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Acoustic scattering by planar screens
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u® := u — u" satisfies Sommerfeld Radiation Condition (SRC) at infinity
ou /Or — iku® = o (r~"/?) uniformly as r = |z| — occ.

Classical problem when T' is Lipschitz open set or smoother.

What about rougher T, e.g. fractal or with fractal boundary?



Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Attractive because of wideband/multiband performance

Not yet analysed by mathematicians


http://www.antenna-theory.com/antennas/fractal.php

Other applications

Scattering by ice crystals in atmospheric physics
- e.g. Westbrook and Nicol (2015) -
Meteorology at University of Reading

Fractal apertures in optics
- e.g. Huang, Christian, McDonald (2017)




Other applications

Scattering by ice crystals in atmospheric physics
- e.g. Westbrook and Nicol (2015) -
Meteorology at University of Reading

Fractal apertures in optics
- e.g. Huang, Christian, McDonald (2017)

These are all examples of ‘diffractals’ (Berry
1979), waves encountering fractals.




Scattering by apertures in infinite planar screens
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The Sommerfeld radiation condition is satisfied by:

@ u in the lower half-space, U_

o u®:=u—u’—u" (u" areflected plane wave) in the upper half-space, U,
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Screen and aperture problems classically connected by Babinet’s principle:
scattered field for screen = scattered field for aperture,

in upper half-space, but for opposite boundary conditions.
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Screen and aperture problems classically connected by Babinet’s principle:
scattered field for screen = —transmitted field for aperture,

in lower half-space, again for opposite boundary conditions.



Overview of Talk

@ The screen/aperture problems and applications

© Warm up
e Examples/questions to get us thinking
@ The main questions — look ahead to answers

© PDE and BIE formulations
o for regular screens
o for rough screens, e.g. fractal or fractal boundary

@ Convergence of regular screens to irregular, prefractals to fractals?

© Recap, references & many open problems



Example 1: Fractal aperture in sound hard screen

Aperture in infinite sound hard (gu = 0) screen: Area = 1
n
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Example 1: Fractal aperture in sound hard screen

Aperture in infinite sound hard <3u = O> screen: Area = (3/4)3

on

Question: s the transmitted field zero or non-zero in the limit? (The
limiting aperture is the Sierpinski triangle fractal with zero area.)




Example 2: Sierpinski triangle screen

Sound soft (u = 0) screen: Area = 1
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Question: Is the scattered field zero or non-zero in the limit? (The limiting
screen is a Sierpinski triangle with zero area.)




Example 2: Sierpinski triangle screen

Sound soft (u = 0) screen:  Area = (3/4)3

Question: Is the scattered field zero or non-zero in the limit? (The limiting
screen is a Sierpinski triangle with zero area.)

By Babinet’s principle this is the same question as on the previous slide.




Example 3: Scattering by Cantor Dust

Let the closed set C,, C [0,1] denote the standard Cantor set (0 < o < 1/2)
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Note: C2 is uncountable and closed, with zero area (zero Lebesgue measure).




Example 3: Scattering by Cantor Dust

Let the closed set C,, C [0,1] denote the standard Cantor set (0 < o < 1/2)

+“—> <>
1 e

Let C2 := C, x C, C R? denote the associated “Cantor dust”:
H H:.: .
HE HE
. HE HE
HE HE

Note: C2 is uncountable and closed, with zero area (zero Lebesgue measure).

Question: Is the scattered field zero or non-zero for the sound-soft scat-
tering problem with I' = C2?




Scattering by fractal (and other complicated)
screens/apertures
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Lots of interesting mathematical /computational questions:

e Can we formulate well-posed BVPs and equivalent BIEs?

Do prefractal solutions converge to fractal solutions?
o Are there algorithms to compute the scattered field?

If the screen/aperture has empty interior, does it scatter?

@ Does fractal dimension play a role?



Scattering by fractal (and other complicated)
screens/apertures

AAAS

Lots of interesting mathematical /computational questions:

e Can we formulate well-posed BVPs and equivalent BIEs?
.Yes — in fact infinitely many.

@ Do prefractal solutions converge to fractal solutions?
.Yes, and this helps us select which fractal solution is physical.

o Are there algorithms to compute the scattered field?
.Yes, but this work in progress.
o If the screen/aperture has empty interior, does it scatter? It depends.

