M. D. PRESTONET AL.

THEOREM 3.8. Suppose that € BC"(R) for somen e N, that, for N € N, we havely =
{Gj,N}jez € 1°°(Z) with Gj N ~ u(jh) and that, for some@ € N andC; > 0, we have

r}ﬂec':lZXIU(J'h) —0j,n| < Callullgen@wyhP
(whereh = 2z /N). Then,form=1,...,n— 1, we have
rjne%xw(m)(jh) — (Bff'dn) | < Cllullsenayh,

whereq = min{n —m, p — m — 1} andC depends only on, C; andy.

Proof. By (3.7) and @3.8) and ad| x lecr) = 1, we have

r}naZx|Dﬂ“u(jh) — (DPun)jl

N/2  N/2

—max| S Y I — Dy — 6 e ™

1€z |\ N 212502

N/2  N/2

1
<CifulsermhPy > DKM
k=—N/21=—N/2

<27"CyflullerayhPN™ < 22y ullgenayh P
Combining this inequality with Theore®7, it follows that

max|u™ (jh) — (Ddn);|
jeZ
< Ju™ — DlMullger) + rpeazxmﬂ“u(jh) — (DfMan)j|

<GCnllullgerh™™™ + 22 CeflullgenhP™

whereC, is defined as in Theore®7. O

3.3 The fully discrete Nysfim scheme

We now define a numerical approximation to the kerkedf the integral equation by applying the
differential operator 3.6) to approximate the derivative§’ and f” by D, f and Dﬁ f, respectively.
Thus our approximation is defined foyo € R by

—1(z —0)Dnf(o) = (f(o) — f(1))
Keoy=1 7 (t —0)24 (f(z) — f(0))?
Tl -1 DEf(r)
27 14 (Dp f(1))2

+Rr(‘[5 0-)5 o # 7,

+K (7, 7), oc=r,
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1139

where

r _1(t—0)Dnf(o) = (2H — f(o) — (1))
(. 0) = T o1 @A = () = F(0))?

The fact that the functiok is bounded relies of(z, f (z)) — (o, f(c))) andn(s) being perpen-
dicular to each other in the limit as — . The vector((z, f(z)) — (o, f(c))) is not necessarily
perpendicular in the limit — o to the approximation tm(cs) obtained by replacing’ by Dy, f.
Hencek is not necessarily bounded and the convergence analysis of The®r/@amsi3.4does not hold
when replacing by k. For this reason we now work on a discrete level.

ForN € NletLy: BC(R) — 1°°(Z) be the restriction mapping defined by w = {w(jh): j € Z}
for y € BC(R). Clearly,|[Lny o < llvlBcmr). Recalling thatpo = Jr¢r is the inhomogeneous
termin 2.9), letgn = Lngo = {#o(jM)}jez = {#j}jez-

Forj e Zletxj = (jh, f(jh)) andxrj = (jh,2H — f(jh)) and let

wj =14+ (Dnf)(jh), nj=(Dnf)(jh), -D/wj, sj= (1, (Dnf)(jh)/wj, (3.9)

so thatn; ands; are approximations tm(xj) and s(xj). Furthermore, lekj; = k(h, jh) and
kij = k@h, jh) fori,j € Z. We define discrete operatoksy, Kn: [°(Z) — 1%°(Z), related to
the integral operataK, by

(Kny)i =hD kjyj and (RKny)i=h) kjyj, i€z,
jeZ jeZ

and note thatKnLnw)i = Knw(ih), wherei e Z, so that from 8.2) it follows that the sequence
an = {un(jh)}jez satisfies the equation
iiN = ¢N + KNiN.
The approximate Nyshm scheme we are proposing is to solve, instead of this equation, the equation
fin = ¢n + Kniin. (3.10)

We calculatgiin = {ij}jez by solving 8.10, which is the infinite set of linear equations

fi=¢+h> kjij, iel (3.11)
JEZ

The attraction of solving3.11) in preference t03.2) is that computing the coefficienlfa requires only
the values off (ih), wherei € Z, and not also the values éf and f” at all the grid points.

