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ABOUT ME

* My PhD and background in outdoor noise
propagation and noise barriers, working with
David Hothersall, Kirill Horoshenkov at Bradford.

* 1996 Tyndall Medal of the Institute of Acoustics.

* Currently Professor of Applied Mathematics at
Reading, working particularly on
Numerical/Asymptotic Boundary Element
Methods in Acoustics, with
collaborators/postdocs including Steve Langdon
(Brunel), Dave Hewett, Timo Betcke (UCL),
Andrew Moiola (Pavia). 2
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WHAT WILLITALKABOUT?

1. The Wave Equation, and its time harmonic version, the Helmholtz
equation

Fundamental solutions

A first BEM example: propagation through an aperture
General 2D and 3D BEM

When is BEM a good method to use?

Further reading
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The Wave Equation and Helmholtz Equation
1 9°U 02 02 02
ADT —_ = = A p— .
c? Ot? ( o2 Dy N 8:32)

If time-dependence is time harmonic, i.e., where r = (., y, 2),

U(r,t) = A(r) cos(o(r) — wt),
for some w = 27 f > 0, with f = frequency, then
Ur,t) =R (u(r)e ")
where u(r) = A(r) exp(ig(r)) satisfies the Helmholtz equation
Au+ ku =0,

with & = w/c the wavenumber.

5
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If time-dependence is time harmonic then
Ulr,t) =R (u(r)e ")

for some w = 27 f > 0, with f = frequency, where u satisfies the
Helmholtz equation

Au+ ku =0,
with & = w/c the wavenumber. E.g. if

"U;(I') _ ei!;.r-d?

for some unit vector d, then
Ur,t) = R (u(r)e ") = cos(kr - d — wt)

is a plane wave travelling in direction d with wavelength

2 c

A .
k: f
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E.g. when d = (1,0,0) then
u(r) =" =" and  U(r,t) = R (u(r)e™™") = cos(ka — wi),

a plane wave travelling in the x direction with wavelength

)\:2:?

k
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Fundamental Solution of the Helmholtz Equation (in 2D)

When the acoustic pressure is generated by a line source along the

z-axis, the solution to the Helmholtz equation
Au + k2u =0,

depends only on x and y. At r = (x,y) the solution is

. ‘-"\"?'
| 1.(1), el ,
u(r) = —Hg ' (kr) = const. . where r = /2% + 42,

and Hél) is the Hankel function of the first kind of order zero (a
Bessel function).

The corresponding solution of the wave equation is

Ulr,t) = El%(-zr.(r)e_i“t)
- %(;Hé”(ﬁ-r)ei“*)
08 '1‘._1__“;.
~ c:onb't.wb(? )

V kr
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Fundamental Solution of the Helmholtz Equation (in 2D)

If the line source is parallel to the z-axis through ro = (¢, y0), the
solution to the Helmholtz equation is

u(r) = ®(r,rg) := i {gl)(r’r|r —10|) = iﬂélj(f’rR}

where

R = |1“ — I‘0| = \/(i‘- —1‘0)2 =+ (Ei — yp)?.

The function ®(r,rg), which depends on where we are measuring (r)
and where the source is (rg), is called a fundamental solution of the

Helmholtz equation.

)
o
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A First BEM Example: Diffraction Through an Aperture in a Rigid

g

H_inc ( I‘) _ eilc:s

Y

(l

Screen

—1l

R
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Approximate u to the right of the aperture by

N

u(r) = Z a,P(r,r,).

n=1

where the points ry,....ry are equally spaced in the

aperture, distance h = 2a/N apart, precisely

r, = (0.y,) with vy, =—a+ (n—0.5)h.
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a

B

Approximate u to the right of the aperture by

N

ul¥) = Z 8, P(r.2,.),

n=1

where the points ry.....r are equally spaced in the
aperture, distance h = 2a/N apart, precisely

r, = (0,y,) with vy, =—a+ (n—0.5)h.