@ Does fractal dimension play a role? Very much.



Overview of Talk

© PDE and BIE formulations
o for regular screens



Formulations for Regular Screens (Sound Soft Case)

BVP-C: Classical BVP Formulation (Bouwkamp, “Diffraction Theory”, 1954)

BT (A+k>)u=0in D :=R"\T /
U — eikdx

u=20 or

T
o Implicit assumption that u € C?(D), indeed is smooth up to the boundary

except on OI
e u® :=u — u' satisfies Sommerfeld radiation condition (SRC)
@ Behaviour near OI" controlled by “edge conditions”, notably (Meixner 1949)

/ (]Vu|® + |u|?) dz < oo for every bounded G C D
Ja



Formulations for Regular Screens (Sound Soft Case)

BVP-C: Classical BVP Formulation (Bouwkamp, “Diffraction Theory”, 1954)
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U — eikdx
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Theorem (I\‘Ieixner ’49, Levine 64, Wolfe ’69, Stephan 87, C-W, Hewett 2016)

IfT is C° open set then this formulation has a unique solution.




Formulations for Regular Screens (Sound Soft Case)

BVP-C: Classical BVP Formulation (Bouwkamp, “Diffraction Theory”, 1954)

T3 (A + kg)u =0 inD = Rn+1 \f /
ui — eikd-x

u=20 or

T

o Implicit assumption that u € C?(D), indeed is smooth up to the boundary
except on OI'

o u® :=u — u’ satisfies Sommerfeld radiation condition (SRC)

@ Behaviour near OT" controlled by “edge conditions”, in Sobolev space
notation, that u € Wh°¢(D)

Theorem (I\‘Ieixner ’49, Levine 64, Wolfe ’69, Stephan 87, C-W, Hewett 2016)

IfT is C° open set then this formulation has a unique solution.




Sobolev spaces on I' C I'y, = R”

For s € R let H*(I) = H*(R™) = {u € 8*(R™) : [o. (1 +[£[*)%|a(€)* A€ < oo}
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Hp :={ue H*(I'y) : suppu C F'} SUPPORT



Sobolev spaces on I' C I'y, = R"

For se R let H*(I'oo) = H¥(R") = {u € 8*(R"™) : [o. (1 +(¢]?)%a(€)]* d¢ < oo}
For Q2 C ', open and F' C I', closed define

H*(Q) = {ulo : u € H*(Ts)} RESTRICTION
(@) =y T CLOSURE
Hp :={ue H*(I'y) : suppu C F'} SUPPORT

For bounded I' C I', its interior

recr=reuar.



Sobolev spaces on I' C I'y, = R"

For se R let H*(I'oo) = H¥(R") = {u € 8*(R"™) : [o. (1 +(¢]?)%a(€)]* d¢ < oo}
For Q2 C ', open and F' C I', closed define

H*(Q) = {ulo : u € H*(Ts)} RESTRICTION
(@) =y T CLOSURE
Hp :={ue H*(I'y) : suppu C F'} SUPPORT

For bounded I' C I', its interior
I°cT =T°Udr.

Further
f{:ﬁ:l/2(1—‘0) C Hf1/2
I

with equality if T is open and C°.



Sobolev spaces on I' C I'y, = R"

For se R let H*(I'oo) = H¥(R") = {u € 8*(R"™) : [o. (1 +(¢]?)%a(€)]* d¢ < oo}
For Q2 C ', open and F' C I', closed define

H*(Q) = {ulo : u € H*(Ts)} RESTRICTION
(@) =y T CLOSURE
Hp :={ue H*(I'y) : suppu C F'} SUPPORT

For bounded I' C I', its interior
I°cT =T°Udr.
Further Ly
Fr£1/2 0 1/2
H (T°) C Hf
with equality if T is open and C°.

But equality does not hold in general and this is key!



Sobolev spaces on I' C I'y, = R”

Where Uy, U_ C R™*! are the half-spaces above and below T, define standard
trace operators

va: WHUL) — HY*(T)
by viu = ulr_, for u € WH(Uy) N C(Uz).



