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@ Ratchanikorn Chonchaiya, King Mongkut's University of
Technology, Thailand

and supported by Marie Curie Grants of the European Union.
I'll mention at the end follow-on work with Marko, including
arXiv:2408.03883

and our joint work in progress with Christian Seifert (TU
Hamburg): see also Marko’s talk in the session Spectral
Problems and Computation in this room at 3pm.,
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
e (iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.

Novelty? We know how to construct U, satisfying (iii) with

U, — Spec,A, the e-pseudospectrum, for band-dominated A (see
Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel
2015, 2020). But not known how to achieve (ii) and (iii)
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.

Novelty? We know how to construct U, satisfying (iii) with

U, — Spec,A, the e-pseudospectrum, for band-dominated A (see
Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel
2015, 2020). But not known how to achieve (ii) and (iii), and
certainly not (i)-(iii).
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm

Ix| = V%), e
E=0:=0(2), (xy)=Y x5 IxI?=> kP

JEZ JEZ
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm

Ix| = V%), e
E=0:=0(2), (xy)=Y x5 IxI?=> kP

JEZ JEZ

If E, Y are Hilbert spaces, L(E, Y) is the set of bounded linear
operators from E to Y. The norm and lower norm of

A€ L(E,Y) are

[|AX]|

xcevfor x|

IIAXII'
xeE\{o} |[|x||

IA|| = and v(A) =
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm

Ix| = V%), e
E=0:=0(2), (xy)=Y x5 IxI?=> kP

JEZ JEZ

If E, Y are Hilbert spaces, L(E, Y) is the set of bounded linear
operators from E to Y. The norm and lower norm of

A€ L(E,Y) are

[|AX]|

xcevfor x|

IIAXII'
xeE\{o} |[|x||

IA|| = and v(A) =

For Ac L(E,Y), A* € L(Y,E) is its adjoint, and
A€ L(E) := L(E,E) is normal if AA* = A*A.
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The lower norm and invertibility

Recall p(A) = inf I
xeE\{o} |||

_If A€ L(E) then

Ais not invertible < p(A) := min(v(A),v(A*)) =0,
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The lower norm and invertibility

Recall p(A) = inf I
xeE\{o} |||

_If A€ L(E) then

A'is not invertible < p(A) := min(rv(A),v(A%)) =0,
and, if A is invertible, then A* is invertible and

v(A) = |ATH T = (I(A) T = v(AY),
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The lower norm and invertibility

Recall p(A) = inf I
xeE\{o} |||

_If A€ L(E) then

A'is not invertible < p(A) := min(rv(A),v(A%)) =0,
and, if A is invertible, then A* is invertible and
v(A) = |ATH T = (I(A) T = v(AY),

so that
u(A) = [|A7H
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The lower norm and invertibility

Recall p(A) = inf I
xeE\{o} |||

_If A€ L(E) then

A'is not invertible < p(A) := min(rv(A),v(A%)) =0,
and, if A is invertible, then A* is invertible and
v(A) = |ATH T = (I(A) T = v(AY),

so that
u(A) = [|A7H

With |A~1||~1 := 0 if A is not invertible,

w(A) = [[A7Y7L, forall Ae L(Y).
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is
Spec A= {X € C: A=\l is not invertible} = {\ € C: u(A—\Il) =0},
where

(A = M) = min(v(A =X, v((A=XD*)) = (A= D)7HL
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is
Spec A= {X € C: A=\l is not invertible} = {\ € C: u(A—\Il) =0},
where

(A = M) = min(v(A =X, v((A=XD*)) = (A= D)7HL

For A€ L(E) and ¢ > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC: (A=A > ={ eC:u(A-\)<¢e}
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is
Spec A= {X € C: A=\l is not invertible} = {\ € C: u(A—\Il) =0},
where

(A = M) = min(v(A =X, v((A=XD*)) = (A= D)7HL

For A€ L(E) and ¢ > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC: (A=A > ={ eC:u(A-\)<¢e}
O Spec A+ <D, with equality if A is normal,

where D = {z € C: |z| < 1}.
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Spectrum and Pseudospectrum

For A€ L(E) and £ > 0 the (closed) c-pseudospectrum of A is

Spec,A == AeC:(A-M)Y >t ={AeC:uyA-N)<e}
O Spec A+ eD, with equality if A is normal,

where D ={z e C:|z| < 1}.

