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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.
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What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
e (iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.

Novelty? We know how to construct U, satisfying (iii) with

U, — Spec,A, the e-pseudospectrum, for band-dominated A (see
Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel
2015, 2020). But not known how to achieve (ii) and (iii)

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



What is this talk about?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (i) U, — Spec A as n — oo (Hausdorff convergence);
"]

(iii) each U, can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with
respect to some orthonormal sequence, is banded or
band-dominated.

Novelty? We know how to construct U, satisfying (iii) with

U, — Spec,A, the e-pseudospectrum, for band-dominated A (see
Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel
2015, 2020). But not known how to achieve (ii) and (iii), and
certainly not (i)-(iii).
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

x| = /(x. ). e
E=0:=02), (xy)=) x5 IxP=) I

JEZL JEL

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

X[ = V/(x, %), e
E=0:=02), (xy)=) x5 IxP=) I

JEZL JEL

If E,Y are Hilbert spaces, A is a bounded linear operator from
E to Y, in symbols A€ L(E,Y), if

A(Ax) = AAx, A(x+y)=Ax+ Ay, VreC, x,y € E,
and, for some C > 0,

|Ax|| < Cl|x|l, Vxe€E.
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

X[ = V/(x, %), e
E=0:=02), (xy)=) x5 IxP=) I

JEZL JEL

If E,Y are Hilbert spaces, A is a bounded linear operator from
E to Y, in symbols A€ L(E,Y), if

A(Ax) = AAx, A(x+y)=Ax+ Ay, VreC, x,y € E,
and, for some C > 0,
[Ax|| < Cl[x|, Vvxe€E.

For A€ L(E, Y) the norm and lower norm of A are

| Ax||
xeevior x|

[|AX]|

HA” = = In .
xeE\{0} [|x]|

and v(A
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

Ixll = /(). e
E=0=0(Z), (xy)=>_x7 [xIP=>Ix

JEZ =
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

Ixll = /(). e
E=0=0(Z), (xy)=>_x7 [xIP=>Ix

JEZ =

If Ae L(E,Y), the adjoint of A, denoted A*, is the unique
A* € L(Y, E) satisfying

(Ax,y) =(x,A%y), x€E, yeY.
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Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x,y) and norm

Ixll = /(). e
E=0=0(Z), (xy)=>_x7 [xIP=>Ix

JEZ =

If Ae L(E,Y), the adjoint of A, denoted A*, is the unique
A* € L(Y, E) satisfying

(Ax,y) = (x,A"y), x€E,yeY.
We call A€ L(E) := L(E,E)

o self-adjoint if A* = A
e normal if AA* = A*A
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~1 € L(E) such that AA~ = A"1A=|.
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~! € L(E) such that AA™! = A=!A= /. N.B.

Ais not invertible < u(A) ;= min(v(A),v(A%)) =0,
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~! € L(E) such that AA™! = A=!A= /. N.B.

Ais not invertible < p(A) := min(r(A),v(A%)) =0,
and, if A is invertible, then

o A* is invertible and ||A7|| = [|(A")7L|
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~! € L(E) such that AA™! = A=!A= /. N.B.

Ais not invertible < p(A) := min(r(A),v(A%)) =0,
and, if A is invertible, then

o A* is invertible and ||A7|| = [|(A")7L|
o y(A)=1/|A7Y
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~! € L(E) such that AA™! = A=!A= /. N.B.

Ais not invertible < p(A) := min(r(A),v(A%)) =0,
and, if A is invertible, then

o A*is invertible and ||A7Y|| = ||(A*) Y|
o v(A)=1/[A7Y|
o y(A) = 1/|A7H| = 1/||(A") ] = v(A) = u(A).
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Bounded linear operators between Hilbert spaces

A€ L(E) := L(E, E) is said to be invertible if is bijective, in which
case there exists A~! € L(E) such that AA™! = A=!A= /. N.B.

Ais not invertible < p(A) := min(r(A),v(A%)) =0,
and, if A is invertible, then

o A*is invertible and ||A7Y|| = ||(A*) Y|
o v(A)=1/[A7Y|
o y(A) = 1/|A7H| = 1/||(A") ] = v(A) = u(A).