Formulations for Regular Screens (Sound Soft Case)

BVP-S: Sobolev space formulation (Stephan 1987)

3 (A+k2)u =0in D
/I2
r

) 4

Require:
o u® € C%(D)nWhiee(D)
e u® satisfies SRC
° ’"Y:I:US|F° _ —’U,i|[‘o c H1/2(Fo)



Formulations for Regular Screens (Sound Soft Case)

BVP-S: Sobolev space formulation (Stephan 1987)

3 (A+E)u*=0in D
/5E2
I
%

Require:
o u® € C%(D)nWhiee(D)
e u® satisfies SRC
° ’Y:I:US|F° _ —’U,i|1"o c H1/2(Fo)

Theorem (Stephan 1987, C-W, Hewett 2016)

This formulation is equivalent to the classical formulation FC, and both are
uniquely solvable if T is a C° open set.




Formulations for Regular Screens (Sound Soft Case)

BIE formulation (Stephan 1987)
X3 D /x2
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Given a bounded open I' C I', define single-layer opelrators
S:H'2() = C*(D)nWhte(D) and S : H~Y*(T) — HY*(T") by

Sé(x) = /F B(r,y)o(y)ds(y). z€D and  Sp= (1250)]; .

o 3D
(flf,y) = m In .



Formulations for Regular Screens (Sound Soft Case)

BIE formulation (Stephan 1987)
X3 D /x2
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Given a bounded open I' C T, define single-layer operators
S:H ') = C*(D)nWhte(D) and S : H-Y*(T) — HY*(T") by

Sé(x) = / B(e,y)d(y)ds(y), z€D and Sp= (1250).

BIE: Try u® = St where 1» € H=Y/2(') and (y+u®)|r = —u’|r € H'/?(T).
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BIE formulation (Stephan 1987)
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r

gl
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Formulations for Regular Screens (Sound Soft Case)

BIE formulation (Stephan 1987)
T3 D /vm

r

%1
Given a bounded open I' C T, define single-layer operators
S:H ') = C*(D)nWhte(D) and S : H-Y*(T) — HY*(T") by

Sé(x) = / B(e,y)d(y)ds(y), z€D and Sp= (1250).

BIE: Try u® = St where ¢ € H=Y/2(I') and S+ = —uf|r € HY/*(T).

Theorem (Stephan 1987, C-W & Hewett 2015)

This BIE formulation has exactly one solution for every open I, and this solution
satisfies BVP-S and BVP-C. Further, ) = —[0,u®].




Formulations for Regular Screens (Sound Soft Case)

BVP-W: Weak BVP Formulation
3 (A+Ek*)u=0in D :=RH! \f
i = eikd®
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Require: !
o u e C%(D)NWy'(D), where Wl (D) is closure of C°(D) in W(D)

e u® :=u — u’ satisfies the SRC
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This formulation has a unique solution for every bounded T \




Formulations for Regular Screens (Sound Soft Case)

BVP-W: Weak BVP Formulation
T3 (A+k>u=0in D:=R"\T
i = eikd®

/:m

>
X

Require: !
o u e C%(D)NWy'(D), where Wl (D) is closure of C°(D) in W(D)

e u® :=u — u’ satisfies the SRC

This formulation has a unique solution for every bounded T \

Not the end of the story! This solution is may or may not be the right
solution and may or may not be the same as the solution of the BIE.
(Though all formulations have the same unique solution if I' is C° open set.)




Overview of Talk

© PDE and BIE formulations

o for rough screens, e.g. fractal or fractal boundary



BIE for General Bounded Sound Soft Screen I' C R”

T3 /332

'y

»

71
Start with Lipschitz open I';, C T',. Define single-layer operators

Spé(z) = / (e, y)o() ds(y), and  Spd= (1eSO)lp, -



BIE for General Bounded Sound Soft Screen I' C R”
'y
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Now add the bounded I' C I';, € T',. Remember I' =T° U OI.

Spo(r) = / O(x,1)6() ds(y), and  Spé= (1250,
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Now add the bounded T' ¢ T';, € T'o.. Remember T = I"° U dT..

»

Sp(x) = / B(r,y)d(y)ds(y), and  Spd= (1LSP)|y -

We want [0,u’] € Hf_l/2 and y+u|re = —u’|ro, so ...
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Now add the bounded I' C T';, C T's,. Remember I’ =T° U JT.