If we take each a,, = ho(y,), for some continuous
function ¢, and let N — oo, we get

u(r) = /_ O(r, (0,ys))o(ys) dys,

a continuous distribution of sources in the aperture
with density ¢.
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Approximate u to the right of the aperture by

N

r Y 'L{(I') — Z an(I)(I‘: I'n)._

n=1

where the points ry....,ryx are equally spaced in the

a aperture, distance h = 2a/N apart, precisely

O(ys) > r,=(0,y,) with y,=—a+ (n—0.5)h.

—a | .
If we take each a,, = ho(y,), for some continuous

function ¢, and let N — oo, we get

ur) = [ " B(r. (0, 42)6(ye) dys.

—

a continuous distribution of sources in the aperture
with density o¢.
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To the right of the aperture

) = [ w060 dy,
_ e H(l) ,1.\/_ 2 . 2 ) A( 1
— 1 0 CAVAU . (y — ys) Q(‘ys) UYs,
a for some source density o. This satisfies the
A(ys) . 1 Helmholtz/wave equation and has the correct radiating

iy behaviour at infinity. Also, for every r = (x,y) not in

the actual aperture,

Ju(r) [l /a' H" (l‘-\/IEJr(y—ys)z) |

o(ys) dys,

or 4 J_. Va2 +(y—ys)?

which is zero when = = 0 and |y| > «, as it should be
for a rigid screen. But can we also choose ¢ to give

the correct field in the aperture?
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What is the field in an aperture in a rigid screen?

Y Let's add another incident field e 71#*
(i) By symmetry, this will double the field

in the aperture itself;

(ii) The complete solution will be simply
a

"U-(I') _ eilc:c 4 e—ilc:c;

—a this satisfies rigid no-flow condition

_inc ikx

t r)=e Yoy /£
(4(r) (i‘)u/i');r — O) on the screen.

(iii) So the field in the aperture for the

original incident field is

% (eik‘ﬂ 4 e—ii'f.(]) — 1.
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O(ys)

]

—a

A first Boundary Integral Equation

’H-(I‘) p— / ‘I)( (O I}S))ﬁ)(?} )d'JS
= f 1255 ! Va2 + (y — ys)g) O(ys) dys.

This gives u(r) = 1 in the aperture provided

— [

| = i HY (kly —

ys|) o(ys) dys,

— 1

for —a < y < a, an integral equation to determine

.
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A first Boundary Integral Equation

Ny _ :
Y u(r) = / B(r. (0, y2))6(ys) dye
— f 1255 ! Va2 + (y — ys)g) O(ys) dys.
a
b(1s) . This gives u(r) = 1 in the aperture provided
— ]_ — i H[gl) (i‘t |) O(?}' )£1y53

— L
for —a < y < a, an integral equation to determine

o. We proceed by: i) solving this integral equation to
determine ¢; ii) using ¢ in the top equations to determine

u(r) away from the aperture.
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D(ys)

—a

What is the meaning of ¢7?

u(r) = i A (f"f\/ﬁf2 + (y — ys)g) O(ys) dys.
so, for x > 0,
a_. : ;11';‘-. a H]"El) La/ 2 — s 2
lf(r) = = ;H/ Uyt v )f.fir(ys)dys.
Ox 4 J_, V2 +(y—ys)?

Thus, as z — 0 with —a < y < a — this a really nice
maths exercise in limits —

Ou(r) I
dx _5@(3})1
SO ¢ = —23—; on the aperture.
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'*f;’(ys)

The (high frequency) Kirchhoff approximation

Y u(r)
a with
IR
—a so that
u(r)

/ B(r. (0, )6 (ys) dye

Q

J — Js ) Q{’(E}’s) dys-

i[_iﬂ(l (1\/J

- ] B(r. (0. ,)
k
/ H /1 \/1 (y — ys) ) dys,

this the Kirchhoff approximation.
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Lord Rayleigh, “Theory of Sound”, 2nd Ed., Vol. IlI, Macmillan, New York, 1896:
the 19th century mathematics of screens and apertures, pp.139-140.

