
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 82, No. 4, pp. 1287--1311

ON THE HALF-SPACE MATCHING METHOD FOR REAL
WAVENUMBER\ast 

ANNE-SOPHIE BONNET-BEN DHIA\dagger , SIMON N. CHANDLER-WILDE\ddagger , AND

SONIA FLISS\dagger 

Abstract. The Half-Space Matching (HSM) method has recently been developed as a new
method for the solution of two-dimensional scattering problems with complex backgrounds, pro-
viding an alternative to Perfectly Matched Layers (PML) or other artificial boundary conditions.
Based on half-plane representations for the solution, the scattering problem is rewritten as a system
coupling (1) a standard finite element discretization localized around the scatterer and (2) integral
equations whose unknowns are traces of the solution on the boundaries of a finite number of overlap-
ping half-planes contained in the domain. While satisfactory numerical results have been obtained
for real wavenumbers, well-posedness and equivalence of this HSM formulation to the original scat-
tering problem have been established for complex wavenumbers only. In the present paper we show,
in the case of a homogeneous background, that the HSM formulation is equivalent to the original
scattering problem also for real wavenumbers, and so is well-posed, provided the traces satisfy ra-
diation conditions at infinity analogous to the standard Sommerfeld radiation condition. As a key
component of our argument we show that if the trace on the boundary of a half-plane satisfies our
new radiation condition, then the corresponding solution to the half-plane Dirichlet problem satisfies
the Sommerfeld radiation condition in a slightly smaller half-plane. We expect that this last result
will be of independent interest, in particular in studies of rough surface scattering.
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domain decomposition, rough surface scattering
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1. Introduction and the scattering problem.

1.1. The HSM method. Recently, a new method called the Half-Space Match-
ing (HSM) method has been developed as an (exact) artificial boundary condition for
two-dimensional time-harmonic scattering problems. This method is based on ex-
plicit or semiexplicit expressions for the outgoing solutions of radiation problems in
half-planes.

These expressions are established by using Fourier, generalized Fourier, or Floquet
transforms when the background is, respectively, homogeneous [6, 5] (and possibly
anisotropic [32, 3, 31]), stratified [27], or periodic [17, 18]. The domain exterior to
a bounded region enclosing the scatterers is covered by a finite number \scrN of half-
planes (at least three). The unknowns of the formulation are the traces \varphi 1, . . . , \varphi \scrN of
the solution on the boundaries of these half-planes and the restriction of the solution
to the bounded region. The system of equations which couples these unknowns is
derived by writing compatibility conditions between the different representations of
the solution. This coupled system includes second kind integral equations on the
infinite boundaries of the half-planes.
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1288 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

This new formulation is attractive and versatile as a method to truncate compu-
tational domains in problems of scattering by localized inhomogeneities in complex
backgrounds, including backgrounds that may be different at infinity in different di-
rections. It has been employed successfully in numerical implementations for various
applications, like optical waveguides (including cases with different stratifications in
different parts of the background domain) [27], or ultrasonic nondestructive testing
(with an anisotropic elastic background) [32, 31].

Up to now the theoretical and numerical analysis of the method has remained an
open question in the challenging, and practically relevant, nondissipative case when
waves radiate out to infinity. But a rather complete analysis has been carried out in
the simpler dissipative case, when the solution (and its traces) decay exponentially at
infinity. In that case the analysis can be done using an L2 framework for the traces:
the associated formulation has been shown to be of Fredholm type and well-posed
in a number of cases where the background is homogeneous (but not necessarily
isotropic) [6, 5], with the sesquilinear form of the weak formulation coercive plus
compact, enabling the numerical analysis of the method [5]. This analysis fails in
the nondissipative case, not least because of the slow decay at infinity of the solution
which results in non-L2 traces.

1.2. Our main results. In this paper we address well-posedness of the HSM
formulation in the nondissipative case for the scalar Helmholtz equation when the
background is homogeneous and isotropic, so that

(1)  - \Delta u - k2u = 0

outside some ball. (Here, assuming e - i\omega t time dependence with \omega > 0, k = \omega /c > 0,
and c > 0 are the constant wavenumber and wave speed, respectively, outside the
ball.) For such configurations, it is well known that to achieve a well-posed scattering
problem the scattered field u must satisfy the Sommerfeld radiation condition

(2)
\partial u(\bfitx )

\partial r
 - iku(\bfitx ) = o

\Bigl( 
r - 1/2

\Bigr) 
as r := | \bfitx | \rightarrow +\infty ,

uniformly with respect to \widehat \bfitx := \bfitx /r. Further, it is well known that if u satisfies (1)
outside some ball and (2), then

(3) u(\bfitx ) =
eikr

r1/2
\bigl( 
F (\widehat \bfitx ) +O(r - 1)

\bigr) 
as r \rightarrow \infty ,

uniformly in \widehat \bfitx := \bfitx /r, where F \in C\infty (S1), with S1 the unit circle, is the so-called
far-field pattern (e.g., [11, Lemma 2.5]).

The main results of this paper (Theorems 3.5 and 4.1) are to establish well-
posedness for the HSM formulations, stated in detail as (30) and (57) below, in the
case that k > 0 and the background is homogeneous and isotropic, so that the scat-
tered field u satisfies (2) and (1) outside some ball. Precisely, we show that the HSM
formulations are well-posed and equivalent to the original scattering problems pro-
vided we require that each half-plane trace \varphi j is locally in L2 and has the asymptotic
behavior predicted by (3), meaning that

(4) \varphi j(\bfitx ) = cj\pm 
eikr

r1/2
\bigl( 
1 +O(r - 1)

\bigr) 
for some constants cj\pm , as \bfitx tends to infinity in the \pm directions along the infinite
boundary of the half-plane. Note that condition (4) can be seen as a radiation con-
dition for the half-plane trace \varphi j , playing the role in the HSM formulation for k > 0

D
ow

nl
oa

de
d 

09
/2

6/
22

 to
 1

34
.2

25
.2

55
.3

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE HALF-SPACE MATCHING METHOD FOR REAL WAVENUMBER 1289

that the Sommerfeld radiation condition (2) plays in the formulation of the original
scattering problem.

Since (i) the HSM system of equations is derived from the unique solution to
the scattering problem and (ii) the half-plane traces of the solution to the scattering
problem do satisfy (4) (because (3) holds), we will see that existence of a solution
holds by construction. The challenge remaining in order to show well-posedness is
to establish uniqueness. There are two difficult aspects to this challenge. The first
is to show that if \varphi j satisfies (4) and u is the solution reconstructed from \varphi j in the
corresponding half-plane, so that u satisfies (1) in the half-plane and u = \varphi j on the
half-plane boundary, then u(\bfitx ) = O(r - 1/2) as r \rightarrow \infty and u satisfies an appropriate
version of the Sommerfeld radiation condition (2). These properties are established
in section 3.2. The second challenge, given that we assume ab initio only that the
traces \varphi j are locally L2, is to show that each trace \varphi j is locally in the trace space
H1/2, so that the reconstructed solution u is locally in H1 as required. But this
difficulty already arises in the corresponding formulation in the dissipative case, and
the proof in that case is sketched in [6, section 3.3]. As preparation for the more
difficult nondissipative case, we expand on that argument in section 2.2 below.

1.3. The significance of our results. The main significance of Theorems 3.5
and 4.1 is that these are the first well-posedness results in the important nondissipative
case for the HSM method, a method which, as discussed above, has already proved
effective for computing scattering by localized inhomogeneities in a range of complex
backgrounds. Our theorems, challenging as they are to prove, are for the simplest
case when the background is homogeneous and isotropic. However, we expect that
these results and formulations will be an important stepping stone to more complex
cases, and we discuss this further in concluding remarks to this paper.

Our main uniqueness result, Theorem 3.5, is also important because it is a crucial
ingredient in the proof of well-posedness in [4, section 5] of the so-called complex-scaled
HSM method, proposed recently in [4]. This new formulation is a version of the HSM
method in the nondissipative case that, in the spirit of complex-scaling in Perfectly
Matched Layers (PML) (e.g., [14]), achieves the L2 framework of the dissipative case
by analytically continuing the half-plane traces into the complex plane, so that the
original half-plane boundary is replaced by a path in the complex plane on which the
(analytically continued) trace is exponentially decreasing.

Additionally, we expect that the results that we establish (in Lemma 2.3 and sec-
tion 3.2) on properties of the half-plane solution operator, which takes the trace on the
boundary of a half-plane and recovers the half-plane solution, will be of independent
interest. Indeed, there is large interest in so-called rough surface scattering problems,
where the Helmholtz equation (or more complicated vector equations) are solved in a
nonlocally perturbed half-plane D with boundary or transmission conditions on the
rough surface \partial D (e.g., [13, 12, 1, 2, 24, 10, 28, 16, 33, 20]). In this context it is usual,
to ensure uniqueness, to impose the so-called upwards propagating radiation condition
(e.g., [12, 2, 24, 10, 16, 33]), which is precisely a requirement that, in some half-plane
above the rough surface, the solution can be represented as the action of this half-
plane solution operator on some L\infty data on the boundary of the half-plane. This
rough surface scattering application, in particular the use of the upwards propagating
radiation condition, has driven significant study of this half-plane solution operator
(e.g., [8, 9], [13, section 2], [2], [16, section 2.3]). The results in section 3.2 contribute
to this study, shedding light on the relationship between the upwards propagating
radiation condition and the Sommerfeld radiation condition, complementing previous
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1290 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

work, especially [13, Theorem 2.9] and [2, 20].

1.4. The scattering problem and the structure of this paper. Let us spell
out in more detail the two-dimensional scattering problem that we consider in this
paper. The propagation domain \Omega is \BbbR 2, or \BbbR 2 minus a set of bounded Lipschitz
obstacles so that \Omega is a Lipschitz domain. We seek u that satisfies an inhomogeneous
Helmholtz equation,

(5)  - \Delta u - k2 \rho u = f in \Omega .

Here \rho is a function in L\infty (\Omega ) such that \rho  - 1 is compactly supported, so that if \rho is real-
valued and bounded below by a positive constant, (5) models propagation in a domain
with a local perturbation in wave speed.1 The source term f \in L2(\Omega ) is also assumed
to be compactly supported, so that (1) holds outside some ball. We suppose that the
wavenumber is such that k > 0 in the nondissipative case, and such that \Re (k) > 0 and
\Im (k) > 0 in the dissipative case. In the case when \Omega \subsetneq \BbbR 2 we require also a standard
(e.g., Dirichlet or Neumann) boundary condition on \Gamma := \partial \Omega . As is standard we seek
a solution u \in H1(\Omega ) in the dissipative case and u \in H1

loc(\Omega ) := \{ v| \Omega ; v \in H1
loc(\BbbR 2)\} 

in the case k > 0. In the nondissipative case we also require that u satisfies the
Sommerfeld radiation condition (2).