The next result on the existence and boundednegsoénd (I — Ky)~? follows from Theorems
3.2 and 3.3 by standard arguments for Ny8im methods (sedtkinson, 1997, p. 113). In this (and
subsequent) theorems we will us€», to denote the induced operator norm for bounded operators on
1°(Z).
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1140 M. D. PRESTONET AL.

THEOREMB3.9. If f € BC3}(R), || f|lgcew) < Ct andCy > O, then there exisN € N andC > 0
such that
IKnlloo <C for N eN, and [[(I — Kn) Yoo <C for N = N,
whereC depends only on, f., H andC;.
We now show the accuracy #fy as an approximation ti .

THEOREM3.10. If f € BC™2(R) and| f lBerte®) < Ct forsomeCt > 0 andn € Ng and withn
even, then there exis@ > 0 such that

IKn — Knlloo < Ch™tlog(1+ N) for N e N,
whereC depends only on, fi, H andCy.

Proof. From (.3) and the definitions of andk we see that, for, j € Z, wherei # j, we have

kj — ki :_i( XX XN X )~(n(x1)w(ih)—njwi)a

2r \Ixi —xj12 X —xj|?
while, from 2.7) and @.9), fori = j we have
- 1 ( f”Gh) DZf(ih)
ki — ki = —5— —— = > .
2z \ w(ih) o;
Lemma 2.1 ofPrestoret al. (2008 implies that
Xi — Xj X — Xj c o o
- < = —, |, Z, , 3.12
i —xiP WK —x 2| S h—jme LS 7] (312
and clearly also
Xi — Xj X — X; o S,
— <—, I,]€Z, | , 3.13
) —xi2 xS li—jh 7 G139

wherec > 0 depends only ori andH. Combining these results with Theoréh?, we have

IKN = KN lloo =suph D" kij — kij|

ieZ ieZ
h Xj — Xi X — X
j i ; ;
<sup— | D o s o | Inw(ih) = njuw;)
ieZ ¢ |Z.]#i IXi — Xjl IX; — Xjl

f7(h) DZf(ih)
w(ih)2 B wiz

hn+l

<SUpCh< Z (ih——jh)2+ Z

1eZ jeZ,li—jI=N jeZ,1<]i—j|<N

hn+l
i —jlh
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00 1 N—11
<C hnz—+hn+l _+hn+1
- :
g j=1 ]
< Ch"(2h + hlog(1 + N)) < Ch™tlog (1 + N). O

The following is a special case of a standard Banach algebra perturbation resuR(elig., 1991,
p. 248).

THEOREM3.11. If (I — Ky)~! exists and is bounded, and

_ ~ 1
[Kn = Knlloo < - , (3.14)
200 = K)o
then(l — Kn)~1 exists and is bounded with the bound given by
10 = Kn) oo < 20101 = Kn) oo (3.15)

We now present the main convergence result for the numerical scheme defirgdidy (

THEOREM 3.12. If f € BC"2(R) and I fllgenrew) < Ct for someCt > 0 andn e No with n

even, then there exist € N andC > 0 such that, for alN > N, a uniquely determined solution
in € 1%°(Z) to (3.10 exists and, foppg € BC"(R), we have

ILng — iinlloo < Cligollsen@yh”,

whereC depends only on, fi, H andCy.

Proof. By Theorems3.3and3.10we can choosé such that, for allN > N, (3.3 and 3.14 hold
and therefore, by Theoref11, (I — Ky)~! exists and is bounded bg.45. So, forN > N, (3.10
has a unique solutiofiy = (I — Kn)~1¢N. Furthermore, from Theore®.9, i = (I — Kn) " 1on.
Combining these relationships, we have

an = fin=( = Kn)7H0 = Knjin = (1 = Kn) T
= (I =Rn) 7 = Knan = (I = K740 = Kn)ien
= (I = Kn)"HKn — Kn)jin
and therefore, by Theoren3s3, 3.4and3.1Q we have
ILNg = fNlloo S IENg — aNlloo + 1AN — iNTloo
<l — unllgew) + 11 = Kn) ool Kn — KnlloollZllBc)
< Cligollsenm)h”,

as required. 0
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3.4 Velocity approximation

We now analyse an approximation to the velositygiven by @.18), by utilizing the discrete derivative
operator andin, given by 8.10, in an approximation tdvl. Precisely, we will approximate velocity
values on a uniform grid, i.e., approximatg := Lnv = {vj n}jez.

