
Computing the Spectra and Pseudospectra of
Band-Dominated and Random Operators

Simon Chandler-Wilde

March 2024, Heriot-Watt Seminar

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



...with the help of...

This talk is based on joint work, see
https://arxiv.org/abs/2401.03984, with

Marko Lindner, TU Hamburg, Germany

Ratchanikorn Chonchaiya, King Mongkut’s University of
Technology, Thailand

and supported by Marie Curie Grants of the European Union.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators

https://arxiv.org/abs/2401.03984


What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E , can we construct a sequence of compact sets Un ⊂ C with

(i) SpecA ⊂ Un for each n;

(ii) Un → SpecA as n → ∞ (Hausdorff convergence);

(iii) each Un can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.

Novelty? We know how to construct Un satisfying (iii) with
Un → SpecεA, the ε-pseudospectrum, for band-dominated A (see
Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel
2015, 2020). But not known how to achieve (ii) and (iii), and
certainly not (i)-(iii).
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x , y) and norm
∥x∥ =

√
(x , x) , e.g.

E = ℓ2 := ℓ2(Z), (x , y) =
∑
j∈Z

xj ȳj , ∥x∥2 =
∑
j∈Z

|xj |2.

If E ,Y are Hilbert spaces, A is a bounded linear operator from
E to Y , in symbols A ∈ L(E ,Y ), if

A(λx) = λAx , A(x + y) = Ax + Ay , ∀λ ∈ C, x , y ∈ E ,

and, for some C ≥ 0,

∥Ax∥ ≤ C∥x∥, ∀x ∈ E .

For A ∈ L(E ,Y ) the norm and lower norm of A are

∥A∥ := sup
x∈E\{0}

∥Ax∥
∥x∥

and ν(A) := inf
x∈E\{0}

∥Ax∥
∥x∥

.
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xj ȳj , ∥x∥2 =
∑
j∈Z

|xj |2.

If A ∈ L(E ,Y ), the adjoint of A, denoted A∗, is the unique
A∗ ∈ L(Y ,E ) satisfying

(Ax , y) = (x ,A∗y), x ∈ E , y ∈ Y .

We call A ∈ L(E ) := L(E ,E )

self-adjoint if A∗ = A

normal if AA∗ = A∗A
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Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I .

N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥
ν(A) = 1/∥A−1∥
ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I . N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥
ν(A) = 1/∥A−1∥
ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I . N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥

ν(A) = 1/∥A−1∥
ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I . N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥
ν(A) = 1/∥A−1∥

ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I . N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥
ν(A) = 1/∥A−1∥
ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

A ∈ L(E ) := L(E ,E ) is said to be invertible if is bijective, in which
case there exists A−1 ∈ L(E ) such that AA−1 = A−1A = I . N.B.

A is not invertible ⇔ µ(A) := min(ν(A), ν(A∗)) = 0,

and, if A is invertible, then

A∗ is invertible and ∥A−1∥ = ∥(A∗)−1∥
ν(A) = 1/∥A−1∥
ν(A) = 1/∥A−1∥ = 1/∥(A∗)−1∥ = ν(A∗) = µ(A).

With the conventions that ∥A−1∥ := ∞ if A is not invertible and
1/∞ := 0,

µ(A) = 1/∥A−1∥, for all A ∈ L(Y ).

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Spectrum and Pseudospectrum

For A ∈ L(E ) the spectrum of A is

SpecA := {λ ∈ C : A−λI is not invertible} = {λ ∈ C : µ(A−λI ) = 0}.

N.B. this is just the set of eigenvalues if E is finite dimensional.

For A ∈ L(E ) and ε > 0 the (closed) ε-pseudospectrum of A is

SpecεA := {λ ∈ C : 1/∥(A− λI )−1∥ ≤ ε} = {λ ∈ C : µ(A− λI ) ≤ ε}
⊃ SpecA+ εD, with equality if A is normal,

where D = {z ∈ C : |z | < 1}.
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More on pseudospectra:
Trefethen & Embree 2005,
Davies 2007
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Spectrum and Pseudospectrum

For A ∈ L(E ) and ε > 0 the (closed) ε-pseudospectrum of A is

SpecεA := {λ ∈ C : 1/∥(A− λI )−1∥ ≤ ε} = {λ ∈ C : µ(A− λI ) ≤ ε}
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Example 1.