23
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A first Boundary Element Method

Y
For —a < y < a, where h = (2a)/N, y, = —a + (n — 0.5)h,
I »
I = 1 H[()l) ('I“tf - ysD @(,f;"s) dys
yn 1« N & unth/2
T L)l (o
y . — ) H, (’J‘ly - ysD @(ysj dys
: * ; 4 fyn—h/z ’
Y1y _ 4 N : h
1 Yn+ /‘2 (1) _
~ ?(Yn )~ f Hy 7 (kly —ys|) dys.
;_ 4 yn—hﬁ



A first Boundary Element Method

Y
For —a < y < a, where h = (2a)/N, y, = —a + (n — 0.5)h,
1 = i HM (Kly — ys) 6(ys) dys
yn 1« N & unth/2
. L)l Ll
) — — H, (’J‘ly - ys‘) @('.USJ dys
: * ; 4 fyﬂ—h/z ’
Y1y _ 4 N : h
1 Yn+ /‘2 (1) _
~ & (yn )~ f Hy (kly = ys|) dys.
;_ 4 yﬂ—hﬁ

To determine ¢&(y1),...,o(yn) by the collocation method we

enforce this last equation at y = v,,,, m = 1, ..., N, leading to

1 = Z (Yy,) _ll/ Hél) (F

n—1 Yn—h/2

Ym — Ys|) dys. m =1.....N.

”

T

Amn



Y

yn }a

]
yit_,

A first Boundary Element Method

=

For —a <y < a, where h = (2a)/N, y, = —a+ (n — 0.5)h,

Yn ‘|‘h/2

N :
Z (Yn) f HSY (kly — ys|) dys.
1=1 )

n—h/2

To determine ¢(y1),....o(yn) by the Galerkin method we en-
force this last equation by requiring that

ym,"'hfg ym—i—th
/ LHS = / RHS.
—h/2 Ym—h/2

m

for m =1,.... N, leading to

= ati nl! v — Yg s C
- Y 1 s s y—Yy Ys UY,

-~

a??lﬂ

form=1,....N.



YN

Y1

Y

(l

A first Boundary Element Method

In either case, once we have computed &(y1)..... o(yn),

u(r) = i/ H{(,l) (ff\/:rg + (y — 'ys)Q) O(ys) dys
Yyn+h/2
- _ Z/ 1) /'t \/1 (y — ys) ) o(ys) dys

n—h/2

() Jﬂ /
42 W—h/2
hi
T 2 ol Hg” (Vo5 Ty = n)?)

n=1

yn+hﬁ2

R

( \/?L 1}' — Us ) d'ys

Q
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YN

Y1

A first Boundary Element Method
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A first Boundary Element Method

Y

yn }a

O 1
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How does the accuracy of this BEM depend on /7

Computing wu(r) via approximate collocation

Y method at r = (5,0) when A =1 and 2a = 3.
N | A/h | Relative error | dB error
'ﬁj}\f ) (L g 3 15?63% 127
—— . 18 6 4.169% 0.35
Ny —a 36 | 12 1.634% 0.14
72 24 0.703% 0.06
Kirchhoff — 17.68% 0.44

At least 6-10 “degrees of freedom per wavelength”,
the value of A\/h, recommended for accurate results.
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Acoustic Scattering by an Obstacle and Green’s 3rd ldentity
_ 2.
%ﬁ ine Au—+Eu=20

5

D

u — 1€ satisfies Sommerfeld R.C.

Theorem Forr in D

ulr) = () +

I

Ou dP(r,ry) ]
(%(rg)fb(r,rg)_u(rg) In(r.) )da(rs):

where r

LHEY (kr = x,|) (2D),
P(r,rg) =< 1 eiklr—rs

(3D).