»

Spé(x) = / (e, y)d(y)ds(y), and  Spd= (1eSO)lp, -

We want [0,u®] € Hf_l/2 and y1u®|re = —uf|ro, S0 ...

BIE-V: Try u* = Spo with ¢ € H="/% and Speb|re = —u'|re .




BIE for General Bounded Sound Soft Screen I' C R”
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Now add the bounded T' ¢ T';, C T'o.. Remember T = T'° U OT..

»

Sp(x) = /F (e, y)d(y) ds(y), and Sy = (eSO, -

We want [9,u®] € Hf_l/2 and y1u®|re = —u'|ro, SO ...

BIE-V: Try u* = Sp4 with ¢ € H-"/% and Spa|re = —u/|re, so
Jr, Sevdds = — [ u'lr, ¢ds, for g € C5°(T°)
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Now add the bounded T' ¢ T';, C T'o.. Remember T = T'° U OT..

Spo(r) = / (e, y)d(y) ds(y),  and Sy = (1eSO), -

We want [9,u®] € Hf_l/2 and yiu®|re = —u'|ro, SO ...

BIE-V: Try u* = Spo with ¢ € H-"/% and Spa|re = —u'|e, so
fu Srdpds = — er u'lp, ¢ds, for ¢ € C(I°) .

Let (,-) be the standard duality pairing on H/2(I';,) x H~1/2(T'1):
(1, 02) = pr P1¢2ds if ¢ € L*(Ty).
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Now add the bounded I' C I';, € T'... Remember I' = T° U OI".

»

Sp(x) = / (e, y)d(y) ds(y),  and  Spé= (1eSO), -

We want [9,u®] € H%I/Z and y+u|re = —u’|ro, so ...

BIE-V: Try u® = Sp with v € H-"/* and Sp|re = —u'[re so
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Let (,-) be the standard duality pairing on H/2(I';,) x H~1/2(T'1):
(1, 02) = pr P1¢2ds if ¢ € L*(T'r).



BIE for General Bounded Sound Soft Screen I' C R”
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Ar

Now add the bounded I' C T';, C T's,. Remember T’ =T° U JT.

»

Spé(x) = / (e, y)d(y)ds(y), and  Spd= (1eSP)|p, -

We want [0,u®] € Hgl/z and y+u|re = —u’|re, so ...

BIE-V: Try u* = Spo with ¢ € H-'/? and Spa|re = —u'[pe so
(S, ¢) = —(u'lr,, ¢), for ¢ € H-Y/2(I°) .

Let (-,-) be the standard duality pairing on H'/2(I',) x H=Y2(Tp):
(1, 02) = pr P1¢2ds if ¢ € L2(Ty).



BIE for General Bounded Sound Soft Screen I' C R”
Iy
Ar

Now add the bounded I' C T';, C T's,. Remember T’ =T° U JT.

»

Spé(x) = / (e, y)d(y)ds(y), and  Spd= (1LSP|r, -

1/2

We want [9,u°] € Hs/” and y2u®[pe = —u'[re, 50 ...

BIE-V: Try u* = Spo with ¢ € H='/? and Spa|re = —u'[pe so
(Spab, @) = —(u'lp, , ¢), for ¢ € H-V/2(I°) .

Theorem (Ha Duong 1992, C-W & Hewett 2015)

For some ¢ > 0, [(Sp.¢, ¢)| > cllgl|}_ /oy, ford € H=1/2(Tp)




BIE for General Bounded Sound Soft Screen I' C R”

T3 /x2
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T

Now add the bounded I' ¢ T';, C T's.. Remember T = T'° U OT..

»

Spé(x) = / (e, y)é(y)ds(y), and  Spd= (1eSP)p, -

We want [9,u®] € H%I/Z and y+u|re = —u?|ro, so ...

BIE-V: Try u® = Spo with 1 € H;/Q and Spo|re = —ui|re so
(Spap, @) = —(u'lp, , @), for ¢ € H-V/2(I°) .

Case 1: H-1/2(I°) = H%I/Q, e.g. I' is open and C°.
BIE-V has exactly one solution by Lax-Milgram.