LLOYD N. TREFETHEN Cambridge sudies n advinced mathermases 106
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More on pseudospectra:
Trefethen & Embree 2005,
Davies 2007

The Behavior of Nonnormal

Matrices and Operators
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ €D, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 1. A is diagonal and so normal

e=0.125
! ®
00 O o5
A: O 2 0 0 ' .
0 0 1+i
2
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ €D, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 1. A is diagonal and so normal
e=10.25

2.5

>
Il
o oo
oNn o

4+ oo
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ eD, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 1. A is diagonal and so normal

2.5

>

Il
o O O
o N O
—_
4+ oo
—_
1) o
& o @
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ eD, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 2. Same eigenvalues as Ex. 1 but non-normal
e=10.5

2.5

_2 4 _2
3 % 15 05
_ i 1
A= -3 3 “§ 7T 110 0
0 O 1+1 05
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ €D, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 2. Same eigenvalues as Ex. 1 but non-normal
e=10.25

2.5

2 ! .

il e @
1+1i
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Il
|
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is
Spec,A = {AeC: (A=) >}
D  Spec A+ €D, with equality if A is normal,
where D = {z € C: |z] < 1}.

Example 2. Same eigenvalues as Ex. 1 but non-normal

£=0.125
25
2
1.5
2 4 2 1 ¢
§l g 1 151 °e
A=1-3 3 5t 0 ) ®
0 141 05
-1
-15
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Hausdorff convergence of sets

Let C€ := set of non-empty compact subsets of C
For S, T € CC let
d(5, T):=inf{e>0:SCT+eDand T CS+eD},

so d(-,) is the Hausdorff metric on CC¢.
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Hausdorff convergence of sets

Let C€ := set of non-empty compact subsets of C
For S, T € CC let

d(5, T):=inf{e>0:SCT+eDand T CS+eD},
so d(-,-) is the Hausdorff metric on C¢. We write

S, — S if d(5,,S) =0 as n— .
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Hausdorff convergence of sets

Let C€ := set of non-empty compact subsets of C
For S, T € CC let

d(5, T):=inf{e>0:SCT+eDand T CS+eD},
so d(-,-) is the Hausdorff metric on C¢. We write

S, — S if d(5,,S) =0 as n— .

Lemma. If (S,) CCC and S D S, O ..., then

&a%:ﬂ&

neN
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Hausdorff convergence of sets

Let C€ := set of non-empty compact subsets of C
For S, T € CC let

d(5, T):=inf{e>0:SCT+eDand T CS+eD},
so d(-,-) is the Hausdorff metric on C¢. We write

S, — S if d(5,,S) =0 as n— .

Lemma. If (S,) CCC and S D S, O ..., then

&a%:ﬂ&

neN

Corollary. If 1 > e > ... >0, in which case ¢, > ¢ >0 as
n — oo, then

Spec., A — Spec_A N.B. SpecyA = Spec A.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for E and A € L(E). Then
the matrix representation of A is [A] = [ajj]; jcz, where

ajj = (Aej, e,-), i,j S Z,

and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢2) is defined by

([Alx)i =Y ayx, i€

JEL

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for E and A € L(E). Then
the matrix representation of A is [A] = [ajj]; jcz, where

ajj = (Aej, e,-), i,j S Z,

and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢2) is defined by
([Alx)i =Y ayx, i€
JEL

The above makes clear we can assume E = (2 = (2(Z), in which
case we will abbreviate [A] as A.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for E and A € L(E). Then
the matrix representation of A is [A] = [ajj]; jcz, where

ajj = (Aej, e,-), i,j €7,

and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢2) is defined by

([Alx)i =Y ayx, i€
JEZ
The above makes clear we can assume E = (2 = (2(Z), in which

case we will abbreviate [A] as A.

We will say that A is banded with bandwidth w € Ny := NU {0}
if ajj =0 for |i —j| > w.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for E and A € L(E). Then
the matrix representation of A is [A] = [ajj]; jcz, where

ajj = (Aej, e,-), i,j S Z,
and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢2) is defined by
([Alx)i =Y ayx, i€
JEZ
The above makes clear we can assume E = (2 = (2(Z), in which

case we will abbreviate [A] as A.

We will say that A is banded with bandwidth w € Ny := NU {0}
if ajj =0 for |i —j| > w.