With the conventions that ||A~}|| := oo if A is not invertible and
1/00: =0,

w(A) =1/||A7Y], forall Ac L(Y).
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is
Spec A :={X € C: A=\l is not invertible} = {\ € C : u(A—-X\Il) = 0}.

N.B. this is just the set of eigenvalues if E is finite dimensional.
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is

Spec A :={X € C: A=\l is not invertible} = {\ € C : u(A—-X\Il) = 0}.

For A€ L(E) and € > 0 the (closed) e-pseudospectrum of A is

Spec,A = {AeC:1/|[(A-A)7Y <e}={NeC:uA-X)<e}
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Spectrum and Pseudospectrum

For A € L(E) the spectrum of A is

Spec A :={X € C: A=\l is not invertible} = {\ € C : u(A—-X\Il) = 0}.

For A€ L(E) and € > 0 the (closed) e-pseudospectrum of A is

Spec,A = {AeC:1/|[(A-A)7Y <e}={NeC:uA-X)<e}
O Spec A+ <D, with equality if A is normal,

where D = {z e C: |z| < 1}.
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Spectrum and Pseudospectrum

For A€ L(E) and £ > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/|(A-A)"Y <ey={AeC:u(A-A)<e}
O Spec A+ <D, with equality if A is normal,

where D ={z e C:|z| < 1}.

LLOYD N. TREFETHEN Cambridge sudies n advinced mathermases 106
MARK EMBREE

Linear Operators
and their Spectra

E. BRIAN DAVIES

More on pseudospectra: =
Trefethen & Embree 2005, BAIAUNIGH I ¥
Davies 2007

The Behavior of Nonnormal

Matrices and Operators
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 1.
. e = 0.125
1 ®
00 O o5
A=102 0 . ® ®
0 0 141 s
2
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 1.
e=0.25
00 O O; .
A=102 0 .
0 0 1+i 05 . .
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 1.

>

I
o oo
o N o
—
4+ oo
—
S <
& o

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Spectrum and Pseudospectrum

For A € L(E) and € > 0 the (closed) e-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 1.
e=1
00 O o5
A=]10 2 0 .
0 0 141 s
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Spectrum and Pseudospectrum

For A € L(E) and € > 0 the (closed) e-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D ={z e C:|z| < 1}.

Example 2.
e=1
25
2
1.5
2 4 _2 1
Ao | i 3 1P e
3 3 "6 110 0
0 0 1+i o
-1
-1.5
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 2.
e=10.>5
25
2
1.5
0.5
a=| 3§ b+d o
0 0 1+4i 05
-1
-1.5

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 2.
e=0.25

>
Il
|
WlAWIN
O WloW|
|
o=
+ +
— ._\’_‘
o
o
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Spectrum and Pseudospectrum

For A€ L(E) and € > 0 the (closed) c-pseudospectrum of A is

Spec,A = {AeC:1/[(A=A)7Y <e}={NeC:uA-A)<e}
D  Spec A+ ¢eD, with equality if A is normal,

where D = {z € C: |z] < 1}.

Example 2.
e=0.125
25
2
1.5
2 04 _2 1 ¢
i3 1 o
A=1-3 3 5t 0 ) ®
0 141 05
-1
-15
2 1 0 1 2 3
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Hausdorff convergence of sets

Let

o CB := set of non-empty bounded subsets of C
e CC := set of non-empty compact subsets of C
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Hausdorff convergence of sets

Let

o CB := set of non-empty bounded subsets of C
e CC := set of non-empty compact subsets of C

For S, T € CB let
d(S,T):=inf{e>0:SC T+ecDand T CS+¢eD}.
N.B. d(-,-) is the Hausdorff metric on CC.
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Hausdorff convergence of sets

Let

o CB := set of non-empty bounded subsets of C
e CC := set of non-empty compact subsets of C

For S, T € CB let
d(S,T):=inf{e>0:SC T+ecDand T CS+¢eD}.