A |r —rg|

.
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Acoustic Scattering by an Obstacle and Green’s 3rd ldentity
| 2, _
%’ .uinc AU- —+ E4u = 0

u=0on!

D

u — u'™¢ satisfies S.R.C.

Theorem Forr in D

u(r) = i (r) + /r (%(rs)fp(r,rs)—-u(rg)agzgf:;)) ds(rs).

Ju
N.B. We only need the Cauchy data . _u on I' to compute u in D.
n

These can be obtained from boundary condition + boundary integral

equation on [,
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Acoustic Scattering by an Obstacle and Green’s 3rd ldentity
__ 2. _
%’ .ulinc AU- —+ L4y = 0

u=0on!

D

u — u™¢ satisfies S.R.C.

Theorem Forr in D

u(r) = () + [ S ()bl ds(r.).
r Tl

N.B. We only need the Cauchy data . _u on I' to compute u in D.
n

These can be obtained from boundary condition + boundary integral

equation on [
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Acoustic Scattering by an Obstacle: Boundary Integral Equation
_ 2, _
%, 2ine Au+ k*u =0

N u=0on!

u — u™¢ satisfies S.R.C.

Theorem Forr on I’

. Ju

0 = u"(r) +/ ‘_—u(rs)fb(r, ry)ds(ry),
r d??.-

the boundary integral equation that we solve by the BEM to

Ou

determine S
T
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Acoustic Scattering by an Obstacle: Boundary Element Method

%,. 4 inC Au+ 2u=0

To solve

: Ju
0 = u™(r) +/ ‘_—u(rs)fb(r, rs)ds(rg),
r on

by the BEM:

1. Divide I' up into N pieces I'y..... Iy with diameter small compared
to the wavelength — the boundary elements.

LIMITLESSPOTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESSIMPACT



Acoustic Scattering by an Obstacle: Boundary Element Method

% e Au+ 2u =0
w

To solve

0 = u™(r) + Z/ 3:: )P(r,ry)ds(ry),
by the BEM:

1. Divide I' up into N pieces I'y.....I' with diameter small compared
to the wavelength — the boundary elements.
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Acoustic Scattering by an Obstacle: Boundary Element Method

%,. - Au -+ E2u =0
u

To solve

. B
0 = u'"(r) + Z/ a—z(rs)@(r,rs)ds(rs),

I

n=1

by the BEM:

2. Approximate the unknown function ¢ := % by a constant ¢,, on
element [',,.
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Acoustic Scattering by an Obstacle: Boundary Element Method

%j - Au -+ E2u=0
u

To solve

N

0=u"(r)+ ) on / O(r,rs)ds(rs).

P?l

n=1

by the BEM:

2. Approximate the unknown function ¢ := % by a constant ¢,, on
element [',,.
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Acoustic Scattering by an Obstacle: Boundary Element Method

%" e Au+ ku=0
u

To solve

N
0 = u™(r) + Z Q‘Jn/ O(r,ry)ds(ry).
FTL

n=1

by the BEM:

3. Determine ¢y. ..., on by (in the collocation version) enforcing the

above equation at the midpoint r,,, of element I',,,, for m =1,..., N.
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Acoustic Scattering by an Obstacle: Boundary Element Method

% e Au+ u=0
u

Form=1....,N,

N
0 — H—inc(rﬂ},) + Z On/ (I)(I'm: I‘S) (-ES(I'S)._
'y

n=1

7

W

Amn

3. Determine ¢1. ..., o by (in the collocation version) enforcing the
above equation at the midpoint r,,, of element I',,,, for m =1..... N.
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Acoustic Scattering by an Obstacle: Boundary Element Method

. Au -+ E2u=0
%s qne

4. Determine u(r) at any desired points in ) using

- ou
u(r) = u"(r)+ /r %(rs)fl‘l(r, rs)ds(ry)

N
~ u™(r)+ Z @n/ O(r,rs)ds(rs).
n=1 I'n
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Acoustic Scattering by an Obstacle: Boundary Element Method

Example 2D simulation. Total length of boundary is 16.6m, A = 0.25m,
N = 553, so 10 elements per wavelength.
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How practical is this?