A =

 0 0 0
0 2 0
0 0 1 + i


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Hausdorff convergence of sets

Let

CB := set of non-empty bounded subsets of C
CC := set of non-empty compact subsets of C

For S ,T ∈ CB let

d(S ,T ) := inf {ε ≥ 0 : S ⊂ T + εD and T ⊂ S + εD} .

N.B. d(·, ·) is the Hausdorff metric on CC . For (Sn) ⊂ CB and
S ∈ CB write Sn → S if d(Sn,S) → 0 as n → ∞.

Lemma. If (Sn) ⊂ CC and S1 ⊃ S2 ⊃ . . ., then
Sn → S∞ :=

⋂
n∈N Sn as n → ∞.

Corollary. If ε1 > ε2 > . . . > 0, in which case εn → ε ≥ 0 as
n → ∞, then

SpecεnA → SpecεA N.B. Spec0A := SpecA.
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Matrix representation of A

Suppose (ej)j∈Z is an orthonormal basis for a separable Hilbert
space E and A ∈ L(E ). Then the matrix representation of A is
[A] = [aij ]i ,j∈Z, where

aij = (Aej , ei ), i , j ∈ Z,

and SpecA = Spec [A], SpecεA = Specε[A], ε > 0, where
[A] ∈ L(ℓ2) is defined by

([A]x)i =
∑
j∈Z

aijxj , i ∈ Z.

The above makes clear we can assume E = ℓ2 = ℓ2(Z), in which
case we will abbreviate [A] as A.

We will say that [A] is banded with bandwidth
w ∈ N0 := N ∪ {0} if aij = 0 for |i − j | > w .

We will say that [A] is band-dominated if there exists a sequence
(An) ⊂ L(E ) such that each [An] is banded and ∥A− An∥ → 0 as
n → ∞.
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The tridiagonal case

Let’s consider first bi-infinite matrices of the form

A =



. . .
. . .

. . . β−2 γ−1

α−2 β−1 γ0
α−1 β0 γ1

α0 β1 γ2

α1 β2
. . .

. . .
. . .


,

where α = (αi ), β = (βi ) and γ = (γi ) are bounded sequences of
complex numbers.
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Inclusion sets for SpecεA, ε ≥ 0.

A =



. . .
. . .

. . . β−2 γ−1

α−2 β−1 γ0
α−1 β0 γ1

α0 β1 γ2

α1 β2
. . .

. . .
. . .


Task

Compute inclusion sets for spectrum and pseudospectra of
A ∈ L(ℓ2) = L(ℓ2(Z)).
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

center at ak,k and radius |ak,k−1|+ |ak,k+1| ≤ ∥α∥∞ + ∥γ∥∞

SpecA ⊂
⋃
k∈Z

(ak,k + (∥α∥∞ + ∥γ∥∞)D).
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:
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τ method: finite principal submatrices

Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥
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Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥

Claim: ∃k ∈ Z :

∥(An,k − λIn) xn,k∥
≤ (ε+ εn) ∥xn,k∥
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τ method: finite principal submatrices

Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥

Claim: ∃k ∈ Z :

∥(An,k − λIn) xn,k∥
≤ (ε+ εn) ∥xn,k∥

⇐
∑
k

∥(An,k − λIn) xn,k∥2

≤ (ε+ εn)
2
∑
k

∥xn,k∥2
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τ method: finite principal submatrices

Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥

Fact: ∃k ∈ Z :

∥(An,k − λIn) xn,k∥
≤ (ε+ εn) ∥xn,k∥
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τ method: finite principal submatrices

Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥

Fact: ∃k ∈ Z :

∥(An,k − λIn) xn,k∥
≤ (ε+ εn) ∥xn,k∥

εn =
1√
n
(∥α∥∞ + ∥γ∥∞)

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



τ method: finite principal submatrices

Let λ ∈ SpecεA and let x ∈ ℓ2 be a corresponding pseudomode.

∥(A− λI ) x∥ ≤ ε ∥x∥

Fact: ∃k ∈ Z :

∥(An,k − λIn) xn,k∥
≤ (ε+ εn) ∥xn,k∥

εn ≤
2 sin

π

2(n + 2)
(∥α∥∞ + ∥γ∥∞)
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τ method: finite principal submatrices

So we get

Inclusion Set

SpecεA ⊂
⋃
k∈Z

Specε+εnAn,k , ε ≥ 0,

where

εn ≤ 2 sin

(
π

2(n + 2)

)
(∥α∥∞ + ∥γ∥∞),

so εn = O(n−1) as n → ∞.