To explain the HSM method, our uniqueness argument, and the role of the radi-
ation condition (4), we consider two specific instances of the problem (5). To get the
main ideas across and to prove the key uniqueness and well-posedness result, Theorem
3.5, we focus first on the case when \Omega = \BbbR 2 \setminus \scrO , for some convex polygon \scrO , with
\rho \equiv 1 and f \equiv 0, so that (1) holds in \Omega , imposing a Dirichlet boundary condition
u = g on \Gamma . In this case, where \Omega is the exterior of a convex polygon and (1) holds in
\Omega , the HSM formulation is a system of second kind integral equations, in which the
unknowns are the traces of u on the finite number of half-planes that abut the sides
of the polygon \scrO . In section 2 we recall the HSM formulation for this problem in the
dissipative case, in particular how uniqueness is proved. In section 3 we prove our
main Theorem 3.5, i.e., we prove well-posedness in the nondissipative case under the
additional radiation condition (4).

In section 4 we consider the more involved case where f is nonzero and/or \rho \not \equiv 1,
in which case the second kind integral equation formulation is coupled to a local vari-
ational formulation in a bounded region \Omega b containing \partial \Omega and the supports of f and
\rho  - 1. In this case we assume, to be specific, that the boundary condition on \partial \Omega is a
homogeneous Neumann condition. (The changes needed, to the formulation and well-
posedness argument, to address other boundary conditions, and/or inhomogeneities
in the boundary condition, indeed to include other types of compactly supported in-
homogeneities, are straightforward.) The main result in this case, the uniqueness and
well-posedness result Theorem 4.1, is proved by use of Theorem 3.5 and by adapting
the proof of [4, Proposition 6.1]. Section 5 provides a brief conclusion and gives an
indication of more complex configurations to which the same methods and arguments
are expected to apply.

2. The HSM method for complex wavenumber.

2.1. The HSM formulation. In this section, as preparation for studying the
HSM method for a real wavenumber, we first recall what is known about the method

1It is straightforward to incorporate more elaborate local behavior (e.g., local anisotropies, or
local inhomogeneities in density as well as wave speed), as long as the resulting problem remains
well-posed.
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THE HALF-SPACE MATCHING METHOD FOR REAL WAVENUMBER 1291

in the dissipative case. For this purpose, as discussed in section 1.4, we consider the
Dirichlet problem for complex wavenumber (\Im (k) > 0, \Re (k) > 0) in the exterior \Omega 
of a convex polygon \scrO . Thus, for given data g \in H1/2(\Gamma ), where \Gamma = \partial \Omega = \partial \scrO , we
consider the Dirichlet problem

(6)

\Biggl\{ 
 - \Delta u - k2 u = 0 in \Omega ,

u = g on \Gamma .

It is well known that problem (6) has a unique solution u \in H1(\Omega ).
If \scrO is a polygon with \scrN edges denoted \Gamma 1, . . . ,\Gamma \scrN , the domain \Omega is the union of

\scrN overlapping half-planes \Omega j , j = 1, . . . ,\scrN , that abut the \scrN edges of the polygon \scrO 
(see Figure 1). The angle between \Gamma j and \Gamma j+1 is denoted as \Theta j,j+1 or equivalently
\Theta j+1,j , where, here and in what follows, j \in \BbbZ /\scrN \BbbZ , where \BbbZ /\scrN \BbbZ is the ring of
integers modulo \scrN . This convenient notation means that j = 0 is equivalent to
j = \scrN and j =  - 1 to j = \scrN  - 1. Note finally that, because of the convexity, one has
0 < \Theta j,j+1 < \pi for all j \in \BbbZ /\scrN \BbbZ .

\scrO 

\Sigma 1

\Sigma 2

\Sigma 3

x11

x12

x21

x22

x31
x32

\Theta 1,2

\Theta 2,3

\Theta 3,1

\scrO 

\Sigma 1

\Sigma 2

\Sigma 3

\Sigma 4

x11

x12

x21
x22

x31
x32

x41
x42

\Theta 1,2\Theta 2,3

\Theta 3,4 \Theta 4,1

Fig. 1. Examples of polygons \scrO for \scrN = 3 and 4 and associated notation.

It is convenient to make use of local coordinate systems \bfitx j = (xj1, x
j
2) in each half-

space \Omega j . The origin of all of them is the centroid O of the polygon \scrO . We define the
Cartesian coordinate system (O, x11, x

1
2) such that the axis Ox11 is orthogonal to \Gamma 

1 and
directed into the exterior of the polygon, while the axis Ox12 is \pi /2 counterclockwise
to Ox11. The other local coordinate systems (O, xj1, x

j
2) are defined recursively (see

Figure 1) as follows:

(7) \forall j \in \BbbZ /\scrN \BbbZ ,
xj+1
1 := cos(\Theta j,j+1)xj1 + sin(\Theta j,j+1)xj2,

xj+1
2 :=  - sin(\Theta j,j+1)xj1 + cos(\Theta j,j+1)xj2.

Defining aj , for j = 1, . . . ,\scrN , to be the distance of the centroid of the polygon to the
edge \Gamma j , each half-plane \Omega j is defined in the local coordinate system (O, xj1, x

j
2) as

\Omega j := \{ xj1 > aj\} \times \{ xj2 \in \BbbR \} ,

and its boundary, denoted by \Sigma j , is given by

\Sigma j := \{ xj1 = aj\} \times \{ xj2 \in \BbbR \} .
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1292 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

As explained in the introduction, the formulation uses the representation of the solu-
tion in each half-plane \Omega j in terms of its trace on \Sigma j . More precisely, let us denote

(8) \varphi j := u
\bigm| \bigm| 
\Sigma j for j = 1, . . . ,\scrN ,

so that

(9) u
\bigm| \bigm| 
\Omega j = U j(\varphi j) for j = 1, . . . ,\scrN ,

where, for j = 1, . . . ,\scrN and \psi \in H1/2(\Sigma j), U j(\psi ) \in H1(\Omega j) is the unique solution of

(10)
 - \Delta U j  - k2 U j = 0 in \Omega j ,

U j = \psi on \Sigma j ,

this solution being well defined since \Im (k) \not = 0. We can express U j(\psi ) explicitly in
terms of its trace \psi using a Green's function representation:

(11) U j(\psi )(\bfitx j) =

\int 
\Sigma j

\partial Gj(\bfitx j ,\bfity j)

\partial n(\bfity j)
\psi (\bfity j) ds(\bfity j), \bfitx j \in \Omega j ,

where Gj(\bfitx j ,\bfity j) is the Dirichlet Green's function for \Omega j and n(\bfity j) is the unit normal

to \Sigma j that points into \Omega j . Explicitly, Gj(\bfitx j ,\bfity j) = \Phi (\bfitx j ,\bfity j)  - \Phi (\widetilde \bfitx j ,\bfity j), with \widetilde \bfitx j

the image of \bfitx j in \Sigma j , where \Phi (\bfitx ,\bfity ) is the standard fundamental solution of the
Helmholtz equation defined by

(12) \Phi (\bfitx ,\bfity ) :=
i

4
H

(1)
0 (k| \bfitx  - \bfity | ), \bfitx , \bfity \in \BbbR 2, \bfitx \not = \bfity ,

where H
(1)
n is the Hankel function of the first kind of order n. This leads, finally, to

(13) U j(\psi )(\bfitx j) = 2

\int 
\Sigma j

\partial \Phi (\bfitx j ,\bfity j)

\partial yj1
\psi (\bfity j) ds(\bfity j), \bfitx j \in \Omega j ,

which can be rewritten as

(14) U j(\psi )(\bfitx j) =

\int 
\BbbR 
\scrH (k;xj1  - aj , xj2  - yj2)\psi (a

j , yj2) dy
j
2, \bfitx j = (xj1, x

j
2) \in \Omega j ,

where we have set

(15) \scrH (k;x1, x2) :=
ikx1
2

H
(1)
1 (k| \bfitx | )
| \bfitx | 

.

To derive a system of equations whose unknowns are the traces \varphi j of the solution,
it suffices to observe that the half-plane representations must coincide where they
coexist.

For instance, in the overlapping zone \Omega 1 \cap \Omega 2 (see Figure 2) we have

(16) u = U1(\varphi 1) = U2(\varphi 2) in \Omega 1 \cap \Omega 2,

and in particular,

(17) \varphi 2 = U1(\varphi 1) on \Omega 1 \cap \Sigma 2,
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\scrO 

\Sigma 1

\Sigma 2

\Theta 1,2

u
\bigm| \bigm| 
\Omega 1 = U1(\varphi 1)

u
\bigm| \bigm| 
\Omega 2 = U2(\varphi 2)

\Omega 1 \cap \Omega 2

\Omega 2 \cap \Sigma 1

\Omega 1 \cap \Sigma 2

\varphi 2 = U1(\varphi 1)

\varphi 1 = U2(\varphi 2)

\Omega 1 \cap \Omega 2

Fig. 2. Compatibility condition in \Omega 1 \cap \Omega 2.

which is a relation linking \varphi 1 and \varphi 2. By introducing the operator D1,2 : L2(\Sigma 1) \rightarrow 
L2(\Omega 1 \cap \Sigma 2) defined by

D1,2 \psi := U1(\psi )
\bigm| \bigm| 
\Omega 1\cap \Sigma 2 , \psi \in L2(\Sigma 1),

the relation (17) can be rewritten as

(18) \varphi 2 = D1,2\varphi 
1 on \Omega 1 \cap \Sigma 2.

From (16), we deduce similarly

\varphi 1 = U2(\varphi 2) on \Omega 2 \cap \Sigma 1,

another relation linking \varphi 1 and \varphi 2. Repeating this with 1 and 2 replaced, respectively,
by j and j + 1, we get 2\scrN equations linking the \scrN traces. Let us introduce, for all
j \in \BbbZ /\scrN \BbbZ , the operators Dj,j\pm 1 : H1/2(\Sigma j) \rightarrow H1/2(\Omega j \cap \Sigma j\pm 1) defined by

(19) Dj,j\pm 1 \psi := U j(\psi )
\bigm| \bigm| 
\Omega j\cap \Sigma j\pm 1 , \psi \in H1/2(\Sigma j).