We will say that A is band-dominated if there exists a sequence
(An) C L(E) such that each A, is banded and ||A — A,|| — 0 as
n — o0o.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



What is this talk about?

Question. Given a band-dominated bi-infinite matrix A € L(E),
with E = ¢2(Z), can we construct a sequence of compact sets

U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?
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The (key) tridiagonal case

Let's consider first bi-infinite matrices of the form

B2 Y-1
a_x B-1 Y
A = a1 Bo m )
ag P17
a1 B

where a = (), 8= (i) and v = (7;) are bounded sequences of
complex numbers.

Simon Chandler-Wilde

Computing Spectra of Band-Dominated Operators



Inclusion sets for Spec_A, € > 0.

B2 v-1
a_r B-1
A= a1 Bo m
ag P17
a1 B

Compute inclusion sets for spectrum and pseudospectra of
A€ L(0?) = L(£*(7)).
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )

Spec A C | J (akk + ([lalloo + [[7]l0c)D).
keZ
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )

Spec A C | J (akk + ([lalloo + [[7]l0c)D).
keZ

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé

N\

k+1

k+n
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

k+1
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé

k+1

N
AN
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

I(A =N x| < elix]l
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

I(A =N x| < elix]l

k+1 k+1

a

k
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < el

Claim: JkcZ:
[(Ank — M) Xkl
< (e +en) [[Xnkll
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < eix]]

Claim: JkeZ:
||(An,k - )‘/n) Xn,kH
< (e+en) [[xnkll
<= Z H(An,k - )‘/n)Xn,kH2
<(e+en)® D lxnkll?
k
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < el

Fact: Jkec Z:
H(An,k — Alp) Xn,k”
< (e +¢n) [[Xnkll
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

(A=A x|l < el

X Fact: dkecZ:
H(An,k - )‘In)xn,kH

k+1 | k+1

\\\ En = 7(||a||oo+ 171lo0)
ken mn Vn
NN

<(e+en)
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

\\\ (A=A x| < e|x]]

a p-2,

x Fact: dkc Z:
1(Ank — M) Xn k]|
ket | [kt < (5 + En) ||Xn,k”

\ e 2sin 5T (lalke + )
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

G ) Fact: Jk € Z
\ 1(Ank — Mo) sk
< (e + 2n) okl

k+1 +1

A\ \ Ll 2sin g gy ol + o)

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

NN n IA= x| < <l
N\
afiy. ) Fact: Jkc Z:
[Ank = M) o]
< (e + 20) ol
k+1 | [k
En =
\ 25in = (oo + I1le)
\ 2(n+2) oo T Voo
NN
\k+n\ +n

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

G ) Fact: Jk € Z
\ 1(Ank — Mo) sk
< (e + 2n) okl

k+1 +1

A\ \ Ll 2sin g gy ol + o)

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

“ “7\ ) Fact: 3keZ:
» . 1(Ank = M) Xn il
\ < (e + £n) [ Xnill
\ -
k+n | |k+n

\ 2sin m(“@“oo‘f‘ [1V]l00)

L = A€ Spec.,. Ank

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



7 method: finite principal submatrices

So we get

Spec,A  C U Spec. . Apk, €20,
keZ

where

= 2sin (5" ) Ulalle + ol

so e, = O(n!) as n — oo.
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7 method: finite principal submatrices

So we get

Spec,A  C U Spec. . Apk, €20,
keZ

where

= 2sin (5" ) Ulalle + ol

so e, = O(n 1) as n — oco. Putting n =1 and £ = 0 we recover
Gershgorin:

Spec A C | J Spec., Avik = | (akk + ([alloo + [17]loc)D).
keZ keZ
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

Ny
N\
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

Ny
N\
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

N

N\

&\

very similar computations show that

Spec.,A C U Spec. . Ab, €20, J
keZ

. H ™
with el = 2sin <%> (lletlfoo + l1¥llo0)-
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Here is another idea: 7, method

Instead of
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Here is another idea: 7, method

We do a “one-sided” truncation.

N
N

kin
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Here is another idea: 7, method

We do a “one-sided” truncation.

N
N\

k+1
kin
o \

l.e., we work with rectangular finite submatrices.