Putting n = 1 and ε = 0 we recover
Gershgorin:

SpecA ⊂
⋃
k∈Z

Specε1A1,k =
⋃
k∈Z

(ak,k + (∥α∥∞ + ∥γ∥∞)D).
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π method: periodised finite principal submatrices

If the finite submatrices An,k are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

very similar computations show that

SpecεA ⊂
⋃
k∈Z

Specε+ε′n
Aper
n,k , ε ≥ 0,

with ε′n = 2 sin
( π

2n

)
(∥α∥∞ + ∥γ∥∞).
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Here is another idea: τ1 method

Instead of
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Here is another idea: τ1 method

We do a “one-sided” truncation.
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Here is another idea: τ1 method

We do a “one-sided” truncation.

I.e., we work with rectangular finite submatrices.

This is motivated by work of Davies 1998, Davies & Plum 2004,
and Hansen 2008, 2011, in which A is approximated by a single
large rectangular finite section.
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τ1 method: projection operator

For n ∈ N and k ∈ Z, let Pn,k : ℓ2 → ℓ2 denote the projection

(Pn,kx)(i) :=

{
x(i), i ∈ {k + 1, ..., k + n},

0 otherwise.

Further, we put
En,k := imPn,k .
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τ1 method: truncations

τ method:

Pn,k(A− λI )|En,k

τ1 method:

(A− λI )|En,k
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τ1 method: τ method revisited

τ method:

λ ∈ SpecεA =⇒ For some k ∈ Z :

λ ∈ Specε+εn

(
Pn,kA|En,k

)

i.e. µ
(
Pn,k(A− λI )|En,k

)
≤ ε+ εn

i.e. ν
(
Pn,k(A− λI )|En,k

)
≤ ε+ εn or

ν
(
Pn,k(A− λI )∗|En,k

)
≤ ε+ εn

τ1 idea is just drop the Pn,k ’s.
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τ1 method

Let γn,kε (A) be the set of λ ∈ C for which

min
(
ν
(
(A− λI )|En,k

)
, ν

(
(A− λI )∗|En,k

))
≤ ε.

(Analogue of SpecεAn,k in the τ method.)

Put

Γnε(A) :=
⋃
k∈Z

γn,kε (A).

Then (similarly to the τ and π-method inclusions)

SpecεA ⊂ Γnε+ε′′n
(A),

with ε′′n = 2 sin

(
π

2n + 2

)
(∥α∥∞ + ∥γ∥∞)

But now we also have that if λ ∈ γn,kε (A), for some k ∈ Z, then
ν(A− λ) ≤ ν((A− λI )|En,k

) ≤ ε or ν((A− λ)∗) ≤ ε, so
µ(A− λI ) ≤ ε and λ ∈ SpecεA, so

Γnε(A) ⊂ SpecεA.
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τ1-method: spectral bounds

From the lower and upper bound

Γnε(A) ⊂ SpecεA and SpecεA ⊂ Γnε+ε′′n
(A)

we get

Sandwich 1

Γnε(A) ⊂ SpecεA ⊂ Γnε+ε′′n
(A), ε ≥ 0.

Sandwich 2

SpecεA ⊂ Γnε+ε′′n
(A) ⊂ Specε+ε′′n

A, ε ≥ 0.

In particular, it follows, since Specε+ε′′n
A → SpecεA as n → ∞,

that

Γnε+ε′′n
(A) → SpecεA, in particular Γnε′′n (A) → SpecA.
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In particular, it follows, since Specε+ε′′n
A → SpecεA as n → ∞,

that

Γnε+ε′′n
(A) → SpecεA

, in particular Γnε′′n (A) → SpecA.
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The shift operator

Let’s compute the τ , π, and τ1 inclusion sets for SpecA, i.e.