To construct a first approximation, farj € Z andy € BC(R) letmjj (y) = m[](ih, jh), where
m s given by @.16). We define an operatiMy: BC(R) — 1°°(Z) by

(VM) =h> mij(w), i€z
JEZ

so thatM is a trapezium rule approximation to the operdt@yM, whereM is defined by 2.17). Then
afirst approximation ton = {vj n}jez iSVN = {Vj,N}jez, Where

G
PN (h)

s(jh) + (Mu)jn(jh), j e Z. (3.16)

LEMMA 3.13. If f € BC"™2(R), || f |gcnrzr) < Ct for someCt > 0, andu € BC™2(R) solves
(2.5, then

! aZXIvj,N —vj,n| < Cligollscr@yh”,
€

whereC > 0 depends only on, f1, H andCs.

Proof. The only approximation in3.16) is in the Dirichlet-to-Neumann operatdt. By Prestoret al.
(2008 Lemma 2.1) (see3(12), Theorem2.5and @.16), we see tham[x](z, ) € BCy(R), where
p > 2 andz € R. Therefore, by Lemma.1, we have

(M) (@) = Il (z, )] < CH O

We next construct a fully discrete approximationvtg, using LemmeB.13to analyse its accuracy.
Recalling the approximations;j, nj ands; introduced in 8.9) and writingx; andnj in terms of their
components asj = (Xj 1, Xj.2) andnj = (nj.1, nj.2), we definemj: 1°(Z)> — 1°°(Z?) by

Mij ((wklkez (Widkezs (WK Jkez)

1 [ X —Xj X — X; v wi
=—— - A (ini -s +sinj -nj)— —s;
21 (|Xi —Xj|2 |X|r —Xj|2 ( e I J)a)j Ja)i

1 QX = XD 5 = Xj.2), X = Xj[?)
X\ — xj|4

+ 1 Xir,z - Xj92 n / | ;ﬁ H
- T r.A i l '7 2
7\ % _er |4 i,1¥ J

/4

)- ((ninj2 —snj)ojyj)
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and by
i (wktkez, {Widkez, (Wi Ykez)

1 (,/_(th)(ih)(Dﬁf)(ih)g,,i/)Jr 1

: . . / N
w2 4H27 (@iwi +niay)), 1 =].

2 a)lz |

The point of this definition is that, whegeis the solution to the integral equatidh ), mij (Ln g, Lng/,
Lnu") is afirst approximation afj () obtained by approximating the derivativesfoby the discrete

derivative operator3.6). Moreover,mjj (fiin, Dhiin, f)ﬁﬁ n) is a further fully discrete approximation,

obtained by additionally approximatingyx by in, given by @.11), and computing its numerical
derivatives usingd.8). Using these approximations, we define the operaits BC(R) — 1°°(Z) and
Mn: 1%°(Z) — 1°°(Z), which are approximations tely andMpy L, respectively, by

(Mnw)i i=h> i (Lng, L', Lap”), i €Z,
jeZ
and
(Mnn)i i=h>" mij (iin, Dnjin, DEiin), i € Z. (3.17)
jeZ
Using My fin, we define our final fully discrete velocity approximatipn = {VjN}jez DY

_ (DhLng)j o .
ViN = T@JSj + (Mnan)jnj, | eZ. (3.18)
i
In the last theorem of this paper we analyse the convergengg td vy .