BIE for General Bounded Sound Soft Screen I' C R”
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T

Now add the bounded T' ¢ T';, C T'o.. Remember T = T'° U OT..

»

Spo(r) = / (e, y)d(y) ds(y), and Sy = (1eSO)r, -

We want [9,u®] € Hf_l/2 and yiu®|re = —u'|ro, SO ...

BIE-V: Try u* = Spu with ¢ € H-"/% and Spu|re = —u'[pe so
(Sp1p, @) = —(u'lp,, @), for ¢ € H1/2(T°) .

Case la: I° = {) and {0} = H~'/3(I"°) = Hf_l/z, e.g. I is countable or

dimgy(I') < n — 1. BIE-V has only the zero solution, u® = 0.



BIE for General Bounded Sound Soft Screen I' C R”

T3 /x2
g
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Now add the bounded I' ¢ T';, C T's.. Remember T = T'° U OT..

»

Spé(x) = / (e, y)é(y)ds(y), and  Spd= (1eSP)p, -

We want [9,u®] € H%I/Z and y+u|re = —u?|ro, so ...

BIE-V: Try u® = Spo with 1 € H;/Q and Spo|re = —ui|re so
(Spap, @) = —(u'lp, , @), for ¢ € H-V/2(I°) .

Case 2: H~Y/2(I°) G Hgl/Q.
BIE-V has infinitely many solutions.
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I3 /x2
g

AF
€

Now add the bounded T' ¢ T';, C T'o.. Remember T = T'° U OT..

»

SLM:./F (e, y)é(y)ds(y), and  Spd= (1eSO)lp, -

We want [9,u®] € H%I/Z and y+u|re = —u’|re, so ...

BIE-V: Try u® = Sp with v € H-"/* and Sp|re = —u'[re so
(Sp. ¢) = —(ullr,, @), for ¢ € H-V/2(I°) .

Case 2a: T° =) and {0} = H~/3(I°) § Hgl/Q, e.g. dimg(T) >n—1, eg.

r= . BIE-V has infinitely many solutions.
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Now add the bounded I' ¢ I';, C T'o.. Remember T’ = T'° U OT..

»

Spé(x) = / (e, y)d(y)ds(y), and  Spd= (1LSPlp, -

We want [9,u®] € Hf_l/2 and yiu®|re = —u'|ro, SO ...
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and test space a single closed subspace V with H—1/2(I'°) C V C Hf_l/g.
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Now add the bounded T' ¢ T';, C T'o.. Remember T = T'° U OT..

Spo(r) = /F (e, y)d(y) ds(y), and  Spé= (veSO)y., -

We want [9,u®] € Hf_l/2 and yiu®|re = —u'|ro, sO ...

BIE-V: Try v® = Sz¢ with ¢ € V and Spe|re = —u|po so
(Sp, ) = —(u'|r, , ®), for ¢ € H-/2(T°) .

Case 2: H~Y/2(I°) G H%I/Q. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H—1/2(I'°) C V C Hf_l/g.
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Now add the bounded I' C T';, C T's,. Remember I’ =T° U JT.

»

smm:‘/r (e, y)é(y)ds(y), and  Spd= (1eSP)lr, -

We want [0,u’] € Hgl/z and y1u®|re = —uf|ro, S0 ...
BIE-V: Try u® = Sp3 with v € V and Sp9|re = —u'|re so
(Sp, ) = —(u'lp,, d), for ¢ €V.

Case 2: H~Y/2(I°) G H%I/Q. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H—1/2(I'°) C V C Hf_l/g.
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Now add the bounded T' ¢ T';, € T'o.. Remember T = I"° U 9T..

»

Spé(x) = / (e, y)é(y)ds(y), and  Spd= (1eSO)p, -

We want [0,u’] € Hf_l/2 and y+u|re = —u’|ro, so ...

BIE-V: Try u® = Sp with ¢ € V and Sp|re = —u’|re so
(Sp, ¢) = —(ullr,, @), for ¢ €V.

Case 2: H~Y/(I°) G Hf_l/Q. To make BIE-V well-posed, choose as the trial
and test space a single closed subspace V' with fI‘l/Q(FO) cCVC H%I/Q.