N.B. d(,-) is the Hausdorff metric on C. For (S,) C CB and
S € CB write S, — S if d(S,,S) — 0 as n — oo.
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Hausdorff convergence of sets

Let

o CB := set of non-empty bounded subsets of C
e CC := set of non-empty compact subsets of C

For S, T € CB let
d(S,T):=inf{e>0:SC T+ecDand T CS+¢eD}.

N.B. d(,-) is the Hausdorff metric on C. For (S,) C CB and
S € CB write S, — S if d(S,,S) — 0 as n — oo.

Lemma. If (S,) CCC and S$; D S, O ..., then
Sn = Soo = [pen Sn as n — oo.
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Hausdorff convergence of sets

Let

o CB := set of non-empty bounded subsets of C
e CC := set of non-empty compact subsets of C

For S, T € CB let
d(S,T):=inf{e>0:SC T+ecDand T CS+¢eD}.

N.B. d(,-) is the Hausdorff metric on C. For (S,) C CB and
S € CB write S, — S if d(S,,S) — 0 as n — oo.

Lemma. If (S,) CCC and S$; D S, O ..., then
Sn = Soo = [pen Sn as n — oo.

Corollary. If 1 > e > ... >0, in which case ¢, > ¢ >0 as
n — oo, then

Spec,., A — Spec_A N.B. SpecyA := Spec A.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for a separable Hilbert
space E and A € L(E). Then the matrix representation of A is
[A] = [ajlijez., where

ajj = (Aej, e,-), /,j €7,
and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢?) is defined by

(Ax); =S apg, i€l

=
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for a separable Hilbert
space E and A € L(E). Then the matrix representation of A is
[A] = [ajj]i jez, where

ajj = (Aej, e,-), /,j €7,
and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢?) is defined by

([Alx)i =Y ax, i€

JEZ

The above makes clear we can assume E = (2 = (2(Z), in which
case we will abbreviate [A] as A.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for a separable Hilbert
space E and A € L(E). Then the matrix representation of A is
[A] = [ajj]i jez, where

ajj = (Aej, e,-), /,j (S Z,
and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢?) is defined by

([Alx)i =Y ax, i€

JEZ

The above makes clear we can assume E = (2 = (2(Z), in which

case we will abbreviate [A] as A.

We will say that [A] is banded with bandwidth
w € No :=NuU {0} if ajj =0 for |i —j| > w.
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Matrix representation of A

Suppose (¢&j)jez is an orthonormal basis for a separable Hilbert
space E and A € L(E). Then the matrix representation of A is
[A] = [ajj]i jez, where

ajj = (Aej, e,-), /,j (S Z,
and Spec A = Spec [A], Spec,A = Spec,[A], € > 0, where
[A] € L(¢?) is defined by

([Alx)i =Y ax, i€

JEZ

The above makes clear we can assume E = (2 = (2(Z), in which

case we will abbreviate [A] as A.

We will say that [A] is banded with bandwidth
w € No :=NuU {0} if ajj =0 for |i —j| > w.

We will say that [A] is band-dominated if there exists a sequence
(An) C L(E) such that each [A,] is banded and ||A — A,|| — 0 as
n— oo.
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The tridiagonal case

Let's consider first bi-infinite matrices of the form

B2 Y-1
a_x B-1 Y
A = a1 Bo m )
ag P17
a1 B

where a = (), 8= (i) and v = (7;) are bounded sequences of
complex numbers.

Simon Chandler-Wilde
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Inclusion sets for Spec_A, € > 0.

B2 v-1
a_r B-1
A= a1 Bo m
ag P17
a1 B

Compute inclusion sets for spectrum and pseudospectra of
A€ L(0?) = L(£*(7)).
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )

Spec A C | J (akk + ([lalloo + [[7]l0c)D).
keZ
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Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Ny

row k

For every row k, consider the Gershgorin disc with

center at ay x and radius |ax k—1| + |ak k+1] < [|efloc + |V]loo )

Spec A C | J (akk + ([lalloo + [[7]l0c)D).
keZ
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé

N\

k+1

k+n
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

k+1
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Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A:

N

Jé

k+1

N
AN
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

I(A =N x| < elix]l
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

I(A =N x| < elix]l

k+1 k+1

a

k
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < el

Claim: JkcZ:
[(Ank — M) Xkl
< (e +en) [[Xnkll
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < eix]]

Claim: JkeZ:
||(An,k - )‘/n) Xn,kH
< (e+en) [[xnkll
<= Z H(An,k - )‘/n)Xn,kH2
<(e+en)® D lxnkll?
k
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

N

k+1

N

k

m\

k+1

Simon Chandler-Wilde

I(A=AD x| < el

Fact: Jkec Z:
H(An,k — Alp) Xn,k”
< (e +¢n) [[Xnkll
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

N

a p-2y,

(A=A x|l < el

X Fact: dkecZ:
H(An,k - )‘In)xn,kH

k+1 | k+1

\\\ En = 7(||a||oo+ 171lo0)
ken mn Vn
NN

<(e+en)
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7 method: finite principal submatrices

Let A € Spec.A and let x € £ be a corresponding pseudomode.

\\\ (A=A x| < e|x]]

a p-2,

x Fact: dkc Z:
1(Ank — M) Xn k]|
ket | [kt < (5 + En) ||Xn,k”

\\ en <
\ e 2sin 5T (lalke + )
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

G ) Fact: Jk € Z
\ 1(Ank — Mo) sk
< (e + 2n) okl

k+1 +1

N
\ . 2singn gyl o)

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

NN n IA= x| < <l
N\
afiy. ) Fact: Jkc Z:
[Ank = M) o]
< (e + 20) ol
k+1 | [k <
En S
\ 25in =" (oo + I1le)
\ 2(n+2) oo T Voo
NN
\k+n\ +n

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

G ) Fact: Jk € Z
\ 1(Ank — Mo) sk
< (e + 2n) okl

k+1 +1

N
\ . 2singn gyl o)

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

Let A € Spec.A and let x € /2 be a corresponding pseudomode.

\\\ (A= AN x| < ellx]|

“ “7\ ) Fact: 3keZ:
» . 1(Ank = M) Xn il
\ < (e + £n) [ Xnill
\ ep <
k+n | |k+n

\ 2sin m(“@“oo‘f‘ [1V]l00)

L = A€ Spec.,. Ank
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7 method: finite principal submatrices

So we get

Spec,A  C U Spec. . Apk, €20,

where

so e, = O(n!) as n — oo.
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7 method: finite principal submatrices

So we get

Spec,A  C U Spec. . Apk, €20,
keZ

where

- < 2sin <2(+2)) (lladlse + Il0):

so e, = O(n 1) as n — oco. Putting n =1 and £ = 0 we recover
Gershgorin:

Spec A C | J Spec., Avik = | (akk + ([alloo + [17]loc)D).
keZ keZ
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

Ny
N\
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

Ny
N\
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m method: periodised finite principal submatrices

If the finite submatrices A, x are “periodised” (cf. Colbrook 2020,
which uses single large periodised finite section)

N

N\

&\

very similar computations show that

Spec.,A C U Spec. . Ab, €20, J
keZ

. H ™
with el = 2sin <%> (lletlfoo + l1¥llo0)-

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Here is another idea: 7, method

Instead of
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Here is another idea: 7, method

We do a “one-sided” truncation.

N
N

kin

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Here is another idea: 7, method

We do a “one-sided” truncation.

N
N\

k+1
kin
o \

l.e., we work with rectangular finite submatrices.