This is motivated by work of Davies 1998, Davies & Plum 2004,
and Hansen 2008, 2011, in which A is approximated by a single
large rectangular finite section.
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71 method: projection operator

ForneNand k€ Z, let Py : (> — (? denote the projection

N x(i), ie{k+1,. k+n},
(Prix)(i) = { 0 otherwise.

x TITTTTTITITITTIITTTITT
Rox TTTTTT IR [T [T]
k+1 k+n

Further, we put
End ‘= 1im P,,7k.
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71 method: truncations

7 method: 71 method:
NN\ NN,
a B
\k+1 \\
P,,7k(A—)\I)]En’k (A—)\I)IEM
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71 method: 7 method revisited

7 method:

A € Spec, A = For some k € Z:

A€ Spece+5nAn,k = SpeCE—&-Sn(P”,kA’En,k)’
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71 method: 7 method revisited

7 method:

A € Spec, A = For some k € Z:

A € Specy ., Ank = SP€C5+5,,(Pn,kA’E,,,k),
ie. min ((v(Pak(A=M)IE, ), v(Pak(A= M) g,,)) < e+en
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71 method: 7 method revisited

7 method:

A € Spec, A = For some k € Z:

A € Specy ., Ank = SP€C5+5,,(Pn,kA’E,,,k),
ie. min ((v(Pak(A=M)IE, ), v(Pak(A= M) g,,)) < e+en
71 idea is just drop the P, 's.

Replace Spec., . An« by

vk (A) = {imin (v (A= ADlg,,) s v (A= A)'g,,)) <& +en)
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.)
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez

Then (similarly to the 7 and m-method inclusions)

SpeCsA - rngE;,’ (A)a

n

with afzzs;n( )(||a||oo+||vuoo)

2n+2
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez

Then (similarly to the 7 and m-method inclusions)

SpeCsA - I_g+6 (A)a

!
n

n

with e’ = 2sin (2n+2

)(naHOO T o)

But now we also have that if A € 'yg"’k(A), for some k € Z, then

V(A=A) < v((A=AM)lg,, ) <corv((A-N)") <e
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Let v¥(A) be the set of A € C for which
min (v (A= M)le,.), v (A= M)lg,.)) < &
(Analogue of Spec A, k in the 7 method.) Put
r2(A) = U A
kEZ

Then (similarly to the 7 and m-method inclusions)

SpeCsA - I_g+6 (A)a

!
n

with &/ = 2sin (2n+2)(||alloo+llv|!oo)

But now we also have that if A € 'yg"’k(A), for some k € Z, then

V(A= A) <v((A=A)lg,,) <corv((A—=N)") <e, so
A € Spec.A. Thus

'’(A) C Spec.A.
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T1-method: spectral bounds

From the lower and upper bound

I'’(A) C Spec.A and Spec.A C T, .(A)

we get
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec.A and Spec.A C T, .(A)

we get

rZ(A) C SpeccA C T[,.(A), >0

£ =

V.

SpeccA  C T .(A) C Spec. A €2>0.

.
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec.A and Spec.A C T, .(A)

we get

rZ(A) C SpeccA C T[,.(A), >0

£ =

V.

SpeccA  C T .(A) C Spec. A €2>0.

.

Since Spec.;.nA — Spec.A as n — 00, we have

FQJFE,H,(A) —  Spec.A
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec.A and Spec.A C T, .(A)

we get

rZ(A) C SpeccA C T[,.(A), >0

£ =

V.

SpeccA  C T .(A) C Spec. A €2>0.

.

Since Spec.;.nA — Spec.A as n — 00, we have

M7 (A) — Spec,A, inparticular [[(A) — SpecA.
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The shift operator

Let's compute the 7, 7, and 71 inclusion sets for Spec A, i.e.

7 method: Ukez Spec., An

7 method:  (Jy oy Spec., AP

n’ nk

71 method: Urkez TR (A),

£

where
FE(A) = (A€ Cmin (v (A= Mgy, v (A= AYle,)) < <4}

in the case that A is the shift operator, so that
a=(...,0,0,...), 6=(...,0,0,...),vy=(...,1,1,...),

SpecA=T={z:|z| =1}
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The shift operator

Let's compute the 7, 7, and 71 inclusion sets for Spec A, i.e.