Infinitely many (Xg) choices; distinct choices have distinct solutions for a.e. d.
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Now add the bounded T' ¢ T';, C T's.. Remember T = T'° U OT..

»

Spé(x) = / (e, y)d(y)ds(y), and  Spd= (1eSOlp, -

We want [9,u®] € H%I/Z and yxu|re = —u’|re, so ...

BIE-V: Try u® = Sp with ¢ € V and Sp|re = —u’|re so
(Sp, ) = —(u'lp,, p), for ¢ €V.

Case 2: H~Y/(I°) G Hf_l/Q. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V' with fI‘l/Q(I“’) cCVC H%I/Q.

But are any of these infinitely many solutions physical?



@ The screen/aperture problems and applications

© Warm up
o Examples/questions to get us thinking
@ The main questions — look ahead to answers

© PDE and BIE formulations
o for regular screens
o for rough screens, e.g. fractal or fractal boundary

@ Convergence of regular screens to irregular, prefractals to fractals?

© Recap, references & many open problems
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Prefractal convergence from above

Suppose R™ DT’y DTy D ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

o0
Let uj, u3, ... denote the corresponding scattered fields, and let I' = m I eg.

m=1

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

uj — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H_'/*.

| BIE-V: Set u* = Sp.u where v € V satisfies (7.1, 0) = —(u'[r. ), for 6 € V. |




Prefractal convergence from above

Suppose R™ D T'; DT’y D ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Let uf, u$, ... denote the corresponding scattered fields, and let I" = m I eg.

m=1

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

uj — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H_'/*.

‘ BIE-V: Set u® = Sp,1) where ¢ € V satisfies (Sp1, ¢) = —(u'|r, ¢), for p € V. ‘

Theorem (C-W, Hewett 2016)

This solution coincides with the solution to BVP-w
in which the boundary condition is enforced by u € VVO1 e D).




Prefractal convergence from above

Suppose R™ D T'; DT’y D ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Let uf, u$, ... denote the corresponding scattered fields, and let I" = m I eg.

m=1

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

uj — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H_'/*.

‘ BIE-V: Set u® = Syt where ¢ € V satisfies (Sp1,¢) = —(u'|r, ¢), for p € V. ‘

Theorem (C-W, Hewett 2016)

u® = 0 ifI' is countable or dimg I’ < n — 1.
u® #0 ifdimg ' >n —1.




Prefractal convergence from above

Suppose R™ D T'; DT’y D ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

I's = ['= Abnininis dimyg T =logy3 >n—1.

Let uf, uj, ... denote the corresponding scattered fields, and let I" = ﬂ I eg.

m=1

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

u‘; — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H_'/*.

| BIE-V: Set u® = Sy.¢) where v € V satisfies (S0, 0) = —(u'[p, ), for 6 € V. |

Theorem (C-W, Hewett 2016)

u® =0 ifI' is countable or dimyg I' < n — 1.
u® #0 ifdimg ' >n — 1.




Prefractal convergence from above: n =1,
[' = “Middle Third” Cantor set, dimpy ' = logz2 > 0

Accurate spectral computations by Mikaél Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n =1,

logs2 >0

[' = “Middle Third” Cantor set, dimg I’

Accurate spectral computations by Mikaél Slevinsky (Slevinsky, Olver 2017).
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logs2 >0

[' = “Middle Third” Cantor set, dimg I’

Accurate spectral computations by Mikaél Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n =1,

logs2 >0

[' = “Middle Third” Cantor set, dimg I’

Accurate spectral computations by Mikaél Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n =1,

logs2 >0

[' = “Middle Third” Cantor set, dimg I’

Accurate spectral computations by Mikaél Slevinsky (Slevinsky, Olver 2017).
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Back to Example 3, Cantor dust...

Let C2 := C, x C, C R? denote the “Cantor dust” (0 < a < 1/2):
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C?2 is uncountable and closed, with zero area (zero Lebesgue measure).

( log(4
Furthermore, dimy(C?) = 102’1(/)> >n—1lea>1/4
) og(l/a
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Question: Is the scattered field zero or non-zero for the sound-soft scat-
tering problem with I' = C?2?




Back to Example 3, Cantor dust...