This is motivated by work of Davies 1998, Davies & Plum 2004,
and Hansen 2008, 2011, in which A is approximated by a single
large rectangular finite section.
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71 method: projection operator

ForneNand k€ Z, let Py : (> — (? denote the projection

N x(i), ie{k+1,. k+n},
(Prix)(i) = { 0 otherwise.

x TITTTTTITITITTIITTTITT
Rox TTTTTT IR [T [T]
k+1 k+n

Further, we put
End ‘= 1im P,,7k.
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71 method: truncations

7 method: 71 method:
NN\ NN,
a B
\k+1 \\
P,,7k(A—)\I)]En’k (A—)\I)IEM
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71 method: 7 method revisited

7 method:

A € Spec,A — For some k € Z :

A € Spec.,., (PnkAlE,,)
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71 method: 7 method revisited

7 method:

A € Spec,A — For some k € Z :

A € Spec.y. (PniAlE,,)
i.e. M(Pmk(A_)‘/)’En,k) < e+e¢q
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71 method: 7 method revisited

7 method:

A € Spec,A — For some k € Z :

A € Spec.y. (PniAlE,,)
ie. p(Pok(A=A)E,,) < e+en
ie. v(Pok(A=ANlE,,) <

v(Pai(A=X)|g,,) < c+en

g+ ¢&por
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71 method: 7 method revisited

7 method:

A € Spec,A — For some k € Z :

A € Spec.y. (PniAlE,,)
ie. p(Pok(A=A)E,,) < e+en
ie. v(Pok(A=ANlE,,) <

z/(P,,,k(A—)\I)*]En)k) < e+4¢,

5+5n or

71 idea is just drop the P, 's.
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.)
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez

Then (similarly to the 7 and m-method inclusions)

SpeCsA - rngE;,’ (A)a

n

with afzzs;n( )(||a||oo+||vuoo)

2n+2
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez

Then (similarly to the 7 and m-method inclusions)

SpeCsA - I_g+6 (A)a

!
n

n

with e’ = 2sin (2n+2

)(naHOO T o)

But now we also have that if A € vg’k(A), for some k € Z, then
V(A=) <v((A- )\/)’En,k) <ecorv((A=AN)")<e
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Let v¥(A) be the set of A € C for which
min (v ((A — )\/)’En,k) ,v((A- Al)*|En,k)) < e.
(Analogue of Spec A, k in the 7 method.) Put

24 = [J24A).
kez

Then (similarly to the 7 and m-method inclusions)

SpeCsA - I_g+6 (A)a

!
n

n

with e’ = 2sin (2n+2

)(naHOO T o)

But now we also have that if A € vg’k(A), for some k € Z, then
V(A= A) <v((A=A)lg,,) <corv((A—=N)") <e, so
(A —Al) <eand X\ € Spec_A, so

'’(A) C Spec.A.
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec,A and Spec,A C T, (A)

we get

rZ(A) C SpeccA C T[,.(A), >0
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec,A and Spec,A C T, (A)

we get

rZ(A) C SpeccA C T[,.(A), >0

4

SpeccA C T .(A) C Spec.sA €2>0.

\,
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec,A and Spec,A C T, (A)

we get

rZ(A) C SpeccA C T[,.(A), >0

4

SpeccA C T .(A) C Spec.sA €2>0.

\,

In particular, it follows, since Spec.,.»A — Spec,A as n — oo,
that

M (A) — SpecA
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T1-method: spectral bounds

From the lower and upper bound
I'’(A) C Spec,A and Spec,A C T, (A)

we get

rZ(A) C SpeccA C T[,.(A), >0

4

SpeccA C T .(A) C Spec.sA €2>0.

\,

In particular, it follows, since Spec.,.»A — Spec,A as n — oo,
that

M7 (A) — Spec,A, inparticular [7/(A) — SpecA.
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The shift operator

Let's compute the 7, 7, and 71 inclusion sets for Spec A, i.e.

7 method: Ukez Spec., An

7 method:  (Jy oy Spec., AP

n’ nk

71 method: Urkez TR (A),

£

where
FE(A) = (A€ Cmin (v (A= Mgy, v (A= AYle,)) < <4}

in the case that A is the shift operator, so that
a=(...,0,0,...), 6=(...,0,0,...),vy=(...,1,1,...),

SpecA=T={z:|z| =1}
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The shift operator

Let's compute the 7, 7, and 71 inclusion sets for Spec A, i.e.