1. Restrictions: mainly useful in homogeneous media (though piecewise
constant media possible). Boundaries/interfaces to be discretised must
not be too large compared to the wavelength — see 2 and 3.
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How practical is this?

1. Restrictions: mainly useful in homogeneous media (though piecewise
constant media possible). Boundaries/interfaces to be discretised must
not be too large compared to the wavelength — see 2 and 3.

2. Main cost is to assemble an N x N matrix, and solve N equations in
N unknowns: cost proportional to N? in storage and N2 in computation
time for direct solve, but fast multipole methods and preconditioned
iterative solvers, e.g. GMRES bring these down to N log N and
NiterN log N, where Niter is the number of iterations, respectively, and
make N = 10° — 107 feasible.
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How practical is this?

1. Restrictions: mainly useful in homogeneous media (though piecewise
constant media possible). Boundaries/interfaces to be discretised must
not be too large compared to the wavelength — see 2 and 3.

2. Main cost is to assemble an N x N matrix, and solve N equations in
N unknowns: cost proportional to N? in storage and N2 in computation
time for direct solve, but fast multipole methods and preconditioned
iterative solvers, e.g. GMRES bring these down to N log N and
NiterN log N, where Niter is the number of iterations, respectively, and
make N = 10° — 107 feasible.

3. How big an N do we need? Using elements of diameter \/10,
assuming wavelength A = 0.343m, corresponding to f = 1000Hz in air,
we can discretise with N = 10°: 34km in 2D; an area of 1000m? in 3D.
In 3D this is problematic, e.g. for frequency range for scattering by
submarine in underwater acoustics.

LIMITLESSPOTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESSIMPACT



How practical is this?

4. Writing simple 2D and 3D code is rather easy — see the next slide —
but writing code that achieves fast solves with low storage with good
user interfaces is really hard: but see next week's webinar Boundary
element methods in practice: Algorithms, Computations, and

Acceleration by Prof Timo Betcke, UCL, including the open source

code BEM++.
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EXAMPLE APPLICATIONS FROM
RECENT (2020) PAPERS

* A fast BEM procedure using the Z-transform and high-frequency
approximations for large-scale 3D transient wave problems, Damien
Mavaleix-Marchessoux, Marc Bonnet, Stéphanie Chaillat, Bruno Leblé,
Preprint from https://hal.archives-ouvertes.fr/hal-02515371/document

Fluid: Q, ¢, py

BEM i i S
¢, p - __
s -
. FF LT T
20, /7,
f/ 7
Ly W
(A
------------------------------------------------------------- l—-'--l---------h-
|
dy A\ L
5 VoA

Shell: E, p,, ¢, v S~

Figure 1: Submarine experiencing a remote underwater blast. 49
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https://hal.archives-ouvertes.fr/hal-02515371/document

EXAMPLE APPLICATIONS FROM
RECENT (2020) PAPERS

* Investigation of radiation damping in sandwich structures using finite
and boundary element methods and a nonlinear eigensolver, Suhaib Koji
Baydouna) and Steffen Marburg, Journal of the Acoustical Society of
America 147, 2020 (2020); https://doi.org/10.1121/10.0000947

Structural FE mesh Acoustic BE mesh
Face sheet —o—o—0—0—o0—o0—0—o
L ] L ] L L ] L ] o L ] L ]
Core T e R A A ® !
¢ 9 | . T | . o
Face sheet e
——o L] ] - & o . »
b Coupled O
She Soli BE
Shell Solid coupled
FF FF ll()(](,‘

node

FIG. 3. (Color online) Cross-sectional schematic illustrating the numerical modeling of a (non-baffled) sandwich panel and the surrounding acoustic field.
The structural FE mesh is coupled to the closed acoustic BE mesh via non-coincident nodes on the radiating surface.