THEOREM3.14. If¢g € BC"(R), f € BC"2(R) and|| f etz < Ct for someCt > 0 and some
n € Ng with n even, then there exis@ > 0, depending only on, fi, H andCjs, such that

f]ﬂaXIvJ N = PNl < Cligollsengyh™ ™2

forall N > N, whereN is as defined in Theoref12

Proof. We first note that solving the integral equati@@j, with ¢ € BC"(R) and f € BC"2(R),
gives, by Theoren2.3, 1 € BC"(R) and hence, by Theoreth5 m € BC"2(R?). In the remainder
of this proof we will show the accuracy of the approximations use®ihg to the five components
(¢, w, n, sandM) of (2.18. By a straightforward application of Theoreéhto f’ € BC"t1(R), and
similarly to the analysis in Theore®110, we have the three bounds

max|w(jh) — wj| < C1h"*,  max|n(jh) — nj| < Coh™+?
jeZ jeZ

and

max|s(jh) —sj| < Csh"?, (3.19)
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1144 M. D. PRESTONET AL

whereCj, C, andCgz depend only om andC+ . Note that(DhLN¢)j = (LnDng)j for j € Z, and that
¢ € BC"L(R). Therefore, by applying Theore7 we also have

max|¢(jh) - (DnLng)jl < Csh™H,
€
whereC,4 depends only on andCy+.
All that remains is to prove the accuracy Mfy iy as an approximation tM 4, and to do this we

analyse the successive approximations givendy74. We have, by Lemma&.13with 4 € BC"(R),
that|LnMu — My ulloo < Ch"2. Furthermore, by3.12), (3.13 and 3.19, we have

Mz = Mg lloo = SUph D 1mij (i) = Mij (Lng, L', L")

ieZ ez
hn+1 N
<Ch{ sup ———+h
T (ih—jh)

1
<Ch' (> = +h]<ch,
jeN
whereC depends only on, fi, H andC;.
Finally, by TheorenB8.12 ||[Lnu — finllco < Ch" and therefore, by Theorem8with p = n,
ILng' = Dhitllso < CH'2 |lLnp” — DRjilloo < CH™2.
Now, utilizing these bounds an8.(L2), (3.13 and .19, we have
IMn g — M filloo = suph > I (L gz, L/, Lng”) — Mij (iin, Djin, DRiin)|
ieZ
jeZ

hn—2

<Chh™S+ > h7P4 > s
1N, j#0 R

hN
whereC depends only on, f., H andC;, as required. O

1
<Ch"—2 (1+hN + —) < Ch™2,

4. Numerical results

In this final section we give numerical results that illustrate the proven convergence rates. To produce
these numerical results we first reduce the infinite systeddl) to a finite linear system, doing this by
one of two methods.

The first method is a basic truncation scheme that corresponds to replacing the range of integration
of Rin (2.4) and @.5) by the finite interval £ A, A], where A = Nah, for someNa € N. Precisely, the
numerical scheme is to compute an approximation tm [— A, A] by solving 3.11) with the range of

summation reduced frof to {—Na, ..., Na}, i.e., by solving
Na
i =¢i+h Z kKijij, 1 =—=Na,...,Na. (4.1)

j=—Na
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ANYSTROM METHOD FOR A WATER WAVE PROBLEM 1145

Then an approximation tg is given by @.4) approximated by the trapezium rule, that is,

—h & [((x=xp)-n; x=xp-nj\
¢(X)~EJ_ZNA( x=x)? X=X )2 wjllj, X€Q. 4.2)

Moreover, to approximate the velocity dnwe use 8.17) and @.18 with the range of summation in
(3.17 reduced to{—Na, ..., Na}. In this paper we do not make an attempt to analyse the additional
errors introduced by these truncations of the range of summation or their stability and convergence. We
note that, inMeier (2001), Meier & Chandler-Wilde(2001), Chandler-Wildeet al. (2002, Haseloh
(2004 and Lindner (2009, this truncation process, a so-called ‘finite-section’ approximation, was
studied in detail for several related problems.