T method: Ukez Spec., An

7 method:  (Jy oy Spec., AP

cn’ " nk
71 method: m
where
V(A = A € € min (v (A= Ale,,) v (A= M)'le, ) < <4},

in the case that A is the shift operator, so that

a=(...,0,0,...),8=(...,0,0,...),v=(...,1,1,...),
SpecA=T={z:|z| =1},

T
e < 2sin (50 ) (llallos + 7llee) = 25in (5

and the matrices A, i, k € Z, are all the same!

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The shift operator

n—= 4 n—= 8
7 method | .. n e f \ 0 o AN
i 1 | i 1o { Y
\ } L ; 4 iy I} i
\ / o) \ / o] \ / usf i /
h '/ X 4 A s NS

7 method

71 method

Computing Spectra of Band-Dominated Operators

on Chandler-Wilde




T, m, and 7, methods: second example

We now look at a tridiagonal matrix A with 3-periodic diagonals:
1st sub-diagonal o = (---,0,0,0,---)
main diagonal = (--- ,—%, 1,1,--+)
super-diagonal v = (---,1,2,1,--+)
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3-periodic example

n=16 n=32 n =64 n=128
7 method T
° QO
7 method
71 method
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Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.
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Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.

If we put
K
Un = rg—l—ef{(A) = /Ygé/ (A)
keZ
then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true?
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Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.

If we put
n k
Un = re-i—ej,’(A) = '7!11’ (A)
keZ

then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true? What are the missing ingredients?
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

o For 7 method approximate | J, .5 Spec. A, « by finite union
Ukeksin Spece, Bpk where {By i : k € KfinY is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.
o For 7 method approximate | J, .5 Spec. A, « by finite union
Ukeksin Spece, Bpk where {By i : k € KfinY is an e-net (with

e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.

o Define Uy = (%% . (A) N1(Z+i2)) + 2D.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

o For 7 method approximate | J, .5 Spec. A, « by finite union
Ukeksin Spece, Bpk where {By i : k € KfinY is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.

o Define U, := (rgé,ff&n 3yn(An) N %(Z+iZ)) + 2D. Then
Spec A C U,, U, — Spec A, and U, can be computed with
finitely many operations.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

e For 7 method approximate | J, ., Spec. A, « by finite union
Ukekiin Spece, Bpk where {By i : k € KfinY is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 71
method.

o Define U, := (rgé,ff&n yn(An) N %(Z+iZ)) + 2D. Then
Spec A C U,, U, — Spec A, and U, can be computed with
finitely many operations.
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A pseudoergodic example

0 1
A = do 0 1 s
dal 0
where a = (--- , a9, a1, -+ ) € A” is pseudoergodic with respect to the

compact set A (Davies 2001)
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A pseudoergodic example

0 1
A = do 0 1 s
dal 0
where a = (--- , a9, a1, -+ ) € A” is pseudoergodic with respect to the

compact set A (Davies 2001); i.e., every .A-valued finite sequence
can be found to arbitrary precision somewhere in a.
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A pseudoergodic example

0 1
A = do 0 1 s
dal 0
where a = (--- , a9, a1, -+ ) € A” is pseudoergodic with respect to the

compact set A (Davies 2001); i.e., every .A-valued finite sequence
can be found to arbitrary precision somewhere in a.

If A C D the 7 method converges (cf. C-W & Lindner 2016):

SpecAC U, = U Spec., Ask — SpecA, as n — oc.
kEZ
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A pseudoergodic example

0 1
0 1 (651 0 1
A = w 0 1 . An(a) =
ai O Qp_2 0 1
p—1 0
where a = (--- ,ap, a1, -- ) € A% is pseudoergodic with respect to the

compact set A (Davies 2001); i.e., every .A-valued finite sequence
can be found to arbitrary precision somewhere in a.

If A C D the 7 method converges (cf. C-W & Lindner 2016):

SpecAC U, = U Spec. Anx — SpecA, as n— oco.
kezZ

Further,

U, = U Spec, An()
ac A1
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A pseudoergodic example

0 1
0 1 [e5] 0 1
A= a 0 1 , An(a) = o ,
ai O Qp—2 0 1

where a = (--- ,ag,a1,--- ) € A” is pseudoergodic with respect to the
compact set A (Davies 2001); i.e., every A-valued finite sequence
can be found to arbitrary precision somewhere in a.