Let C2 := C, x C, C R? denote the “Cantor dust” (0 < a < 1/2):
. . HE HEE o
N EE X

+“——> <>
1 «

C?2 is uncountable and closed, with zero area (zero Lebesgue measure).

. log(4
Furthermore, dimy(C?) = 102’1(/)> >n—1lea>1/4
og(1l/a

Question: Is the scattered field zero or non-zero for the sound-soft scat-
tering problem with I' = C?2?

Answer: ZERO, if 0 < « < 1/4; NON-ZERO, in general, if 1/4 < o < 1/2. ‘




Numerical results
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Numerical results - Cantor dust o = 1/3 (u® # 0)

k = 8, prefractal level 1
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Numerical results - Cantor dust o = 1/3 (u® # 0)

k = 8, prefractal level 2

far field z>0

Real part total field 1 Real part scattered field

02
05 01

)
o

-0.1
-0.5 0.2

03
1

0.4

@ (radial coord. is colatitude )
far field z<0
Magnitude total field 12 Magnitude scattered field 05

045
11

04
1 035

03
09

025
08 02
07 015

01
06

005
o5

-1 1
 (radial coord. is colatitude ¢)



Numerical results

k = 8, prefractal level 3
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Numerical results
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Numerical results - Cantor dust o = 1/3 (u® # 0)
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Real part total field

Magnitude total field

08
06
04
02

02
0.4
06

0.8

115
11
105

0.95
09
0.85
08
075
07
0.65

Real part scattered field

Magnitude scattered field

025

far field z>0

 (radial coord. is colatitude )

far field z<0

-1 1
 (radial coord. is colatitude ¢)




Numerical results

k = 8, prefractal level 0

Real part total field

Magnitude total field
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Numerical results - Cantor dust o = 1/10 (u®* =0

k = 8, prefractal level 1

Real part total field
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Numerical results - Cantor dust a = 1/10 (u* = 0)

k = 8, prefractal level 2
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Numerical results - Cantor dust a = 1/10 (u* = 0)

k = 8, prefractal level 3
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Numerical results - Cantor dust o = 1/10 (u®* =0
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Numerical results - Cantor dust a = 1/10 (u* = 0)

k = 8, prefractal level 5

Real part total field

Magnitude total field

1.0015

1.001

1.0005

0.9995

0.999

Real part scattered field

Magnitude scattered field

°

 (radial coord. is colatitude )

far field z<0

-1 1
 (radial coord. is colatitude ¢)

0.03

0.02

0.02

0.01

0.01

0.00

0.03

0.02

0.02

0.01

0.01

0.00



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g

v

.
Il



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g

I's =

Let uf, u, ... denote the corresponding scattered fields, and let I" = U I eg.

m=1



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g

I's = I'= , the Koch snowflake.

oo

Let uf, u, ... denote the corresponding scattered fields, and let I" = U I, eg.

m=1



Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g
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Let uf, u, ... denote the corresponding scattered fields, and let I" = U I eg.
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Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

uj — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H—'/(T°).

‘ BIE-V: Set u® = Sp¢ where ¢ € V satisfies (Sp1), ¢) = —(u'|r, @), for ¢ € V. ‘
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Prefractal convergence from below

Suppose I'y C T's C ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g

I's = I'= , the Koch snowflake.

o0
Let uf, u, ... denote the corresponding scattered fields, and let I" = U I eg.

m=1

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

uj — u® as j — oo, uniformly on closed subsets of D, where u® is the solution to
BIE-V with V = H—'/(T°).

‘ BIE-V: Set u® = Sp¢ where ¢ € V satisfies (Sp1), ¢) = —(u'|r, @), for ¢ € V. ‘
w:=u'+u® not in Wg-le¢(D) if H~Y/2(I°) S H%I/Q.

Open problem: Is H~1/2(I"°) = Hf_l/2 for the Koch snowflake?
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aperture I' = “Middle Third” Cantor set

By Babinet’s principle
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Variant on Example 1: Infinite sound hard screen with
aperture I' = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture I'; = — scattered field for sound soft screen I';.

Aperture I'; and Re uy;
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@ Sound can get through holes in both sound soft and sound hard screens, even
when the apertures have no interior points.