Then the compatibility relations between all the traces can be written as

(20) \forall j \in \BbbZ /\scrN \BbbZ , \varphi j = Dj - 1,j \varphi 
j - 1 on \Omega j - 1 \cap \Sigma j ,

\varphi j = Dj+1,j \varphi 
j+1 on \Omega j+1 \cap \Sigma j .

This system of equations has to be completed with the Dirichlet boundary condition,
rewritten as

(21) \varphi j = g| \Gamma j on \Gamma j , j = 1, . . . ,\scrN .

Note that for all j the operators Dj,j\pm 1 can be given explicitly by using the repre-
sentation (13) for U j . They are integral operators and more precisely double-layer
potential operators (in the sense, e.g., of [15, 7]).

One can easily check that (20)--(21) is equivalent to the original problem (6) and
so is well-posed. We recall here the proof of this result because its general idea will
be used in the results proved later in this paper.
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Theorem 2.1. In the case where \Re (k) > 0 and \Im (k) > 0, there exists, for each
g \in H1/2(\Gamma ), a unique solution (\varphi 1, . . . , \varphi \scrN ) \in H1/2(\Sigma 1)\times \cdot \cdot \cdot \times H1/2(\Sigma \scrN ) of (20)--
(21).

Existence was proven by construction of (20)--(21) from the solution u of (6),
with \varphi j := u| \Sigma j for j = 1, . . . ,\scrN . Uniqueness follows from the following proposition
since (6) is well-posed.

Proposition 2.2. Suppose \Re (k) > 0 and \Im (k) > 0, and let (\varphi 1, . . . , \varphi \scrN ) \in 
H1/2(\Sigma 1) \times \cdot \cdot \cdot \times H1/2(\Sigma \scrN ) be a solution to (20)--(21) (with g \in H1/2(\Gamma )). Then, for
all j \in \BbbZ /\scrN \BbbZ ,

(22) U j(\varphi j) = U j+1(\varphi j+1) in \Omega j \cap \Omega j+1,

and the function defined by u = U j(\varphi j) in \Omega j, j = 1, . . . ,\scrN , is the unique solution
u \in H1(\Omega ) of (6).

Proof. To prove (22), let us set v = U j(\varphi j)  - U j+1(\varphi j+1). By definition of the
half-plane representations U j and U j+1, it is clear that v \in H1(\Omega j \cap \Omega j+1) and that v
satisfies \Delta v+k2v = 0 in \Omega j\cap \Omega j+1. Moreover, the compatibility conditions (20) imply
that v vanishes on the boundary of \Omega j \cap \Omega j+1. Using that \Im (k) \not = 0, one deduces that
v = 0 by uniqueness of the solution of the Dirichlet problem in \Omega j \cap \Omega j+1. The rest
of the proof is straightforward.

It has been shown in previous papers [6, 5] that, for both mathematical analysis
and computation, it is more convenient to consider the HSM formulation in an L2

framework, which means that \varphi j is sought in L2(\Sigma j) instead of H1/2(\Sigma j) so that the
formulation is

(23)

Find (\varphi 1, . . . , \varphi \scrN ) \in L2(\Sigma 1)\times \cdot \cdot \cdot \times L2(\Sigma \scrN ) such that for j \in \BbbZ /\scrN \BbbZ ,

\varphi j = Dj - 1,j \varphi 
j - 1 on \Sigma j \cap \Omega j - 1,

\varphi j = g| \Gamma j on \Gamma j ,
\varphi j = Dj+1,j \varphi 

j+1 on \Sigma j \cap \Omega j+1.

Let us emphasize that this makes sense since Dj,j\pm 1\psi is well defined by (19) and (14)
for all \psi \in L2(\Sigma j) and the operators Dj,j\pm 1 are, in fact, continuous from L2(\Sigma j) to
L2(\Omega j \cap \Sigma j\pm 1) [6]. It has been shown in [6] that problem (23) is of Fredholm type.
More precisely, by rewriting it in an operator form, it is proven that the associated
operator is Fredholm of index 0. This means that existence of a solution is equivalent
to its uniqueness. We refer the reader to [6] for more detail. Here, we focus on the
question of uniqueness. We need to prove that, for a solution of (23), g = 0 implies
\varphi j = 0 for all j = 1, . . . ,\scrN . The sketch of the proof of this uniqueness result, which
is much less straightforward than in the H1/2 framework, has been given in [6]. We
give a detailed presentation of this proof in the following paragraph, in a form that
will be directly used for our main result, which is uniqueness for the case of a real
wavenumber k.

2.2. The uniqueness result in an \bfitL \bftwo framework. The difficulty in proving
a uniqueness result for problem (23) comes from the fact that the half-plane solu-
tions U j(\varphi j) (with U j(\varphi j) defined now by (11), (13), or (14)) are, in general, not in
H1(\Omega j), assuming only that \varphi j \in L2(\Sigma j). But we will take advantage of the following
lemma which summarizes key properties of the half-plane solutions with L2 and/or
L\infty Dirichlet boundary data.
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Lemma 2.3. Suppose that \Im (k) \geq 0,\Re (k) > 0. Let \phi \in L2(\BbbR ) + L\infty (\BbbR ), and
define u(\bfitx ), for \bfitx = (x1, x2) \in \BbbR 2

+ := (0,\infty )\times \BbbR , by

(24) u(\bfitx ) :=

\int 
\BbbR 
\scrH (k;x1, x2  - t)\phi (t) dt,

where \scrH is defined by (15). Then the integral is well defined as a Lebesgue integral
for \bfitx \in \BbbR 2

+, u \in C\infty (\BbbR 2
+), and \Delta u + k2 u = 0 in \BbbR 2

+. Moreover, if \phi is continuous
on an open interval I \subset \BbbR , then u \in C(\BbbR 2

+ \cup \gamma ), where \gamma := \{ (0, t); t \in I\} , and
u(0, t) = \phi (t), t \in I. Finally, if \phi \in L2(\BbbR ) and \Im (k) > 0, then u \in L2(\BbbR 2

+) and there
exists a constant C\infty > 0 independent of \phi such that

(25) \| u\| L2(\BbbR 2
+) \leq C\infty \| \phi \| L2(\BbbR ),

whereas if \Im (k) = 0, then for any L > 0, u \in L2(\omega L), where \omega L := \{ \bfitx \in \BbbR 2
+; x1 < L\} ,

and there exists a constant CL > 0 independent of \phi such that

(26) \| u\| L2(\omega L) \leq CL\| \phi \| L2(\BbbR ).

Proof. From asymptotics of the Hankel function H
(1)
1 for large and small argu-

ments, it follows that, for every k with \Im (k) \geq 0, \Re (k) > 0, there exists a C > 0 such
that

(27) | \scrH (k;x1, x2)| \leq C
x1
| \bfitx | 2

(1 + | \bfitx | 1/2)e - \Im (k)| \bfitx | .

It follows that, for \bfitx \in \BbbR 2
+, the integral in (24) is well defined as a Lebesgue integral

for any \phi \in L2(\BbbR ) + L\infty (\BbbR ). To see that u \in C\infty (\BbbR 2
+) and satisfies the Helmholtz

equation, it suffices to argue as in [9, Theorem 3.2]. If \phi is continuous on an open
interval I \subset \BbbR , to see that u \in C(\BbbR 2

+ \cup \gamma ) and that u(0, t) = \phi (t) for t \in I, it

is enough to show that u \in C(\BbbR 2
+ \cup \~\gamma ) and that u(0, t) = \phi (t) for t \in \~I for every

compact \~\gamma := \{ (0, t); t \in \~I\} \subset \gamma . So suppose \~I \subset I is compact and write \phi = \phi 1 +\phi 2
where the support of \phi 2 does not intersect \~I and \phi 1 is bounded and continuous.
Correspondingly, we can split u as u = u1 + u2, where uj is defined by (24) with \phi 
replaced by \phi j . It follows from the definition that u2 \in C(\BbbR 2

+ \cup \~\gamma ) with u2(0, t) = 0

for t \in \~I, while u1 \in C(\BbbR 2
+) and u1(0, t) = \phi 1(t) for t \in \~I by [8, Theorem 3.1], so that

u(0, t) = \phi (t) for t \in \~I. Concerning the L2 estimates (25) and (26) let us recall that
for \psi 1 \in L1(\BbbR ) and \psi 2 \in L2(\BbbR ) the convolution product \psi 1 \ast \psi 2 belongs to L2(\BbbR ),
with the estimate (Young's convolution inequality)

\| \psi 1 \ast \psi 2\| L2(\BbbR ) \leq \| \psi 1\| L1(\BbbR )\| \psi 2\| L2(\BbbR ).

For a given x1 > 0, this implies that\int 
\BbbR 
| u(x1, x2)| 2dx2 \leq 

\biggl[ \int 
\BbbR 
| \scrH (k;x1, x2)| dx2

\biggr] 2
\| \phi \| 2L2(\BbbR ).

From (27), we deduce that, for some C \prime > 0,\int 
\BbbR 
| \scrH (k;x1, x2)| dx2 \leq C \prime (1 + x1)

1/2e - \Im (k)x1 , x1 > 0.

One easily obtains the estimates (25) for \Im (k) > 0 and (26) for \Im (k) = 0.
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Now to prove the uniqueness result, we need some results concerning L2 solutions
of the homogeneous Dirichlet problem in a domain with corners. We gather in the
next lemma the results that we need which are proved in [19, Chapter 2] (see Theorem
2.3.3 and the proof of Theorem 2.3.7).

Lemma 2.4. Let Q be a bounded polygonal domain with N vertices denoted by
S1, . . . , SN . Let us suppose that Q hasM < N re-entrant vertices that can be supposed
to be S1, . . . , SM without loss of generality. Let P := \{ S1, . . . , SN\} and suppose that
w \in C( \=Q \setminus P ) \cap C2(Q) satisfies \Delta w = 0 in Q and w = 0 on \partial Q \setminus P . Then, if
w \in L2(Q), there exist \~w \in H1(Q) and M complex constants c1, . . . , cM such that

w(\bfitx ) = \~w(\bfitx ) +

M\sum 
m=1

cm r - \pi /\alpha m
m sin(\pi \theta m/\alpha m), \bfitx \in Q,

where, for each m, \alpha m is the interior angle of Q at Sm and (rm, \theta m) are the polar
coordinates of \bfitx whose origin is Sm such that \theta m is the angle from one of the sides
of \partial Q containing Sm. In particular, if M = 0 (Q is convex), then w = 0.

