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Overview of the talk

© Lipschitz domains
@ What are they? An example we will meet later.

© Potential theory and 2nd kind boundary integral equations (BIEs)
@ A Dirichlet problem and 2nd kind BIE formulation
@ The Galerkin approximation to the BIE
@ A long-standing open problem: do Galerkin methods converge?

© The Hilbert space theory of Galerkin methods
@ Definitions of bounded, compact, coercive
@ Galerkin methods and their convergence

@ Do all sensible Galerkin methods (i.e., based on V' convergent to L?(I"))
converge for the standard 2nd kind BIEs?
@ Previous results
@ Solving the open problem: Constructing §2 for which A = I — D is not
coercive + compact



A bounded domain Q C R? is Lipschitz if, in a neighbourhood of each point
x € 0F), 0f) is the graph of a Lipschitz continuous function f, with respect to
some rotated coordinate system 0£;&2, with € on precisely one side of 1.



In equations,
NN Be(x) = {(&, f(&1)) : & € R} N Be(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)
[f(s) = f(O] < Lls —t], fors,t €R.



In equations,
NN Be(x) = {(&, f(&1)) : & € R} N Be(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)
[f(s) = f(O] < Lls —t], fors,t €R.

This allows corners, e.g. this f has L=1 ...
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In equations,
NN Be(x) = {(&, f(&1)) : & € R} N Be(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)
[f(s) = f(O] < Lls —t], fors,t €R.

Indeed it allows infinitely many corners, e.g. this f alsohas L =1 ...
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A bounded domain © C R? is Lipschitz if, in a neighbourhood of each point
x € 0F), 0f) is the graph of a Lipschitz continuous function f, with respect to
some rotated coordinate system 0&;...£4, with € on precisely one side of 0f2.



Where are we in this talk?

© Lipschitz domains

© Potential theory and 2nd kind boundary integral equations (BIEs)
@ A Dirichlet problem and 2nd kind BIE formulation

© The Hilbert space theory of Galerkin methods

@ Do all sensible Galerkin methods (i.e., based on V' convergent to L?(I"))
converge for the standard 2nd kind BIEs?



Assume that Q C R? (d = 2 or 3) is bounded and Lipschitz, and g € L(T").
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BVP: Find u € C?(Q) such that Au=0in Q and u =g on T.
Define the fundamental solution
1
——1 - d=2
Gla) = | “xlosle—vh d=2

(2ne —y)"L, d=3,
Look for a solution as the double-layer potential with density ¢ € L(T") (which
satisfies Au = 0 in Q):

G (z,y)

u(z) = Fw‘ﬁ(y)ds(y)

! /F(x_y)'n(y)sb(y)dS(y)
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for x € Q.



BVP: Find u € C?(Q) such that Au=0in Q and u =g on T.
Define the fundamental solution
1
——1 - d=2
Gla) = | “xlosle—vh d=2

(2ne —y)"L, d=3,
Look for a solution as the double-layer potential with density ¢ € L(T") (which
satisfies Au = 0 in Q):

G (z,y)

u(z) = FW¢(y)dS(y)

! /F(x_y)'n(y)dﬁy)dé’(y)

27 o e =l

for x € Q. This idea (with ¢ € C(T")) dates back to Gauss.




Look for a solution as the double-layer potential with density ¢ € L*(T):

_ [ 9G(z,y)
u(r) = g T(y)d)(y) ds(y), ze€Q.



Look for a solution as the double-layer potential with density ¢ € L*(T):

_ [ 9G(z,y)
u(r) = g T(y)éﬁ(y) ds(y), ze€Q.

This satisfies the BVP iff ¢ satisfies the boundary integral equation (BIE)
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Look for a solution as the double-layer potential with density ¢ € L*(T):

_ [ 9G(z,y)
u(r) = g T(y)d)(y) ds(y), ze€Q.