T method: Ukez Spec., An

7 method:  (Jy oy Spec., AP

cn’ " nk
71 method: m
where
V(A = A € € min (v (A= Ale,,) v (A= M)'le, ) < <4},

in the case that A is the shift operator, so that

a=(...,0,0,...),8=(...,0,0,...),v=(...,1,1,...),
SpecA=T={z:|z| =1},

T
e < 2sin (50 ) (llallos + 7llee) = 25in (5

and the matrices A, i, k € Z, are all the same!
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The shift operator

n—= 4 n—= 8
7 method | .. n e f \ 0 o AN
i 1 | i 1o { Y
\ } L ; 4 iy I} i
\ / o) \ / o] \ / usf i /
h '/ X 4 A s NS

7 method

71 method

Computing Spectra of Band-Dominated Operators

on Chandler-Wilde




T, m, and 7, methods: second example

We now look at a tridiagonal matrix A with 3-periodic diagonals:
1st sub-diagonal o = (---,0,0,0,---)
main diagonal = (--- ,—%, 1,1,--+)
super-diagonal v = (---,1,2,1,--+)
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3-periodic example

n=16 n=32 n =64 n=128
7 method T
° QO
7 method
71 method
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Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.
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Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.

If we put
K
Un = rg—l—ef{(A) = /Ygé/ (A)
keZ
then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true?

Simon Chandler-Wilde Computing Spectra of Band-Dominated Operators



Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space
E, can we construct a sequence of compact sets U, C C with

e (i) Spec A C U, for each n;
e (ii) Uy, — Spec A as n — oo (Hausdorff convergence);
°

(iii) each U, can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation
of A, with respect to some orthonormal sequence, is banded or
band-dominated.

If we put
n k
Un = re-i—ej,’(A) = '7!11’ (A)
keZ

then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true? What are the missing ingredients?
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)
@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.
@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

o For 7 method approximate | J, .5 Spec. An « by finite union
Ukeksin Bnk where {By i : k € Kfin} is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

o For 7 method approximate | J, .5 Spec. An « by finite union
Ukeksin Bnk where {By i : k € Kfin} is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.

o Define Uy = (%% . (A) N1(Z+i2)) + 2D.
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The missing ingredients

it U= = Ui
kez
then Spec A C U, and U, — Spec A, but only for tridiagonal A, and U,
can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi et al. 2020)

@ Realize that the entries of the tridiagonal matrix can
themselves be square matrices - extends to A banded.

@ Perturbation argument extends to A band-dominated,
approximated by A, (banded), with 6, := ||A — A,|| — 0.

o For 7 method approximate | J, .5 Spec. An « by finite union
Ukeksin Bnk where {By i : k € Kfin} is an e-net (with
e = 1/n) for the compact set {A, x : k € Z}. Similarly for 7;
method.

o Define U, := (rgé,ff&n 3yn(An) N %(Z+iZ)) + 2D. Then
Spec A C U,, U, — Spec A, and U, can be computed with
finitely many operations.
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A final example [Feinberg/Zee 1999]

0 1
B by 0 1
A= bo 0 1 !

where b= (--- ,b_1, by, b1, -) € {£1}% is a pseudoergodic
sequence (Davies 2001)
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A final example [Feinberg/Zee 1999]

0 1
B by 0 1
A= bo 0 1 !

where b= (--- ,b_1, by, b1, -) € {£1}% is a pseudoergodic
sequence (Davies 2001); i.e., every finite pattern of +1's can be
found somewhere in the infinite sequence b.
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A final example [Feinberg/Zee 1999]

0 1

B by 0 1

A= bo 0 1 !
by 0

where b= (--- ,b_1, by, b1, -) € {£1}% is a pseudoergodic
sequence (Davies 2001); i.e., every finite pattern of +1's can be
found somewhere in the infinite sequence b.

This is an example where the 7 method is convergent:

SpecA C U, = U Spec., Apk — SpecA, as n— oo,
keZ

and where the union is finite: 2"~ 1 different matrices An k-
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Upper and lower bounds on Spec A: which is sharp?

(The square has corners at +£2 and +2i.)
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Upper and lower bounds on Spec A: which is sharp?

(The square has corners at +£2 and +2i.)

We have Spec A C U, and U, — Spec A so, if A &€ Spec A, then
A & U, for all sufficiently large n.
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Is A\ = 1.5+ 0.5i € Spec A?