The previous lemma will be used to prove that particular L2 solutions of the
Helmholtz equations in unbounded domains with Dirichlet boundary conditions are
in fact H1 in every bounded subset of the domain. To prove that they are H1 in the
whole domain, we will resort to the following result, whose proof follows the arguments
of [30, Lemma 2.2].

Lemma 2.5. Let \Pi \subset \BbbR 2 be an unbounded open set such that \Pi R := \{ \bfitx \in \Pi ; | \bfitx | <
R+1\} is a Lipschitz domain for all sufficiently large R > 0, and v \in L2(\Pi ) a function
such that v| B \in H1(B) for all bounded open subsets B of \Pi . If v satisfies the Helmholtz
equation \Delta v + k2v = 0 in \Pi and its trace is zero on \partial \Pi , then v \in H1(\Pi ).

Proof. Let us define the truncation function \chi R(\bfitx ) := FR(| \bfitx | ), where FR \in 
C\infty (\BbbR +) is chosen such that 0 \leq FR \leq 1, FR = 1 on [0, R], FR = 0 on [R + 1,+\infty )
and there exists a constant c > 0 independent of R such that | F \prime 

R| \leq c
\surd 
FR (this can

be achieved by defining FR so that FR > 0 on (R,R + 1) and vanishes quadratically
at R+ 1). One has for all R > 0\int 

\Pi 

(\Delta v + k2v)v\chi R d\bfitx = 0.

Since v \in H1(\Pi R; \Delta ) :=
\bigl\{ 
u \in H1(\Pi R);\Delta u \in L2(\Pi R)

\bigr\} 
we can apply Green's first

identity in \Pi R. Using that v vanishes on \partial \Pi , this yields\int 
\Pi 

| \nabla v| 2\chi R d\bfitx \leq k2\| v\| 2L2(\Pi ) +

\bigm| \bigm| \bigm| \bigm| \int 
\Pi 

v\nabla v \cdot \nabla \chi R d\bfitx 

\bigm| \bigm| \bigm| \bigm| .
Since | \nabla \chi R| \leq c

\surd 
\chi R, applying the Cauchy--Schwarz inequality gives\int 

\Pi 

| \nabla v| 2\chi R d\bfitx \leq k2\| v\| 2L2(\Pi ) + c\| v\| L2(\Pi )

\sqrt{} \int 
\Pi 

| \nabla v| 2\chi R d\bfitx ,

from which we deduce the existence of a constant C > 0 independent of R such that\int 
\Pi 

| \nabla v| 2\chi R d\bfitx \leq C\| v\| 2L2(\Pi ).

This being true for all R, we can conclude that v \in H1(\Pi ).
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We are now able to prove the following well-posedness result.

Theorem 2.6. If \Re (k) > 0 and \Im (k) > 0, then there exists, for each g \in H1/2(\Gamma ),
a unique solution (\varphi 1, . . . , \varphi \scrN ) \in L2(\Sigma 1)\times \cdot \cdot \cdot \times L2(\Sigma \scrN ) of (23).

This is a direct consequence of the following proposition and Theorem 2.1.

Proposition 2.7. Suppose \Re (k) > 0 and \Im (k) > 0, and let (\varphi 1, . . . , \varphi \scrN ) \in 
L2(\Sigma 1) \times \cdot \cdot \cdot \times L2(\Sigma \scrN ) be a solution of (23) (with g \in H1/2(\Gamma )). Then \varphi j \in H1/2(\Sigma j),
j = 1, . . . ,\scrN .

Proof. The proof consists of two steps.
1. Prove the relations (22) as in Proposition 2.2 but note that here the functions

(\varphi 1, . . . , \varphi \scrN ) that solve (23) are a priori supposed to be only in L2.
2. By noting that the traces on \Sigma 1, . . . ,\Sigma \scrN of the unique solution of (6) form a

solution of (23) (and are obviously in H1/2), it suffices to prove that if g = 0,
\varphi j = 0 for j = 1, . . . ,\scrN . To prove this uniqueness result, we show that, in the
case that (\varphi 1, . . . , \varphi \scrN ) satisfies (23) with g = 0, the function defined (thanks
to step 1) by u = U j(\varphi j) in \Omega j (U j(\varphi j) defined by (13)) is in H1(\Omega ), with
zero trace. Therefore, it is equal to 0 everywhere as the unique solution of
(6) for g = 0. We finally deduce that each \varphi j , which we show is the trace of
u on \Sigma j , is zero.

Step 1. As in the proof of Proposition 2.2, we introduce v = U j(\varphi j) - U j+1(\varphi j+1),
where the \varphi j \in L2(\Sigma j) satisfy (23), in particular satisfy (20). A priori, we just know,
thanks to Lemma 2.3, that v \in L2(\Omega j \cap \Omega j+1) \cap C\infty (\Omega j \cap \Omega j+1) and that v satisfies
\Delta v + k2v = 0 in \Omega j \cap \Omega j+1. Note that it follows from (20) and Lemma 2.3 that the

\varphi j 's are, in fact, continuous on \Sigma j \setminus \Gamma j , so that, from Lemma 2.3, U j(\varphi j) \in C(\Omega j \setminus \Gamma j)

and U j(\varphi j) = \varphi j on \Sigma j \setminus \Gamma j . As a consequence, v is continuous in \Omega j \cap \Omega j+1, except
maybe at Sj , the intersection of \Sigma j and \Sigma j+1, and, thanks to (20), v vanishes on
\partial (\Omega j\cap \Omega j+1)\setminus \{ Sj\} . It follows by standard reflection and elliptic regularity arguments

that v \in C\infty \bigl( 
\Omega j \cap \Omega j+1 \setminus \{ Sj\} 

\bigr) 
.

To conclude that v = 0, we need only prove that v \in H1(\Omega j \cap \Omega j+1). First, we
show that v isH1 in all bounded subdomains of \Omega j\cap \Omega j+1. Let us introduce a bounded
convex polygon \scrO \prime such that \scrO \subset \scrO \prime (see Figure 3). Then Q := \scrO \prime \cap \Omega j \cap \Omega j+1 is
a convex polygon. Let us consider the following Dirichlet problem: find \~v \in H1(Q)
such that

 - \Delta \~v = k2v in Q,
\~v = v on \partial Q.

This problem has a unique solution as v \in L2(Q) and the restriction of v to \partial Q is in
H1/2(\partial Q)\cap C(\partial Q), since v \in C\infty (Q\setminus \{ Sj\} ) and if we set v = 0 at Sj , v| \partial Q vanishes in
a neighborhood of Sj . Further, by standard elliptic regularity arguments, \~v \in C2(Q)
and (see [25, Corollary 7.11.7]) \~v \in C( \=Q). One can finally apply Lemma 2.4 to the
function w = v  - \~v \in C( \=Q \setminus \{ Sj\} ) \cap C2(Q) \cap L2(Q). Since Q is convex, we conclude

that w = 0, and consequently that v| Q = \~v \in H1(Q). As v \in C\infty \bigl( 
\Omega j \cap \Omega j+1 \setminus \{ Sj\} 

\bigr) 
,

we deduce that v is H1 in all open bounded subdomains of \Omega j \cap \Omega j+1. Since also
v \in L2(\Omega j \cap \Omega j+1) satisfies the Helmholtz equation in \Omega j \cap \Omega j+1 and vanishes on
\partial (\Omega j \cap \Omega j+1), Lemma 2.5 implies that v \in H1(\Omega j \cap \Omega j+1). Thus v = 0 so that (22)
holds.

Step 2. The second step consists of proving that if g = 0, the function defined
by u = U j(\varphi j) in \Omega j is equal to 0 everywhere, and deducing from this that each
\varphi j = 0. For j = 1, . . . ,\scrN , as above let Sj := \Sigma j \cap \Sigma j+1 so that P := \{ S1, S2, . . . , S\scrN \} 
is the set of corners of \partial \Omega (i.e., the set of vertices of the polygon \scrO ). Since, for
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each j, \varphi j is such that \varphi j = g = 0 on \Gamma j , and \varphi j \in C(\Sigma j \setminus P ) (see Step 1), it

follows from Lemma 2.3 that u \in C\infty (\Omega j) \cap L2(\Omega j) \cap C(\Omega j \setminus P ) and u = \varphi j on
\Sigma j \setminus P . In particular, u = \varphi j = 0 on \Gamma j , and \Delta u + k2u = 0 in \Omega j . Consequently
u \in C\infty (\Omega ) \cap L2(\Omega ) \cap C(\Omega \setminus P ), \Delta u+ k2u = 0 in \Omega , and u = 0 on \partial \Omega \setminus P .

Again, to conclude that u = 0, we need to prove that u \in H1(\Omega ). We proceed
as in the first step of the proof. Introducing the bounded polygon \Omega \prime := \scrO \prime \setminus \scrO , we
denote by \~u the unique solution in H1(\Omega \prime )\cap C(\Omega \prime )\cap C2(\Omega \prime ) of the Dirichlet problem

 - \Delta \~u = k2u in \Omega \prime ,
\~u = u on \partial \Omega \prime .

Then we apply Lemma 2.4 to the function w = u - \~u \in C(\Omega \prime \setminus P ) \cap C2(\Omega \prime ) \cap L2(\Omega \prime ).
But, in contrast to the argument in the first step, the polygon \Omega \prime is not convex and
has \scrN re-entrant corners at the vertices S1, S2, . . . , S\scrN . Consequently, we deduce
from Lemma 2.4 that there exist a function \~w \in H1(\Omega \prime ) and \scrN complex coefficients
c1, . . . , c\scrN such that

w = \~w +

\scrN \sum 
j=1

cj r
 - \pi /\alpha j

j sin(\pi \theta j/\alpha j) in \Omega \prime ,

where, as explained in the lemma, \alpha j is the interior angle of \Omega \prime at Sj and (rj , \theta j)
are polar coordinates centered at Sj . The definition of \theta j is such that sin(\pi \theta j/\alpha j)
vanishes on \Sigma j \cap \partial \scrO and \Sigma j+1 \cap \partial \scrO , but note that it does not vanish on \Sigma j \cap \Omega j+1.
Since \varphi j \in L2(\Sigma j), \~u \in C(\Omega \prime ), and w = u  - \~u = \varphi j  - \~u on \Sigma j \cap \Omega \prime , we must have
w \in L2(\Sigma j \cap \Omega \prime ), which is possible only if cj = 0. Indeed, since \alpha j < 2\pi , we have

\pi /\alpha j > 1/2 so that r
 - \pi /\alpha j

j is not square integrable near rj = 0. Summing up, we have

w = \~w and u = \~u+ \~w \in H1(\Omega \prime ). Since u \in C\infty (\Omega ), one concludes that u is H1 in all
open bounded subdomains of \Omega , and, finally, thanks to Lemma 2.5, that u \in H1(\Omega ).
We have shown that u \in H1(\Omega ) and u satisfies (6) with g = 0. Thus u = 0 and since
\varphi j = u on \Sigma j \setminus P , we have that \varphi j = 0 for all j, which ends the proof.