τ method:
⋃

k∈Z SpecεnAn,k

π method:
⋃

k∈Z Specε′nA
per
n,k

τ1 method:
⋃

k∈Z γ
n,k
ε′′n

(A),

where

γn,kε′′n
(A) =

{
λ ∈ C : min

(
ν
(
(A− λI )|En,k

)
, ν

(
(A− λI )∗|En,k

))
≤ ε′′n

}
,

in the case that A is the shift operator, so that
α = (. . . , 0, 0, . . .), β = (. . . , 0, 0, . . .), γ = (. . . , 1, 1, . . .),

SpecA = T = {z : |z | = 1}

,

εn, ε
′
n, ε

′′
n ≤ 2 sin

( π

2n

)
(∥α∥∞ + ∥γ∥∞) = 2 sin

( π

2n

)
,

and the matrices An,k , k ∈ Z, are all the same!
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The shift operator

n = 4 n = 8 n = 16 n = 32

τ method

π method

τ1 method
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τ , π, and τ1 methods: second example

We now look at a tridiagonal matrix A with 3-periodic diagonals:

1st sub-diagonal α = (· · · , 0, 0, 0, · · · )
main diagonal β = (· · · ,−3

2 , 1, 1, · · · )
super-diagonal γ = (· · · , 1, 2, 1, · · · )
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3-periodic example

n = 16 n = 32 n = 64 n = 128

τ method

π method

τ1 method
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Let’s take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E , can we construct a sequence of compact sets Un ⊂ C with

(i) SpecA ⊂ Un for each n;

(ii) Un → SpecA as n → ∞ (Hausdorff convergence);

(iii) each Un can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.

If we put

Un = Γnε+ε′′n
(A) :=

⋃
k∈Z

γn,kε′′n
(A)

then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true? What are the missing ingredients?
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The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.
For τ method approximate

⋃
k∈Z SpecεnAn,k by finite union⋃

k∈Kfin
n

Bn,k where {Bn,k : k ∈ Kfin
n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.
Define Un :=

(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD. Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.
For τ method approximate

⋃
k∈Z SpecεnAn,k by finite union⋃

k∈Kfin
n

Bn,k where {Bn,k : k ∈ Kfin
n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.
Define Un :=

(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD. Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.

For τ method approximate
⋃

k∈Z SpecεnAn,k by finite union⋃
k∈Kfin

n
Bn,k where {Bn,k : k ∈ Kfin

n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.
Define Un :=

(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD. Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.
For τ method approximate

⋃
k∈Z SpecεnAn,k by finite union⋃

k∈Kfin
n

Bn,k where {Bn,k : k ∈ Kfin
n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.

Define Un :=
(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD. Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.
For τ method approximate

⋃
k∈Z SpecεnAn,k by finite union⋃

k∈Kfin
n

Bn,k where {Bn,k : k ∈ Kfin
n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.
Define Un :=

(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD.

Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



The missing ingredients

If Un = Γnε′′n (A) :=
⋃
k∈Z

γn,k
ε′′n

(A)

then SpecA ⊂ Un and Un → SpecA, but only for tridiagonal A, and Un

can’t be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
Perturbation argument extends to A band-dominated,
approximated by An (banded), with δn := ∥A− An∥ → 0.
For τ method approximate

⋃
k∈Z SpecεnAn,k by finite union⋃

k∈Kfin
n

Bn,k where {Bn,k : k ∈ Kfin
n } is an ε-net (with

ε = 1/n) for the compact set {An,k : k ∈ Z}. Similarly for τ1
method.
Define Un :=

(
Γn,finε′′n+δn+3/n(An) ∩ 1

n (Z+ iZ)
)

+ 2
nD. Then

SpecA ⊂ Un, Un → SpecA, and Un can be computed with
finitely many operations.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



A final example [Feinberg/Zee 1999]

A =



. . .
. . .

. . . 0 1
b−1 0 1

b0 0 1

b1 0
. . .

. . .
. . .


,

where b = (· · · , b−1, b0, b1, · · · ) ∈ {±1}Z is a pseudoergodic
sequence (Davies 2001)

; i.e., every finite pattern of ±1’s can be
found somewhere in the infinite sequence b.

This is an example where the τ method is convergent:

SpecA ⊂ Un :=
⋃
k∈Z

SpecεnAn,k → SpecA, as n → ∞,

and where the union is finite: 2n−1 different matrices An,k .
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Upper and lower bounds on SpecA: which is sharp?

(The square has corners at ±2 and ±2i.)

We have SpecA ⊂ Un and Un → SpecA so, if λ ̸∈ SpecA, then
λ ̸∈ Un for all sufficiently large n.
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Is λ = 1.5 + 0.5i ∈ SpecA?

λ = 1.5 + 0.5i ̸∈ U34 ⊃ SpecA, so λ ̸∈ SpecA,

so SpecA is a strict subset of the square.