If A C D the 7 method converges (cf. C-W & Lindner 2016):
SpecAC U, = U Spec. Ank — SpecA, as n— oco.
keZ
Further, where A C A is some finite e-net for A, with e =1/n,
U, = U Spec, An(a) ~ Uy = U Spec., 11/nAn(a)

ac An—1 An—1
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A pseudoergodic example

0 1
0 1 a; 0 1
A= a 0 1 . Ap(a) = )
a 0 qp_2 0 1
p—_1 0
where a = (--- ,ap, a1, -- ) € A% is pseudoergodic with respect to the

compact set A (Davies 2001); i.e., every .A-valued finite sequence
can be found to arbitrary precision somewhere in a.

If A C D the 7 method converges (cf. C-W & Lindner 2016):

SpecACU,,—>SpecA, as n — oo.

Further, where A C A is some finite e-net for A, with & = 1/n,

U, = U Spec, An(a) ~ Uy = U Spec., 11/pAn(a)
ac A1 acAn—1
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The case A = {£1} (Feinberg/Zee 1999, C-W, Chonchaiya, Lindner 2013)

0 1
A = dao 0 1 5
dal 0
where a=(---,a0,a1, ) € AZ is pseudoergodic with respect

to A = {£1} i.e., every finite sequence of +1’s can be found
somewhere in a.
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The case A = {£1} (Feinberg/Zee 1999, C-W, Chonchaiya, Lindner 2013)

0 1
A = dao 0 1 5
dal 0
where a=(---,a0,a1, ) € AZ is pseudoergodic with respect

to A = {£1} i.e., every finite sequence of +1’s can be found
somewhere in a.

The 7 method is convergent:

SpecA C U, = U Spec. Ank — SpecA, as n — oo.
keZ

and the union is finite: 271 different matrices An k-
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Upper and lower bounds on Spec A: which is sharp?

(The square has corners at +£2 and +2i.)
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Upper and lower bounds on Spec A: which is sharp?

(The square has corners at +£2 and +2i.)

We have Spec A C U, and U, — Spec A so, if A &€ Spec A, then
A & U, for all sufficiently large n.
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Is A\ = 1.5+ 0.5i € Spec A?

We found a hole!

Center: 1.5 +0.5i
Radius: 0.01

A=15+05i € Uss D SpecA, so A& SpecA,

so Spec A is a strict subset of the square.
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Is A\ = 1.5+ 0.5i € Spec A?

We found a hole!

Center: 1.5 +0.5i
Radius: 0.01

A=15+05i € Uss D SpecA, so A& SpecA,

so Spec A is a strict subset of the square. This was a large
calculation: we needed to check whether 233 ~ 8.6 x 10% matrices
of size 34 x 34 were positive definite!
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

T method: Spec.A C Ugez Spec. ., Ank

7 method: SpeccA C Ugez Spece,o Avy

71 method: Spec.A C T2, /(A) = Uskez ngrkg/n/(A)?

with explicit and optimised formulae for ¢, ¢/, <. N.B. ’y€+€,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

T method: Spec,A C Ugez Spec.. ., Ank

7 method: Spec.A C Upez Specei, Avy

71 method: Spec.A C T2, /(A) = Uskez ngrkgn(/\),
with explicit and optimised formulae for =, ¢/, "7, N.B. 7€+¢,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I'7, ,(A) — Spec.A as n — oo, for € > 0. N.B.
SpecgA = Spec A.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

T method: Spec,A C Ugez Spec.. ., Ank

7 method: Spec.A C Upez Specei, Avy

71 method: Spec.A C T2, /(A) = Uskez ngrkgn(/\),
with explicit and optimised formulae for =, ¢/, "7, N.B. 7€+¢,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I'”, _,(A) — Spec.A as n — oo, for ¢ > 0. N.B.
SpecyA = Spec A.

3. Shown numerical examples exhibiting the inclusions and the
T1-method convergence.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

T method: Spec,A C Ugez Spec.. ., Ank

7 method: Spec.A C Upez Specei, Avy

71 method: Spec.A C T2, /(A) = Uskez ngrkgn(/\),
with explicit and optimised formulae for =, ¢/, "7, N.B. 7€+¢,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I'7, ,(A) — Spec.A as n — oo, for € > 0. N.B.
SpecgA = Spec A.