50
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EXAMPLE APPLICATIONS FROM
RECENT (2020) PAPERS

* Vibro-acoustic Response in Vehicle Interior and Exterior Using
Multibody Dynamic Systems Due To Cleat Impacts, Myeong Jae Han,
Chul Hyung Lee and Tae Won Park, International Journal of Automotive
Technology, Vol. 21, No. 3, pp. 591-602 (2020);
https://link.springer.com/content/pdf/10.1007/s12239-020-0056-1.pdf

(¢) (d)

Figure 15. Acoustic characteristics of the vehicle interior: (a) Input boundary surface for normal acceleration; (b) Sound
pressure; (¢) SPL; (d) Sound intensity. 51
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https://link.springer.com/content/pdf/10.1007/s12239-020-0056-1.pdf

WHAT WILLITALKABOUT?

1. The Wave Equation, and its time harmonic version, the Helmholtz
equation

Fundamental solutions

A first BEM example: propagation through an aperture
General 2D and 3D BEM

When is BEM a good method to use?

Further reading

® UoA W
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FURTHER READING

* My lecture notes, exercises, and simple downloadable Matlab code, with
Steve Langdon on Boundary Elements in Acoustics, aimed at PhD
students in acoustics
http://www.personal.reading.ac.uk/~sms03snc/smart numerics.html

* Many books on boundary element method in general: fewer on acoustics:

**The Boundary Element Method: Vol 1. Applications in Thermo-fluids and
Acoustics, Luiz Wrobel, Wiley 2007

+»*Computational Acoustics of Noise Propagation in Fluids - Finite and
Boundary Element Methods, Steffen Marburg & Bodo Nolte (Eds.),
Springer 2008

s*Numerical Approximation Methods for Elliptic Boundary Value Problems:
Finite and Boundary Elements, Olaf Steinbach, Springer 2008

“*Boundary Element Methods, Stefan Sauter & Christoph Schwab, Springer
2011
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http://www.personal.reading.ac.uk/~sms03snc/smart_numerics.html
https://www.wiley.com/en-gb/The+Boundary+Element+Method%2C+Volume+1%3A+Applications+in+Thermo+Fluids+and+Acoustics-p-9780471720393
https://www.springer.com/gp/book/9783540774471
https://www.springer.com/gp/book/9780387313122
https://www.springer.com/gp/book/9783540680925

FURTHER READING

My own review papers:

* The Boundary Element Method in Outdoor Noise Propagation,
Proceedings of the Institute of Acoustics 19, 27-50(1997).

* Numerical-asymptotic boundary integral methods in high-frequency
acoustic scattering, with 1 G Graham, S Langdon, & E A Spence Acta

Numerica, 21, 89-305 (2012).

* Acoustic scattering: high frequency boundary element methods and
unified transform methods, with S Langdon, in Unified Transform for
Boundary Value Problems: Applications and Advances, A S Fokas & B Pelloni

(editors), SIAM, 2015.
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https://www.researchgate.net/publication/272493567_The_boundary_element_method_in_outdoor_noise_propagation
http://www.personal.rdg.ac.uk/~sms03snc/chandlerwilde120405X.pdf
http://arxiv.org/abs/1410.6137
http://bookstore.siam.org/ot141/

FURTHER READING

And remember next's week's Webinar!
https://acoustics.ac.uk/events/webinar/

Webinar - Boundary element methods in practice: Algorithms,
Computations, and Acceleration

Posted in Computational Acoustics, Events, Mathematical Analysis in Acoustics

& May 13,2020
® 15:00 — 17:00

Q Webinar via Zoom
Website

Webinar “Boundary element methods in practice: Algorithms, Computations, and Acceleration”, Professor Timo Betcke, UCL
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