In the second method we achieve a finite linear system by assuming (or approximating by) a periodi
boundary and periodic boundary potential, thus enabling the infinite system of equations to be reduce
to a finite system over a single period. Many other works, for exariuts (1992, Bealeet al. (1996
andBaker & Beale(2004, have shown results for this periodic case. To determine the discrete periodic
system we must first reformulate the infinite system given3¢ 1. As the boundary and potential
are periodic, it follows, from the compactness of the oper#tgrin (3.10 on the space of bounded
periodic sequences and the Fredholm alternative, that the sojutjarf (3.10 is also periodic. Thus,
fixing on the case that the boundary and boundary data are periodic with perjdten fj, ¢; and
uj all share the periodicity that; = aj;mn for m € Z, as do the dependent variabkeg, nj ands;.

Taking advantage of this periodicity, we can rewrBelQ) as

1] POPEOJUMO(]

proe)/:sdpy usl

Qo

2
i =¢>i+hD f(|h)~

i —h Z ajwin - Z Vx® (X, Xj1kN)

j=1,j# k=—00 X=Xi

(4.3)

, 1=1...,N.

X=X

N 00
—hZ/}ij‘ni . Z VX¢(X,er+kN)
j=1 k=—00

It is convenient at this point to use the isomorphismRaf with the complex planeC, thinking of
Xj = (Xj,1, Xj,2) andnj = (nj 1, Nj,2) as pointx;j = Xj,1 +iXj 2 andnj = nj 1 +in; 2 in the complex
plane. Then, applying equation (3.60)lofton (1999, it follows that @.3) can be written as

— X i -
1w

N
i —Xj —2Hi
+hZRe(ﬁjcot(+))u,wJ, i=1,...,N,

j=1

o szah)i
= +h="——fi ~h Z Re(njcot(

! j=1j#i

(4.4)

and we can apply similar formulae froamnton (1999 to obtain an analogous expression for the normal
velocity approximationMy iy, starting from 8.17), and an analogous approximation f(x) as a
finite sum, starting from2.4) approximated by the trapezium rule with step lenigth

In our numerical experiments we det= 2z /N, with N = 2,4, 8, ...,1024, and chooskl = 1
in the definition of®y throughout. We construct examples for which we know the solution analytically
by, having chosen a surface profile choosing @ € BC(Q)NC2(Q) that satisfies!.2) in Q. Clearly,
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1146 M. D. PRESTONET AL.

¢ then satisfies the boundary value probldn®d) with ¢g := ¢|, and we can compute analytically the
normal velocity on/” and the exact velocity potential at some test poin®inn the experiments below
we choose as a test poxt= (0.1, —1.2).

In our first numerical example the surfafeis sinusoidal, given by" = {(0,0.2sin(0)): 0 € R},
and the velocity potential is given hj(x) = dﬁper(x x*), wherex € @, and whereH = 1.0 and

x* = (—0.2, 0.6). Here, forH € R andx, y € R?, we have

o0
DL, y) = D DH(x, Y+ 2nker)

L 2)) (o (5)

on using equation (3.60) dfinton (1999 again, wherex = X1 + xpi andy = y; + Yoi are the points

in the complex plane correspondingsteandy andx’ = x1 + (2H — xp)i. The 2r-periodicity of I”

and of the Dirichlet datgg := ¢|r imply that the infinite linear systenB8(11) reduces to the finite
linear system4.4). In Tablel and Fig.1 we tabulate and plot for this example two different relative
errors as a function olN. The first of these is the relative error between the exact velocity potential at
X, the test point, and the velocity potential calculated numerically. The second is the relative discrete
error between the known normal velocity and that computed numerically, that is, the réjatirrer in

TABLE 1 Relative errors in potential at the test
point and in normal velocity, plus values of EOC,
for the first example (sinusoidal surfaceofite)