\scrO 

Q

\Sigma 1

\Sigma 2

\Omega 1 \cap \Omega 2

Fig. 3. Illustration for the proof of Theorem 2.6 in the case j = 1 and \scrN = 3. The convex
polygon \scrO \prime is indicated in gray and the boundaries of \scrO and Q with dotted contours.

3. The HSM method for real wavenumber.

3.1. The HSM formulation. In this section we consider the Dirichlet problem
of the previous section, but now with a real wavenumber k > 0. We seek u \in H1

loc(\Omega )
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such that

(28)

\Biggl\{ 
 - \Delta u - k2 u = 0 in \Omega ,

u = g on \Gamma 

for a given g \in H1/2(\Gamma ), and such that u satisfies the Sommerfeld radiation condition
(2), which it is convenient to rewrite as

(29) lim
R\rightarrow +\infty 

R1/2 sup

\biggl\{ \bigm| \bigm| \bigm| \bigm| \partial u(\bfitx )\partial r
 - iku(\bfitx )

\bigm| \bigm| \bigm| \bigm| ; | \bfitx | = R

\biggr\} 
= 0.

It is well known that this problem has a unique solution.
Let us now give an HSM formulation of problem (28)--(29). If we set as before

\varphi j := u
\bigm| \bigm| 
\Sigma j for j = 1, . . . ,\scrN , one can easily check by a Green's identity argument that

the half-plane representations (9), with U j(\varphi j) given by (11) (equivalently, (13) or
(14)), still hold. A main difference with the case of a complex wavenumber is that now
the solution of (28)--(29) decays only slowly, like r - 1/2 as r \rightarrow \infty , so that we cannot
expect that \varphi j \in L2(\Sigma j). However, \varphi j \in L2(\Sigma j) + L\infty (\Sigma j) so that, for xj1 > aj , the
integral \int 

\BbbR 
\scrH (k;xj1  - aj , xj2  - yj2)\varphi 

j(aj , yj2) dy
j
2

is still well defined by Lemma 2.3. Then one can check, exactly as in the case of a
complex wavenumber, that the \varphi j 's satisfy the following HSM equations:

(30)
\varphi j = Dj - 1,j \varphi 

j - 1 on \Sigma j \cap \Omega j - 1,
\varphi j = g| \Gamma j on \Gamma j ,
\varphi j = Dj+1,j \varphi 

j+1 on \Sigma j \cap \Omega j+1,
j \in \BbbZ /\scrN \BbbZ ,

where

(31) Dj,j\pm 1 \varphi 
j := U j(\varphi j)

\bigm| \bigm| 
\Omega j\cap \Sigma j\pm 1 ,

with U j(\varphi j) given by (11). The idea is again, for numerical purposes, to replace
problem (28)--(29) by the system of equations (30). But in contrast to the case with
\Im (k) > 0, it is not clear in which space the functions \varphi j 's must be sought to make
(30) uniquely solvable. In what follows, we will provide a framework which ensures
existence and uniqueness of the solution of (30). More precisely, in this framework,
the unique solution of (30) is given by \varphi j := u

\bigm| \bigm| 
\Sigma j , where u is the unique solution of

(28)--(29).
Let us first recall, as just remarked above, that U j(\varphi ) is well defined when \varphi \in 

L2(\Sigma j) + L\infty (\Sigma j) by Lemma 2.3, and, indeed, we will require that the solution of
(30) satisfies \varphi j \in L2(\Sigma j) + L\infty (\Sigma j) for j = 1, . . . ,\scrN . But, as discussed in section
1.2, our uniqueness result requires an additional property: analogously to requiring
that u \in H1

loc(\Omega ) satisfies the Sommerfeld radiation condition when k is real, we will
require, for j = 1, . . . ,\scrN , that \varphi j has the following asymptotics playing the role of a
radiation condition:

(32) \varphi j(aj , t) =

\biggl\{ 
cj+ eik| t| | t|  - 1/2

\bigl( 
1 +O(| t|  - 1)

\bigr) 
as t\rightarrow +\infty ,

cj - eik| t| | t|  - 1/2
\bigl( 
1 +O(| t|  - 1)

\bigr) 
as t\rightarrow  - \infty 

for some constants cj\pm \in \BbbC . This obviously holds when \varphi j := u
\bigm| \bigm| 
\Sigma j , where u is the

unique solution of (28)--(29), since, as discussed in section 1.2, u satisfies (3).
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1300 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

The main result of the present paper is Theorem 3.5 stating that the radiation
condition (32) is strong enough to ensure uniqueness for (30) for k real. We will prove
it by following the same steps as in the case of a complex wavenumber, proving first the
compatibility of half-plane representations in the overlaps between half-planes, and
then uniqueness for the reconstructed solution in the exterior domain \Omega . To establish
these results, we will use classical uniqueness results for the Helmholtz equation on
unbounded domains when the solution satisfies the Sommerfeld radiation condition
at infinity. A preliminary question is as follows: Can we prove, using (32), that the
half-plane representations (14) satisfy a Sommerfeld condition at infinity? We will
establish in the next subsection a slightly weaker result which will be sufficient for
the proof of Theorem 3.5.

3.2. Properties of the half-plane solution. We consider in this subsection
the half-space \BbbR 2

+ := (0,\infty )\times \BbbR . Let us prove a preliminary lemma for the solution of
the Dirichlet problem in \BbbR 2

+ given by (24) in the case that the Dirichlet data decays
sufficiently rapidly at infinity.

Lemma 3.1. Suppose that \phi \in L\infty (\BbbR ) satisfies, for some p > 1,

(33) | \phi (t)| \leq (1 + | t| ) - p, t \in \BbbR ,

and define u(\bfitx ), for \bfitx \in \BbbR 2
+, by

(34) u(\bfitx ) :=

\int 
\BbbR 
\scrH (k;x1, x2  - t)\phi (t) dt.

Then there exists a constant C(p) > 0 such that

(35) | u(\bfitx )| \leq C(p)(1 + | \bfitx | ) - 1/2, \bfitx \in \BbbR 2
+.

Proof. We will use the bound (27), where C > 0, there and throughout the
remainder of the proof, denotes a constant independent of \bfitx (and also independent
of p), not necessarily the same at each occurrence. It will be convenient for the proof
to denote by u[\phi ] the function u defined by (34). Then by defining \chi x2

\in L\infty (\BbbR ), for
x2 \in \BbbR , to be the characteristic function of the interval

Ix2 := \{ t \in \BbbR ; | x2  - t| \leq (1 + | x2| )/2\} ,

we have u[\phi ] = u[\chi x2
\phi ] + u[(1  - \chi x2

)\phi ]. We will establish the bound (35) for each
term of the sum (cf. the argument between (4.16) and (4.17) in [1]).

For the first term we have

| u[\chi x2
\phi ](\bfitx )| \leq 

\int 
\BbbR 
| \scrH (k;x1, x2  - t)| \chi x2

(t)| \phi (t)| dt,

which gives

(36) | u[\chi x2\phi ](\bfitx )| \leq 2\| \chi x2\phi \| L\infty (\BbbR )

\int 1+| x2| 
2

0

| \scrH (k;x1, s)| ds.

Now note that if | t| < | x2| /3 and | x2| \geq 3, then | t  - x2| > 2| x2| /3 \geq (1 + | x2| )/2, so
that \chi x2

(t) = 0. Thus, for | x2| \geq 3, (33) implies that

\| \chi x2
\phi \| L\infty (\BbbR ) \leq sup

| t| \geq | x2| /3
| \phi (t)| \leq (1 + | x2| /3) - p,
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THE HALF-SPACE MATCHING METHOD FOR REAL WAVENUMBER 1301

while also \| \chi x2
\phi \| L\infty (\BbbR ) \leq \| \phi \| L\infty (\BbbR ) \leq 1, for every x2 \in \BbbR , so that

(37) \| \chi x2\phi \| L\infty (\BbbR ) \leq C(1 + | x2| ) - p, x2 \in \BbbR .

Moreover, it follows from (27) that\int 1+| x2| 
2

0

| \scrH (k;x1, s)| ds \leq Cx1

\int 1+| x2| 
2

0

\Bigl[ 
(x21 + s2) - 1 + (x21 + s2) - 3/4

\Bigr] 
ds

= C

\int 1+| x2| 
2x1

0

\Bigl[ 
(1 + t2) - 1 + x

1/2
1 (1 + t2) - 3/4

\Bigr] 
dt

\leq C(1 + x1)
1/2

\int 1+| x2| 
2x1

0

(1 + t2) - 3/4dt

\leq C(1 + x1)
1/2 min

\biggl( 
1,

1 + | x2| 
2x1

\biggr) 
.

Combining this with (36) and (37), we get the following estimate:

| u[\chi x2\phi ](\bfitx )| \leq C(1 + | x2| ) - p(1 + x1)
1/2 min

\biggl( 
1,

1 + | x2| 
2x1

\biggr) 
,

which gives the expected bound (recalling that p > 1)

| u[\chi x2
\phi ](\bfitx )| \leq C(1 + | \bfitx | ) - 1/2, \bfitx \in \BbbR 2

+.

To see that the same bound holds for u[(1 - \chi x2
)\phi ], we note that

| u[(1 - \chi x2)\phi ](\bfitx )| \leq C sup
t\in \BbbR 

| \scrH (k;x1, x2  - t)(1 - \chi x2)(t)| 
\int 
\BbbR 
| \phi (t)| dt.

Observing that, for \bfitx \in \BbbR 2
+ and t \in \BbbR \setminus Ix2 ,

(x21 + (x2  - t)2)1/2 \geq (x21 + (1 + | x2| )2/4)1/2 \geq C(1 + | \bfitx | ),

and using (27) and (33), it follows that, for \bfitx \in \BbbR 2
+,

(38) | u[(1 - \chi x2
)\phi ](\bfitx )| \leq C

x1
(1 + | \bfitx | )3/2

\int 
\BbbR 
| \phi (t)| dt \leq C

p - 1
(1 + | \bfitx | ) - 1/2.