Recap — a few take homes

e All standard formulations coincide for the sound soft problem if " is a C°
open set
T—1/2 (T —1/2
If H=1/2(1°) G H
o there are infinitely many BIE solutions corresponding to different trial and
test space V with H~Y/2(I"°) c V ¢ H%1/2
o V= Hgl/Q is the right choice for approximation from above, e.g. Sierpinski
triangle, and implies u € Wyt°(D)
o V= H’l/z(Fo) is the right choice for approximation from below, e.g. Koch
snowflake, but implies u & W, "'°°(D)

Sound can get through holes in both sound soft and sound hard screens, even
when the apertures have no interior points.

@ Sound soft screens with zero surface area can scatter — and then
[Onu] € H%l/z is not a function



Recap — a few take homes

e All standard formulations coincide for the sound soft problem if " is a C°
open set
T—1/2 —1/2
o If H'/2(I'°) G HZ
o there are infinitely many BIE solutions corresponding to different trial and
test space V with H~Y/2(I"°) c V ¢ H%1/2
o V= H%UQ is the right choice for approximation from above, e.g. Sierpinski
triangle, and implies u € Wyt°(D)
o V= H’l/z(Fo) is the right choice for approximation from below, e.g. Koch
snowflake, but implies u & W, "'°°(D)
@ Sound can get through holes in both sound soft and sound hard screens, even
when the apertures have no interior points.
@ Sound soft screens with zero surface area can scatter — and then
[Onu] € H%l/z is not a function

@ This is interesting and surprising stuff, where subtle properties of Sobolev
spaces have physical implications!
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What else have we done?

| haven't talked today about:

o Hypersingular integral equations for sound hard fractal screens

e Proving that HE1/2(I'°) = H%El/2 for non-C? screens, e.g.

@ BVP Formulations that are equivalent to BIE-V for each choice of V
o Interpreting BIE-V as an equation St = —Py-u?, where S : V — V*
@ “Swiss Cheese” screens!

See the references, or talk to me or Dave, for details.



Many Open questions

o At what rate do prefractal solutions converge?

@ Numerical analysis in the joint limit of prefractal level and mesh refinement?
@ Regularity results for fractal solution?

o Curved screens?

o Maxwell case?

@ Inverse problems? ... R




A Final Reference

Lord Rayleigh, “Theory of Sound”, 2nd Ed., Vol. Il, Macmillan, New York, 1896:
the 19th century mathematics of screens and apertures



A Final Reference

Lord Rayleigh, “Theory of Sound”, 2nd Ed., Vol. Il, Macmillan, New York, 1896:
the 19th century mathematics of screens and apertures, pp.139-140.

| If Pcos(nt +e) denote the value of dg/dz at the various points
of the area (S) of the aperture, the condition for determining
P and ¢ is by (6) §278,

oo [P L4 iy on ... (9)

where 7 denotes the distance between the element dS and any
fixed point in the aperture. When P and e are known, the
complete value of ¢ for any point on the positive side of the scréen
is given by s
1 cos(nt—kr+e
¢=—§;ffP—ﬁ(—-r——-—)dS ........................... ®),

and for any point on the negative side by
b=+ El;rfch—mw:—MdS+ 2 cos nt cos ke ...... (4).

The expression of P and e for a finite aperture, even if of circular
form, is probably beyond the power of known methods; but in the

This is precisely BIE-V, admittedly not worrying about fractals or function spaces!
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Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:
o Take a sequence of points x1, 29, x3, ... that are dense in the aperture

e Fill in a circle of radius r; centred on z;.



Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:
@ Take a sequence of points x1, x5, x3, ... that are dense in the aperture
e Fill in a circle of radius 7; centred on ;.

Question: Is the transmitted field zero or non-zero in the limit? (The
limiting aperture is a so-called Swiss cheese.)




Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:
@ Take a sequence of points x1, x5, x3, ... that are dense in the aperture
e Fill in a circle of radius r; centred on z;.

Argument A: Limiting Swiss cheese aperture has area
A>m(l—7r?—73..). If A> 0 then sound transmitted?




Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:
o Take a sequence of points x1, zo, x3, ... that are dense in the aperture
o Fill in a circle of radius r; centred on z;.

Argument B: Limiting aperture has empty interior and u is continuous
so u = 0 also on the aperture and so no transmitted wave?
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