3. Shown numerical examples exhibiting the inclusions and the
T1-method convergence.

4. Sketched extension to A band-dominated, and reduction of
Ukez to a finite union, illustrating this by the pseudoergodic case.
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ull details ...
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This work is licensed under a CC BY 4.0 license

On spectral inclusion sets and computing the spectra and
pseudospectra of bounded linear operators

Simon Chandler-Wilde, Ratchanikorn Chonchaiya, and Marko Lindner

Abstract. In this paper, we derive novel families of inclusion sets for the spectra and pseudo-
spectra of large classes of bounded linear operators, and establish convergence of particular
sequences of these inclusion sets to the spectrum or pseudospectrum, as appropriate. Our res-
ults apply, in particular, to bounded linear operators on a separable Hilbert space that, with
respect to some orthonormal basis, have a representation as a bi-infinite matrix that is banded or
band-dominated. More generally, our results apply in cases where the matrix entries themselves
are bounded linear operators on some Banach space. In the scalar matrix entry case, we show
that our methods, given the input information we assume, lead to a sequence of approximations
to the spectrum, each element of which can be computed in finitely many arithmetic operations,
so that, with our assumed inputs, the problem of determining the spectrum of a band-dominated
operator has solvability complexity index one in the sense of Ben-Artzi et al. (2020). As a con-
crete and substantial application, we apply our methods to the determination of the spectra of
non-self-adjoint bi-infinite tridiagonal matrices that are pseudoergodic in the sense of Davies
[Commun. Math. Phys. 216 (2001), 687-704].

Dedicated to Prof. E. Brian Davies on the occasion of his 80th birthday
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Extensions and future work

We've seen inclusion sets for the spectrum of bi-infinite matrices, i.e.,
operators on (?(Z) or {?(Z, X). These lead to results for semi-infinite
matrices which lead to sequences of convergent inclusion sets also for
the essential spectrum.
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Extensions and future work

We've seen inclusion sets for the spectrum of bi-infinite matrices, i.e.,
operators on (?(Z) or {?(Z, X). These lead to results for semi-infinite
matrices which lead to sequences of convergent inclusion sets also for
the essential spectrum.

We have inclusion set familes also for finite matrices, as a non-trivial
(and often sharp) extension of block-matrix versions of Gershgorin's
theorem — see arXiv:2408.03883
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Extensions and future work

We've seen inclusion sets for the spectrum of bi-infinite matrices, i.e.,
operators on (?(Z) or {?(Z, X). These lead to results for semi-infinite
matrices which lead to sequences of convergent inclusion sets also for
the essential spectrum.

We have inclusion set familes also for finite matrices, as a non-trivial
(and often sharp) extension of block-matrix versions of Gershgorin's
theorem — see arXiv:2408.03883

Our bi-infinite matrix results depend on the group structure of (Z,+). In
work with Christian Seifert (TU Hamburg) we replace Z with a general
Abelian group G, so our matrices act on ¢?(G) or £>(G, X). E.g.

G =179 G = finite group, ....
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Extensions and future work

We've seen inclusion sets for the spectrum of bi-infinite matrices, i.e.,
operators on (?(Z) or {?(Z, X). These lead to results for semi-infinite
matrices which lead to sequences of convergent inclusion sets also for
the essential spectrum.

We have inclusion set familes also for finite matrices, as a non-trivial
(and often sharp) extension of block-matrix versions of Gershgorin's
theorem — see arXiv:2408.03883

Our bi-infinite matrix results depend on the group structure of (Z,+). In
work with Christian Seifert (TU Hamburg) we replace Z with a general
Abelian group G, so our matrices act on ¢?(G) or £>(G, X). E.g.

G =79, G = finite group, .. .. see Marko Lindner’s talk at 3pm!
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Abelian group G, so our matrices act on ¢?(G) or £>(G, X). E.g.

G =79, G = finite group, .. .. see Marko Lindner’s talk at 3pm!

Much work to do on efficient implementation. E.g., see ideas in
Lindner & Schmidt, Oper. Matrices (2017).
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G =79, G = finite group, .. .. see Marko Lindner’s talk at 3pm!

Much work to do on efficient implementation. E.g., see ideas in
Lindner & Schmidt, Oper. Matrices (2017).

Exciting applications in mathematical physics! E.g., project just
started with Marko, Christian, Matt Colbrook (Cambridge), ...on
spectra of almost-periodic operators modelling quasi-crystals,
cf. Hege, Moscolari, Teufel, Phys. Rev. B (2022).
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