N Potential Normal glocity

2 493x 1071 7.25x 1071
2.62 0.44

4 802 x 1072 5.35x 1071
5.93 1.70

8 132x 1073 1.65x 1071
6.97 2.46

16 105x 107° 3.00x 1072
11.60 8.00

32 338x 10°° 1.17x 104
25.20 10.13

64 877 x 10717 1.05x 10~/
2.13 24.86

128 200 x 10717 3.44x 10715
0.03 2.27

256 196 x 10°17 7.13x 10716
0.01 -1.29

512 195 x 10~/ 1.74 x 10715
0.03 -1.38

1024 191 x 10~/ 453x 10715
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FiG. 1. Relative errors in potential at the test point and in normal velocity for the first example (sinusoidal surface profile). o
&
g
the vaIues(l\?IN,aN)i sampledat = 1,..., N, i.e., over one period. Estimated orders of convergence g
(EOC) are also tabulated, computed by the formula 2
g
EOC = log,(Error for givenN /Error for 2N), %
[0}
)
so that EOC= p if the error is proportional tiN—P. 2
The numerical results in Table and Fig.1 are consistent with the superalgebraic convergence ‘¢
. . . (2
predicted by Theorem3.12and3.14when f € BC*®(R). Precisely, it can be seen that both approx- 2
imations converge at an increasingly rapid rate, the values for EOC increasing, reaching a maximun®

value of over 20 before any further increase in accuracy is limited by rounding errors.

In the above example we have demonstrated, indirectly, the convergence predicted by Thé8rem
but have not shown this convergence directly since, for the above example, we do know the true densit
. In a second example, we consider the special case where the surface is flat, khatig(o, 0):
o € R}. Choosing Dirichlet datég := ¢| -, where the velocity potentia is given by

0z6B ey L

1 3
H(X) = —E(cpﬂe’(x, X*) — BE(X, X)), xeQ,
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Relative error
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N

FiIG. 2. Relativel, error in density for the second example (flat surface).

o g

wherex* = (X, X3), with 0 < x5 < H andx** = (xj, 4H — x3), it follows from Prestoret al. (200§
Theorem 4.3.1) that the densityin (2.4) and @.5) is given by

1) = o ((0,0),%x*), o ek (4.5)

As in the first example, thez2periodicity of I” and of the Dirichlet datayg := ¢|, imply that the

infinite linear system3.11) reduces to the finite linear system4). In Fig. 2 we plot the relative discrete

{2 error between the known densityand its numerical approximation found by solvirgy(1). The
numerical results plotted in this figure illustrate the superalgebraic convergence predicted by Theorem
3.12whenf € BC®(R).

In our third and final example we obtain a finite linear system by truncation (so that wd.dke (
and @.2)), the boundary™ has the Gaussian profile = {(s, 0.2 ex(—c?)): ¢ € R} and the boundary
data arepp := |, where the potentiap is given by¢(x) = @y (x, x*), wherex € Q andx* =
(—=0.2, 0.6). The truncation is performed witA = Pz, whereP = 1,2 4, ..., 64. We present the
relative error between the exact velocity potentiad,dhe test point, and the velocity potential calculated
numerically using4.2) in Table2 and, for each fixedP, values of EOC are also tabulated. It can be seen
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that the approximation given by @) converges t@(x) asN — oo andP — oo and that, for a fixed
large P (when the errors induced by the truncation are small), the values for EOC increase initially
as N increases up to nearly EOE 9, consistent with the superalgebraic convergence predicted by
Theorems3.12and3.14when f € BC*(R). The relative errors from Tabl2 are plotted in Fig3,
where, forP large, the predicted superalgebraic convergendd asreases can be observed and, for
N large, algebraic convergence Rsncreases can be observed. In Tabtae relativel, error between
the known normal velocity and that calculated by reducing the range of summatieriNtg, . .., Na}
in (3.17) is tabulated, that is, the discretgerror based on comparir@ly /in)i with the exact normal
velocity fori = —PN/2,..., PN/2. The same values are plotted in Fiy.The trends are simi-
lar to those observed in Tabkand Fig.3, except that, for the same values Mf the relative errors
are larger and the EOC values are not so large for the normal velocity. Furthermdtanaseases
with N fixed and large, algebraic convergence is observed in4mt at a slower rate than for the
potential.

Further numerical results can be foundireston2007, Chapter 4).
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FiG. 3. Relative error in the approximatiod.p) to the potential at the test point for the third example (Gaussian surface profile).
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FIG. 4. Relativel, error in normal velocity for the third example (Gaussian surface profile).
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