It follows from standard interior elliptic regularity results that if u \in C2(\BbbR 2
+)

satisfies
\Delta u+ k2u = 0 in \BbbR 2

+,

then for every \varepsilon > 0 and \bfitx \in \BbbR 2
+ with x1 > \varepsilon , so that \{ \bfity \in \BbbR 2; | \bfitx  - \bfity | \leq \varepsilon \} \subset \BbbR 2

+,

(39) | \nabla u(\bfitx )| \leq C
1 + k2\varepsilon 2

\varepsilon 
max

| \bfitx  - \bfity | \leq \varepsilon 
| u(\bfity )| ,

where C is an absolute constant (see, e.g., [13, Lemma 2.7]). Combining this estimate
with the previous lemma, we immediately have the following corollary.

Corollary 3.2. Suppose that \phi \in L\infty (\BbbR ) satisfies (33) for some p > 1. Then
there exists a constant C(p) > 0 such that for all \varepsilon > 0, the function u defined by (34)
satisfies

(40) | \nabla u(\bfitx )| \leq C(p)
1 + k2\varepsilon 2

\varepsilon 
(1 + | \bfitx | ) - 1/2, x1 > \varepsilon , x2 \in \BbbR .
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1302 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

Now, using the previous results, we will establish a radiation condition for u
defined by (34) when its trace \varphi satisfies itself a radiation condition.

Lemma 3.3. Suppose that \phi \in C(\BbbR ) satisfies

(41) \phi (t) =

\biggl\{ 
c+ eik| t| | t|  - 1/2 +O(| t|  - p) as t\rightarrow +\infty ,
c - eik| t| | t|  - 1/2 +O(| t|  - p) as t\rightarrow  - \infty 

for some constants c+, c - \in \BbbC , and p > 1. Define u by (34) in \BbbR 2
+. Then the following

properties hold:
(i) there exists a constant C > 0 such that

(42) | u(\bfitx )| \leq C(1 + | \bfitx | ) - 1/2, \bfitx \in \BbbR 2
+;

(ii) for all \varepsilon > 0,

(43) lim
R\rightarrow +\infty 

R1/2 sup

\biggl\{ \bigm| \bigm| \bigm| \bigm| \partial u(\bfitx )\partial r
 - iku(\bfitx )

\bigm| \bigm| \bigm| \bigm| ;x1 > \varepsilon and | \bfitx | = R

\biggr\} 
= 0.

Proof. We use the same notation u[\phi ] for (34) as in the proof of Lemma 3.1. We
prove this proposition by writing \phi as \phi = \phi (1) + \phi (2), and correspondingly writing
the integral (34) as u[\phi ] = u[\phi (1)] + u[\phi (2)], choosing this splitting as follows: \phi (1) is
the trace on the boundary of a solution of the Helmholtz equation in \BbbR 2

+ that clearly

satisfies (42) and (43), and \phi (2)(t) decays sufficiently rapidly as | t| \rightarrow \infty so that,
thanks to Lemma 3.1 and Corollary 3.2, u[\phi (2)] also satisfies (42) and (43).

In more detail, from the asymptotics of the Hankel function H
(1)
0 it follows that,

for some nonzero c\ast \in \BbbC ,

(44) \Phi (\bfitx , (0, t)) = c\ast eik| t - x2| | t|  - 1/2 +O(| t|  - 3/2) as | t| \rightarrow \infty 

for every \bfitx \in \BbbR 2. Pick \bfitz = (z1, z2), \bfitz 
\prime = (z\prime 1, z

\prime 
2) \in \BbbR 2 with k(z2  - z\prime 2)/\pi \not \in \BbbZ , and

with z1, z
\prime 
1 < 0. Define \phi (1) \in C(\BbbR ) by

(45) \phi (1)(t) := (c/c\ast )\Phi (\bfitz , (0, t)) + (c\prime /c\ast )\Phi (\bfitz \prime , (0, t)) for t \in \BbbR .

Then \phi (1)(t) has the same leading asymptotic behavior as \phi (t) as t\rightarrow \pm \infty provided

(46) ce - ikz2 + c\prime e - ikz\prime 
2 = c+ and ceikz2 + c\prime eikz

\prime 
2 = c - .

Let us choose c and c\prime so that these two linear constraints hold; this is possible since
k(z2  - z\prime 2)/\pi \not \in \BbbZ implies that the determinant exp(ik(z\prime 2  - z2))  - exp(ik(z2  - z\prime 2) =
2i sin(k(z2 - z\prime 2)) \not = 0 . Then it is clear from an application of Green's second identity
that, for \bfitx \in \BbbR 2

+, u[\phi 
(1)](\bfitx ) = (c/c\ast )\Phi (\bfitz ,\bfitx )+(c\prime /c\ast )\Phi (\bfitz \prime ,\bfitx ) (see, e.g., the proof that

(ii)\Rightarrow (v)\Rightarrow (i) in [13, Theorem 2.9]). Hence u[\phi (1)] satisfies items (i) and (ii).
It remains to show that the same is true for u[\phi (2)] where \phi (2) = \phi  - \phi (1). It

follows from (41) and (44)--(46) that, for some c0 > 0, where p\prime := min(p, 3/2),

(47) | \phi (2)(t)| \leq c0(1 + | t| ) - p\prime 
, t \in \BbbR .

Item (i) is, therefore, a direct consequence of Lemma 3.1. To see that u[\phi (2)] also
satisfies the radiation condition (ii), choose q \in (1, p\prime ) and, for each A > 0, let \chi A be
the characteristic function of the interval [ - A,A]. Write u[\phi (2)] = u[\chi A\phi 

(2)] + u[(1 - 
\chi A)\phi 

(2)]. Now, by (47),

| (1 - \chi A(t))\phi 
(2)(t)| \leq c0(1 + | t| ) - q(1 +A)q - p\prime 
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so that, by (35) and (40) (applied with p replaced by q), there exists a constant
C(q) > 0 depending only on q such that

| u[(1 - \chi A)\phi 
(2)](\bfitx )| \leq C(q)c0(1 +A)q - p\prime 

(1 + | \bfitx | ) - 1/2, \bfitx \in \BbbR 2
+,

and from Corollary 3.2, for all \varepsilon > 0, there exists a constant C(q, \varepsilon ) > 0 depending
only on q and \varepsilon such that

| \nabla u[(1 - \chi A)\phi 
(2)](\bfitx )| \leq C(q, \varepsilon )c0(1 +A)q - p\prime 

(1 + | \bfitx | ) - 1/2, x1 > \varepsilon , x2 \in \BbbR .

Let us set for any function v defined on \BbbR 2
+

MR,\varepsilon (v) := R1/2 sup

\biggl\{ \bigm| \bigm| \bigm| \bigm| \partial v(\bfitx )\partial r
 - ikv(\bfitx )

\bigm| \bigm| \bigm| \bigm| ;x1 > \varepsilon and | \bfitx | = R

\biggr\} 
.

It follows from the estimates above that, for all R > 0,

MR,\varepsilon (u[(1 - \chi A)\phi 
(2)]) \leq max(C(q), C(q, \varepsilon ))c0(1 +A)q - p\prime 

.

Thus, for all \varepsilon > 0, given \eta > 0 we can choose A > 0 such thatMR,\varepsilon (u[(1 - \chi A)\phi 
(2)]) \leq 

\eta /2 for all R > 0. But also, for each A > 0, it is standard that u[\chi A\phi 
(2)](\bfitx ),

a double-layer potential supported on a bounded interval, satisfies the Sommerfeld
radiation condition, in particular that MR,\varepsilon (u[\chi A\phi 

(2)]) \leq \eta /2 for R large enough.
Thus, MR,\varepsilon (u[\phi 

(2)]) \leq \eta for all sufficiently large R, which concludes the proof.

Corollary 3.4. Suppose that \phi = \phi 1 + \phi 2, where \phi 1 \in L2(\BbbR ) is compactly
supported and \phi 2 \in C(\BbbR ). If \phi satisfies (41) and u is defined by (34), then

(i) there exist two constants C > 0 and R > 0 such that

(48) | u(\bfitx )| \leq C(1 + | \bfitx | ) - 1/2, \bfitx \in \BbbR 2
+, | \bfitx | > R;

(ii) for all \varepsilon > 0, (43) holds.

Proof. Again, we write u[\phi ] = u[\phi 1] + u[\phi 2]. The properties for u[\phi 2] have been
established in the previous lemma, while u[\phi 1] is a double-layer potential supported
on a bounded interval for which such properties are standard, e.g., [11, Theorem 2.14,
Lemma 2.5].

3.3. Proof of the uniqueness result. We are now able to prove the first main
result of this paper.

Theorem 3.5. Suppose k > 0. There exists, for each g \in H1/2(\Gamma ), a unique
solution (\varphi 1, . . . , \varphi \scrN ) \in L2

loc(\Sigma 
1)\times \cdot \cdot \cdot \times L2

loc(\Sigma 
\scrN ) satisfying (30) such that, for all j,

\varphi j satisfies the radiation condition (32).

Existence was proven by the construction above of a solution of (30) from the
unique solution u of (28), (2), namely \varphi j := u| \Sigma j , j = 1, . . . ,\scrN . Note, in particular,
that the Sommerfeld radiation condition (2) for u implies the far-field asymptotics
(3), which implies in turn that each trace \varphi j satisfies the radiation condition (32).
Uniqueness follows from the following proposition since (28), (2) is well-posed.

Proposition 3.6. Suppose k > 0, and let (\varphi 1, . . . , \varphi \scrN ) \in L2
loc(\Sigma 

1)\times \cdot \cdot \cdot \times L2
loc(\Sigma 

\scrN )
satisfying (30) (with g \in H1/2(\Gamma )) be such that, for all j, \varphi j satisfies the radiation
condition (32). Then the compatibility equations (22) hold for all j \in \BbbZ /\scrN \BbbZ , the func-
tion defined by u = U j(\varphi j) in \Omega j, j = 1, . . . ,\scrN , is the unique solution u \in H1

loc(\Omega ) of
(28), (2), and \varphi j = u| \Sigma j for each j.
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1304 BONNET-BEN DHIA, CHANDLER-WILDE, AND FLISS

Proof. For each j, \varphi j can be decomposed as \varphi j = \varphi j
1 + \varphi j

2 with \varphi j
1 = \varphi j\chi j

A and

\varphi j
2 = \varphi j(1 - \chi j

A), \chi 
j
A being the characteristic function of \{ (xj1 = aj , xj2);x

j
2 \in ( - A,A)\} .