We found a hole!

Center: 1.5 +0.5i
Radius: 0.01

A=15+05i € Uss D SpecA, so A& SpecA,

so Spec A is a strict subset of the square.
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Is A\ = 1.5+ 0.5i € Spec A?

We found a hole!

Center: 1.5 +0.5i
Radius: 0.01

A=15+05i € Uss D SpecA, so A& SpecA,

so Spec A is a strict subset of the square. This was a large
calculation: we needed to check whether 233 ~ 8.6 x 10% matrices
of size 34 x 34 were positive definite!
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

7 method: Spec,A C Ugez Spec., -, Ank

m method: Spec,A C Ugez Spece o/ Aﬁe,:

71 method:  Spec,A C T, _,(A) = UkeZ’yaJrgn( ),

with explicit and optimsed formulae for ¢, ), 2. N.B. 'yﬁf,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

7 method: Spec,A C Ugez Spec., -, Ank

m method: Spec,A C Ugez Spece o/ Aﬁe,:
71 method:  Spec,A C T2,/ (A) = Uyez ’Y€+¢,/(A)

with explicit and optimsed formulae for ¢, ), 2. N.B. 'yﬁf,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I’ Jr,,,(A) — Spec.A as n — oo, for e > 0. N.B.
SpecgA = Spec A.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

7 method: Spec,A C Ugez Spec., -, Ank

m method: Spec,A C Ugez Spece o/ Aﬁe,:

71 method:  Spec,A C T, _,(A) = UkeZ’yaJrgn( ),

with explicit and optimsed formulae for ¢, ), 2. N.B. 'yﬁf,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I’ Jr,,,(A) — Spec.A as n — oo, for e > 0. N.B.
SpecgA = Spec A.

3. Shown some examples where the unions | J, ., are finite,
exhibiting the inclusions and the 7-method convergence.
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Summary and conclusion

1. For tridiagonal A we have derived the 7, w, and 71 inclusion
set families for Spec_A, for e > 0, i.e., for n € N,

7 method: Spec,A C Ugez Spec., -, Ank

m method: Spec,A C Ugez Spece o/ Aﬁe,:

71 method:  Spec,A C T, _,(A) = UkeZ’yaJrgn( ),

with explicit and optimsed formulae for ¢, ), 2. N.B. 'yﬁf,,(A)
can be interpreted as a pseudospectrum for a rectangular matrix.

2. Shown I’ Jr,,,(A) — Spec.A as n — oo, for e > 0. N.B.
SpecgA = Spec A.

3. Shown some examples where the unions | J, ., are finite,
exhibiting the inclusions and the 7-method convergence.

4. Sketched extension to A band-dominated, and how 71-method
can be adapted to need only finitely many operations while
maintaining inclusion and convergence properties.
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Full details ... https://arxiv.org/abs/2401.03984
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ABSTRACT. In this paper we derive novel families of inclusion sets for the spectrum and pseudospectrum
of large cla
inclusion se

s of bounded linear operators, and establish convergence of particular sequences of these
s to the spectrum or pseudospectrum, as appropriate. Our results apply, in particular,
to bounded linear operators on a separable Hilbert space that, with respect to some orthonormal
basis, have a representation as a bi-infinite matrix that is banded or band-dominated. More generally,
our results apply in cases where the matrix entries themselves are bounded linear operators on some
Banach space. In the scalar matrix entry case we show that our methods, given the input information
we assume, lead to a sequence of approximations to the spectrum, each element of which can be
computed in finitely many arithmetic operations, so that, with our assumed inputs, the problem of
determining the spectrum of a band-dominated operator has solvability complexity index one, in the
sense of Ben-Artzi et al. (C. R. Acad. Sci. Paris, Ser. I 353 (2015), 931-936). As a concref
substantial application, we

» and
pply our methods to the determination of the spectra of non-self-adjoint
bi-infinite tridiagonal matrices that are pseudoergodic in the sense of Davies (Commun. Math. Phys.
216 (2001) 687-704).
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