This was a large
calculation: we needed to check whether 233 ≈ 8.6× 109 matrices
of size 34× 34 were positive definite!
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Summary and conclusion

1. For tridiagonal A we have derived the τ , π, and τ1 inclusion
set families for SpecεA, for ε ≥ 0, i.e., for n ∈ N,

τ method: SpecεA ⊂
⋃

k∈Z Specε+εnAn,k

π method: SpecεA ⊂
⋃

k∈Z Specε+ε′n
Aper
n,k

τ1 method: SpecεA ⊂ Γnε+ε′′n
(A) =

⋃
k∈Z γ

n,k
ε+ε′′n

(A),

with explicit and optimsed formulae for εn, ε
′
n, ε

′′
n. N.B. γ

n,k
ε+ε′′n

(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown Γnε+ε′′n
(A) → SpecεA as n → ∞, for ε ≥ 0. N.B.

Spec0A = SpecA.

3. Shown some examples where the unions
⋃

k∈Z are finite,
exhibiting the inclusions and the τ1-method convergence.

4. Sketched extension to A band-dominated, and how τ1-method
can be adapted to need only finitely many operations while
maintaining inclusion and convergence properties.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Summary and conclusion

1. For tridiagonal A we have derived the τ , π, and τ1 inclusion
set families for SpecεA, for ε ≥ 0, i.e., for n ∈ N,

τ method: SpecεA ⊂
⋃

k∈Z Specε+εnAn,k

π method: SpecεA ⊂
⋃

k∈Z Specε+ε′n
Aper
n,k

τ1 method: SpecεA ⊂ Γnε+ε′′n
(A) =

⋃
k∈Z γ

n,k
ε+ε′′n

(A),

with explicit and optimsed formulae for εn, ε
′
n, ε

′′
n. N.B. γ

n,k
ε+ε′′n

(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown Γnε+ε′′n
(A) → SpecεA as n → ∞, for ε ≥ 0. N.B.

Spec0A = SpecA.

3. Shown some examples where the unions
⋃

k∈Z are finite,
exhibiting the inclusions and the τ1-method convergence.

4. Sketched extension to A band-dominated, and how τ1-method
can be adapted to need only finitely many operations while
maintaining inclusion and convergence properties.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Summary and conclusion

1. For tridiagonal A we have derived the τ , π, and τ1 inclusion
set families for SpecεA, for ε ≥ 0, i.e., for n ∈ N,

τ method: SpecεA ⊂
⋃

k∈Z Specε+εnAn,k

π method: SpecεA ⊂
⋃

k∈Z Specε+ε′n
Aper
n,k

τ1 method: SpecεA ⊂ Γnε+ε′′n
(A) =

⋃
k∈Z γ

n,k
ε+ε′′n

(A),

with explicit and optimsed formulae for εn, ε
′
n, ε

′′
n. N.B. γ

n,k
ε+ε′′n

(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown Γnε+ε′′n
(A) → SpecεA as n → ∞, for ε ≥ 0. N.B.

Spec0A = SpecA.

3. Shown some examples where the unions
⋃

k∈Z are finite,
exhibiting the inclusions and the τ1-method convergence.

4. Sketched extension to A band-dominated, and how τ1-method
can be adapted to need only finitely many operations while
maintaining inclusion and convergence properties.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Summary and conclusion

1. For tridiagonal A we have derived the τ , π, and τ1 inclusion
set families for SpecεA, for ε ≥ 0, i.e., for n ∈ N,

τ method: SpecεA ⊂
⋃

k∈Z Specε+εnAn,k

π method: SpecεA ⊂
⋃

k∈Z Specε+ε′n
Aper
n,k

τ1 method: SpecεA ⊂ Γnε+ε′′n
(A) =

⋃
k∈Z γ

n,k
ε+ε′′n

(A),

with explicit and optimsed formulae for εn, ε
′
n, ε

′′
n. N.B. γ

n,k
ε+ε′′n

(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown Γnε+ε′′n
(A) → SpecεA as n → ∞, for ε ≥ 0. N.B.

Spec0A = SpecA.

3. Shown some examples where the unions
⋃

k∈Z are finite,
exhibiting the inclusions and the τ1-method convergence.

4. Sketched extension to A band-dominated, and how τ1-method
can be adapted to need only finitely many operations while
maintaining inclusion and convergence properties.

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Full details ... https://arxiv.org/abs/2401.03984
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