Since \varphi j \in L2
loc(\Sigma 

j) satisfies (32), we have that \varphi j
1 \in L2(\Sigma j) with compact support

and, for A large enough, \varphi j
2 \in L\infty (\Sigma j). From Lemma 2.3, and by the definition (31) of

the operator Dj,j\pm 1, since (\varphi 1, . . . , \varphi \scrN ) satisfies (30), we deduce, provided we choose

A large enough, that \varphi j
2 \in C(\Sigma j) for all j.

We follow now the same steps as in the proof of Proposition 2.7.
The first step consists of proving equations (22). Again, we introduce v =

U j(\varphi j) - U j+1(\varphi j+1) and one can show by using Lemma 2.3 as in the proof of Propo-

sition 2.7 that v \in L2
loc(\Omega 

j \cap \Omega j+1) \cap C\infty (\Omega j \cap \Omega j+1) \cap C(\Omega j \cap \Omega j+1 \setminus \{ Sj\} ), satisfies
\Delta v+k2v = 0 in \Omega j\cap \Omega j+1, and vanishes on \partial (\Omega j\cap \Omega j+1)\setminus \{ Sj\} . Moreover, proceeding
exactly as in the proof of Proposition 2.7, one can show that v \in H1

loc(\Omega 
j \cap \Omega j+1).

We would like, by applying Corollary 3.4 to U j(\varphi j) and U j+1(\varphi j+1), to deduce that
v also satisfies the Sommerfeld radiation condition in \Omega j \cap \Omega j+1. The issue is that
Corollary 3.4 does not ensure that v satisfies the Sommerfeld radiation condition up
to the boundary. But this difficulty can be overcome; since v = 0 on \partial (\Omega j \cap \Omega j+1), re-
flection arguments and standard elliptic regularity results combined with the estimate
(48) imply that, for R large enough, there exists a constant C > 0 such that

(49) | v(\bfitx )| + | \nabla v(\bfitx )| \leq C(1 + | \bfitx | ) - 1/2, \bfitx \in \Omega j \cap \Omega j+1, | \bfitx | > R.

Then, denoting \Sigma j
R := \{ \bfitx \in \Omega j \cap \Omega j+1; | \bfitx | = R\} and

dj(\bfitx ) := min
\bfity \in \partial (\Omega j\cap \Omega j+1)

| \bfitx  - \bfity | ,

one has by (49) for all R large enough,\int 
\bfitx \in \Sigma j

R,dj(\bfitx )<1

\bigm| \bigm| \bigm| \bigm| \partial v(\bfitx )\partial r
 - ikv(\bfitx )

\bigm| \bigm| \bigm| \bigm| 2 ds(\bfitx ) \leq C(1 +R) - 1,

where the constant C is independent of R. Combined with (43) with \varepsilon = 1 applied
to U j(\varphi j) and U j+1(\varphi j+1), this proves that

(50) lim
R\rightarrow +\infty 

\int 
\Sigma j

R

\bigm| \bigm| \bigm| \bigm| \partial v(\bfitx )\partial r
 - ikv(\bfitx )

\bigm| \bigm| \bigm| \bigm| 2 ds(\bfitx ) = 0,

i.e., v satisfies the Sommerfeld radiation condition in a standard integrated form.
Since v \in H1

loc(\Omega 
j \cap \Omega j+1) satisfies \Delta v + k2v = 0 in \Omega j \cap \Omega j+1, the Sommerfeld

radiation condition (50), and vanishes on \partial (\Omega j \cap \Omega j+1) \setminus \{ Sj\} , one can conclude that
v = 0 by uniqueness of such problems in conical domains [21].

The second step of the proof is simpler. Arguing as in the proof of Proposition
2.7, it is enough to prove, in the case g = 0, that the function defined by u = U j(\varphi j) in
\Omega j , j = 1, . . . ,\scrN , is equal to 0 everywhere, and to deduce from this that each \varphi j = 0.
Proceeding exactly as in that proof, one can show that u \in H1

loc(\Omega ) \cap C(\Omega \setminus P ),
where P is the set of corners of \partial \Omega , that u is a solution of (28) with g = 0, and
that \varphi j = u| \Sigma j on \Sigma j \setminus P . Moreover, thanks to the overlaps between the half-spaces
\Omega j , one can deduce from Corollary 3.4 applied to each U j(\varphi j) that u satisfies the
Sommerfeld condition (2). This implies that u = 0 so that \varphi j = 0 for all j.

Theorem 3.5 is a (new) well-posedness result for (30) in the case of real k. And,
indeed, numerical solution of (30) works well [6, 5] for real k. However, there are still
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significant gaps in our theoretical understanding of this formulation. In particular,
while (23) for complex wavenumber k can be written formally in operator form sat-
isfying a Fredholm property, in the case when k is real we know of no function space
setting for which this formulation makes sense, where the Dj,j+1 are well-defined
bounded linear operators.

4. General configurations. Let us now recall how to extend the HSM formu-
lation to the general problem presented in the introduction and extend the previous
uniqueness result to this new formulation. More precisely, for a real wavenumber
k > 0 we consider, as discussed in section 1.4, the isotropic Helmholtz equation (5) in
a Lipschitz domain \Omega , where \rho  - 1 \in L\infty (\Omega ) and f \in L2(\Omega ) are compactly supported
and \Omega is \BbbR 2 or \BbbR 2 minus a set of Lipschitz obstacles which are supposed to lie in a
bounded domain. To ensure uniqueness we impose some constraint on \rho , e.g., that \rho 
is real-valued or that \Im (\rho ) \geq 0. As announced in section 1.4, the problem we consider
is to seek u \in H1

loc(\Omega ) that satisfies (5), the Sommerfeld radiation condition (2), and
a boundary condition on \Gamma = \partial \Omega . To be specific, we will impose the homogeneous
Neumann condition

(51)
\partial u

\partial n
= 0 on \Gamma ,

but the modifications to use other boundary conditions and/or include inhomogeneous
terms are straightforward.

It is well known that this problem is uniquely solvable; in particular, with one
of the above constraints on \rho , uniqueness follows by a Green's identity, the Rellich
lemma, and unique continuation arguments (e.g., [15, Theorem 8.7]).

Let \scrO be the interior of a convex polygon containing the supports of all these
perturbations. The half-space matching method has been mainly presented for the
case where \scrO is a square (see [6]). But, whereas in the problem in section 3 the
polygon \scrO is given and the number of trace unknowns is imposed by the number of
sides of \scrO , here we have freedom to choose the polygon \scrO . In particular, choosing
\scrO to be a triangle has the advantage of minimizing the number of trace unknowns.
In what follows, we suppose that \scrO is a polygon with \scrN edges and we adopt the
same notation as introduced in section 2 (see Figure 1) for the edges \Gamma 1, . . . ,\Gamma \scrN , the
angles between the edges, the \scrN overlapping half-planes \Omega 1, . . .\Omega \scrN , their boundaries
\Sigma 1, . . . ,\Sigma \scrN , and their associated local coordinate systems.

Let us now introduce a bounded Lipschitz domain \Omega b \subset \Omega containing \scrO \cap \Omega such
that \partial \Omega b \setminus \Gamma is connected (for examples, see Figure 4), and a partition \Gamma 1

b , . . . ,\Gamma 
\scrN 
b of

\partial \Omega b \setminus \Gamma such that, for all j = 1, . . . ,\scrN , \Gamma j
b is connected and \Gamma j

b \subset \Omega j with \Gamma j
b \cap \Sigma j = \emptyset .

There is, of course, no unique choice for such a partition, but the uniqueness result
given in Theorem 4.1 below implies that the solution of the HSM formulation that we
will write down is independent of the choice of the partition.

The unknowns of the HSM formulation are the traces \varphi 1, . . . , \varphi \scrN of the solution u
on the infinite lines \Sigma 1, . . . ,\Sigma \scrN , and the restriction ub := u| \Omega b to the bounded domain
\Omega b. Let us derive the equations linking \varphi 

1, . . . , \varphi \scrN and ub. On the one hand, one can
show as in the case of scattering by a polygon (see section 3.1) that the \varphi j 's satisfy
the equations

(52)
\varphi j = Dj - 1,j \varphi 

j - 1 on \Sigma j \cap \Omega j - 1,
\varphi j = Dj+1,j \varphi 

j+1 on \Sigma j \cap \Omega j+1,
j \in \BbbZ /\scrN \BbbZ ,

where the operatorsDj,j\pm 1 are defined in (31). Compared to the problem of scattering
by a polygon, the conditions for the traces on \Gamma j (linked to the given data g in the
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\Gamma 
\Omega b

\Gamma j
b\Omega j

\Sigma j

\Gamma \Omega b

\Gamma j
b\Omega j

\Sigma j

Fig. 4. Two examples of possible geometries for our general configuration: \scrO is the triangle
bounded by the lines \Sigma 1, \Sigma 2, and \Sigma 3; \Omega b, shaded in darker gray, is a larger triangle in the left figure
and a disc in the right figure.

case of scattering by a polygon) have to be replaced by an equality between \varphi j and
ub on \Gamma j :

\varphi j = ub on \Gamma j , j = 1, . . . ,\scrN .

As in the case of scattering by a polygon, since the wavenumber is real, the traces \varphi j

are not in L2 but they decay like | yj2|  - 1/2 at infinity and we will require, as in section
3.1, that, for j = 1, . . . ,\scrN , \varphi j satisfies the asymptotic condition (32) at \pm \infty .

On the other hand, we can derive a variational formulation for ub in \Omega b. Since
 - \Delta ub  - k2\rho ub = f in \Omega b, f is supported in \scrO \prime := \scrO \cap \Omega , and u satisfies (51), the
following Green's identity holds for all vb \in H1(\Omega b), where n is the normal pointing
out of \Omega b:

(53)

\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb  - k2\rho ubvb

\bigr) 
 - 
\int 
\partial \Omega b\setminus \Gamma 

\partial ub
\partial n

vb =

\int 
\scrO \prime 
fvb.

The last idea is to replace the normal derivative on each part \Gamma j
b of \partial \Omega b \setminus \Gamma by an

integral representation as a function of \varphi j . Indeed, since, for all j = 1, . . . ,\scrN , \Gamma j
b \subset \Omega j ,

we must have

(54)
\partial ub
\partial n

 - ikub =
\partial U j(\varphi j)

\partial n
 - ikU j(\varphi j) on \Gamma j

b, j = 1, . . . ,\scrN ,

where U j(\varphi j) is the restriction of the solution u to the half-plane \Omega j and is expressed
in terms of \varphi j in (11). Let us emphasize that our choice of imposing equality of
Robin traces instead of normal derivatives is so that later we have uniqueness for

the formulation for all k > 0. Note also that, since \Gamma j
b \cap \Sigma j = \emptyset , the Robin trace of

U j(\varphi j) on \Gamma j
b is C\infty (see Lemma 2.3). To express (54) succinctly, we introduce the

Dirichlet-to-Robin (DtR) operators \Lambda j , given by

(55) \Lambda j\varphi :=

\biggl( 
\partial U j(\varphi )

\partial n
 - ikU j(\varphi )

\biggr) \bigm| \bigm| \bigm| 
\Gamma j
b

.
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We note, by Lemma 2.3, that \Lambda j\varphi is well defined (at least) for all functions \varphi \in 
L2(\Sigma j) + L\infty (\Sigma j). One can use (11) to write \Lambda j\varphi explicitly, for j = 1, . . . ,\scrN , as

\Lambda j\varphi (\bfitx j) =

\int 
\BbbR 

\Bigl( 
\nabla \scrH (k;xj1  - aj , xj2  - yj2) \cdot n(x

j
1, x

j
2)

 - ik\scrH (k;xj1  - aj , xj2  - yj2)
\Bigr) 
\varphi (aj , yj2) dy

j
2, \bfitx j = (xj1, x

j
2) \in \Gamma j

b.

With this notation, the equality (54) can be written as

(56)
\partial ub
\partial n

 - ikub = \Lambda j\varphi j on \Gamma j
b, j = 1, . . . ,\scrN .

Our complete formulation reads as follows:

(57)

\varphi j = Dj - 1,j \varphi 
j - 1 on \Sigma j \cap \Omega j - 1,

\varphi j = ub on \Gamma j ,
\varphi j = Dj+1,j \varphi 

j+1 on \Sigma j \cap \Omega j+1,
j \in \BbbZ /\scrN \BbbZ ,

\forall vb \in H1(\Omega b),\int 
\Omega b

\bigl( 
\nabla ub \cdot \nabla vb  - k2\rho ubvb

\bigr) 
 - ik

3\sum 
j=0

\int 
\Gamma j
b

ubvb  - 
3\sum 

j=0

\int 
\Gamma j
b

\Lambda j\varphi jvb =

\int 
\scrO \prime 
fvb,

where the operators Dj,j\pm 1 are defined in (31), and the operators \Lambda j in (55).
The following theorem gives the well-posedness of this formulation.

Theorem 4.1. Suppose k > 0. There exists, for each f \in L2(\scrO \prime ), a unique
solution (\varphi 1, . . . , \varphi \scrN , ub) \in L2

loc(\Sigma 
1)\times \cdot \cdot \cdot \times L2

loc(\Sigma 
\scrN )\times H1(\Omega b) of (57) such that, for

all j = 1, . . . ,\scrN , \varphi j satisfies the radiation condition (32).

Existence holds by the construction above of a solution to (57) from the unique
solution of (5), (2), (51). Uniqueness follows from the following proposition since (5),
(2), (51) is well-posed.

Proposition 4.2. Suppose k > 0, and let (\varphi 1, . . . , \varphi \scrN , ub) \in L2
loc(\Sigma 

1) \times \cdot \cdot \cdot \times 
L2
loc(\Sigma 

\scrN ) \times H1(\Omega b) be a solution of (57) (with f \in L2(\scrO \prime )) such that, for all j =
1, . . . ,\scrN , \varphi j satisfies the radiation condition (32). Then, for all j \in \BbbZ /\scrN \BbbZ , the
compatibility equations (22) hold and ub = U j(\varphi j) in \Omega b\cap \Omega j. Moreover, the function
defined by u = U j(\varphi j) in \Omega j, for j = 1, . . . ,\scrN , and by u = ub in \Omega b is the unique
solution u \in H1

loc(\Omega ) of (5), (2), (51). Further, \varphi j = u| \Sigma j for each j.

Proof. Let (\varphi 1, . . . , \varphi \scrN , ub) \in L2
loc(\Sigma 

1) \times \cdot \cdot \cdot \times L2
loc(\Sigma 

\scrN ) \times H1(\Omega b) be a solution
of (57) such that, for all j = 1, . . . ,\scrN , \varphi j satisfies the radiation condition (32), and
let us denote by u\infty \in H1

loc(\BbbR 2 \setminus \scrO ) the unique solution of (28), (2) with g = ub| \partial \scrO \in 
H1/2(\partial \scrO ). Then, as shown in section 3, the set of traces of u\infty on \Sigma 1, . . . ,\Sigma \scrN solves
(30), i.e., the first three equations of (57). It follows from Theorem 3.5 and from
(57) that \varphi j = u\infty | \Sigma j and u\infty = U j(\varphi j) in \Omega j for j = 1, . . . ,\scrN . In particular,
the compatibility equations (22) hold and \varphi j = u\infty = ub on \Gamma j for j = 1, . . . ,\scrN .
Moreover, we deduce from the last equation of (57) that  - \Delta ub  - k2\rho ub = f in \Omega b,
that

\partial ub
\partial n

= 0 on \Gamma ,

and that (56) holds. By definition (55) of the DtR operators, we then have

(58) \Lambda j\varphi j =

\biggl( 
\partial u\infty 
\partial n

 - iku\infty 

\biggr) \bigm| \bigm| \bigm| 
\Gamma j
b

, j = 1, . . . ,\scrN .
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Consequently, v := ub  - u\infty belongs to H1(\Omega b\setminus \scrO ) and satisfies

(59)

\Delta v + k2v = 0 in \Omega b\setminus \scrO ,
v = 0 on \partial \scrO ,
\partial v

\partial n
 - ikv = 0 on \partial \Omega b\setminus \Gamma ,

the last of these equations following from (56) and (58). But, for every k > 0, this
homogeneous problem has no solution except v = 0. (To see this apply Green's
identity (cf. (53)) in \Omega b\setminus \scrO to deduce that

\int 
\partial \Omega b\setminus \Gamma | v| 

2 = 0, so that v = \partial v/\partial n = 0 on

\partial \Omega b \setminus \Gamma , and apply Holmgren's uniqueness theorem [11, p. 104].) Thus ub = u\infty in
\Omega b\setminus \scrO (in particular, ub = u\infty = U j(\varphi j) in \Omega b\cap \Omega j , j = 1, . . . ,\scrN ) so that the function

w :=

\Biggl\{ 
ub in \Omega b,

u\infty in \BbbR 2\setminus \scrO 

is well defined, and is the unique solution u \in H1
loc(\Omega ) of (5), (2), (51).

5. Conclusion. The objective of this paper was to prove the well-posedness of
the HSM formulation applied to the Helmholtz equation (5) in the case of a real
wavenumber k > 0. This objective has been achieved: we have proved well-posedness
provided we impose the radiation condition (32) at infinity on the trace unknowns \varphi j

of the HSM equations, this radiation condition analogous to the standard Sommerfeld
radiation condition for the original boundary value problem. Let us recall that the
results of the present paper also complete a proof of well-posedness of the complex-
scaled HSM formulation presented in [4, section 5].

An open question is whether the radiation condition (32) on the trace unknowns,
while natural, is necessary for uniqueness. The answer is not at all clear to us. But
one piece of evidence that suggests that this radiation condition may not, in fact,
be needed is that one achieves accurate results in numerical experiments by simply
truncating the trace unknowns, setting, for each j, \varphi j = 0 outside some sufficiently
large finite section of \Sigma j , not making any use of the radiation condition (32) (see [6,
Fig. 7]).

Let us finish by mentioning that our main results should be extendable to more
complex configurations with obstacles extending to infinity. For instance, one might
consider the general configuration of section 4 but add a screen that is a semi-infinite
line \gamma 1, choosing the half-planes \Omega j so that \gamma 1 is orthogonal to \Sigma 1 and \gamma 1 \cap \Omega j = \emptyset ,
for all j \not = 1 (see the left-hand side of Figure 5). In this case \Omega 1 \setminus \gamma 1 has two
connected components that are quarter-planes. If \gamma 1 is sound soft or sound hard, i.e.,
the solution satisfies a Dirichlet or Neumann homogeneous boundary condition on
\gamma 1, one can derive an expression for U1(\varphi 1), the solution in \Omega 1 given Dirichlet data
\varphi 1 on \Sigma 1, by solving separately in each quarter-plane, combining formula (13) with
reflection arguments.

More interesting is the case where two parallel semi-infinite lines \gamma j\pm are intro-
duced, so that now, for some j, \Omega j has three connected components, two of them
quarter-planes and one of them a semi-infinite strip which is a waveguide (this is the
case for \Omega 1 and \Omega 3 in the right-hand side of Figure 5). One can derive an expression
for U j(\varphi j) in each quarter-plane as above, and an expression in the waveguide by
solving as a modal series expansion.

For each of these configurations, and for many other variations on these geome-
tries, we can write down HSM formulations, and we expect that one should be able to
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prove well-posedness of the HSM formulation and equivalence with other formulations
by adapting the results proved in the present paper.

\Sigma 1

\gamma 1

\Sigma 1\Sigma 3

\gamma 1+
\gamma 1 - 

\gamma 3 - 

\gamma 3+

Fig. 5. Two geometries that could be considered.

Note that if only one semi-infinite line is introduced, as in the left-hand side of
Figure 5, and no other obstacles or inhomogeneities are present, one recovers the
famous Sommerfeld half-plane problem [29, section 38] that can be solved using the
Wiener--Hopf method (or other techniques). Analytical methods, notably the Wiener--
Hopf method, have been extended to a variety of more complex configurations with
waveguides and wedges, e.g., [26, 23, 22], though not to all configurations that should
be treatable by the extensions of the HSM method to unbounded obstacles that we
suggest above.

An interesting question is whether our uniqueness and well-posedness results for
the HSM formulation can be extended to open waveguides. (The HSM method has
been used to compute numerical solutions by Ott [27] in such cases where the medium
in each half-space \Omega j is stratified in the xj2 direction.) The difficulty is that the
corresponding Green's function is no longer available in closed form, which makes the
study of the properties of the half-plane solution more intricate. A further difference
with the cases studied in this paper, and the extensions suggested above, is that, due
to the possible existence of guided waves in the open waveguides, the traces \varphi j may
have an oscillatory nondecaying behavior at infinity that should be taken into account
in a modified radiation condition, replacing (32).
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