This satisfies the BVP iff ¢ satisfies the boundary integral equation (BIE)

o)~ [ T ty)dst) = ~g(o), w e

in operator form

¢—Dp=—g orAp=-—g,
where A =1 — D, I is the identity operator, and D is the double-layer potential
operator given by

[ 9G(=,y)

Do) = | T o) dsty), @ €T, 6 € L2(D)



The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢$—D¢p=—g orAp=—g,
where A=1— D.



The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢—D¢p=—g orAp=—g,
where A =1 — D. The Galerkin method for solving the BIE numerically is:
choose a basis vy, ..., v for a linear subspace Vi of L?(I") and approximate

N
d) ~ ¢N = anlanvn;

choosing the coefficients aq, ...,an € C so that

(AdN,vm) = —(g,vm), m=1,..,N, where (u,v):= / uv ds.
r



The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢p—Dp=—g orAp=—g,
where A =1 — D. The Galerkin method for solving the BIE numerically is:
choose a basis vy, ..., v for a linear subspace Vi of L?(I") and approximate

N
d) ~ ¢N = anlanvn;

choosing the coefficients aq, ...,an € C so that

(AdN,vm) = —(g,vm), m=1,..,N, where (u,v):= / uv ds.
r

Long-standing open problem. “For a general Lipschitz boundary I', however,
stability and convergence of Galerkin's method in L?(T") is not yet known.”
Wendland (2009)



Where are we in this talk?

© Lipschitz domains

© Potential theory and 2nd kind boundary integral equations (BIEs)

© The Hilbert space theory of Galerkin methods
@ Definitions of bounded, compact, coercive

@ Do all sensible Galerkin methods (i.e., based on V' convergent to L?(I"))
converge for the standard 2nd kind BIEs?
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A is finite rank if the range of A, A(H) := {Au: v € H}, has finite dimension.



H is a complex Hilbert space with inner product (u,v) and norm

[ull = /(u,u), eg.
H=I2D), (u0) :/uids, ME :/|u|2ds.
T r

A is a bounded linear operator on H if
A(Mu) = AMu, A(u+v)=Au+ Av, VYA eC, u,v € H,

and, for some C' > 0,
| Aul| < Cllull, Vu e H.

The norm of A is

|| Aull
IA]l = :
weH\{0} ]
A is finite rank if the range of A, A(H) := {Au: u € H}, has finite dimension.
A is compact if, for some sequence of finite rank operators Ay, As, ..., it holds

that |4 — A,|| = 0 as n — .
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(L= 1B lul*.
So A=1— B is coercive if || B|| < 1, with vy =1—||B|.



H is a complex Hilbert space with inner product (u,v) and norm

Jull = V/(u,u), eg.
H=1L1*T), (u,v) :/uﬁds7 (||| :/|u|2ds.
r r

Suppose that A is a bounded linear operator on H, with norm

|4l = sup .
uweH\{0} ]

A is coercive if, for some v > 0,

|(Au,u)| > A[lul®,  Vu e H.

E.g. if A= 1 — B, where [ is the identity operator and B is bounded,

(Au,u) = (u — Bu,u) = (u,u)— (Bu,u)
= ull® - (Bu,u)
> ull® = |(Bu,w)|
> |jul|* — ||Bul|| ||lu|| (Cauchy-Schwarz)
> lull® = | Bllul* (Definition of ||B])

(L= 1B lul*.
Indeed A is coercive iff A= 60(I — B) with § € C\ 0 and ||B|| < 1.



Suppose that A is a bounded linear operator on H.
A is invertible if
Au=yg

has exactly one solution u € H for every g € H, i.e. if A: H — H is bijective, in
which case (the Banach theorem) A has a bounded inverse A~!.
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Suppose that A is a bounded linear operator on H.
A is invertible if
Au=yg
has exactly one solution u € H for every g € H, i.e. if A: H — H is bijective, in
which case (the Banach theorem) A has a bounded inverse A~!.

The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), YveVy (G).

In the case that A is invertible, we will say that the Galerkin method is
convergent for the sequence V if, for every g € H, (G) has a unique solution
for all sufficiently large N and uy — u= A"1g as N — co.

We will say that V' converges to H if, for every u € H,

inf |lu—wn|]] =0 as N — occ.
vNEVN

It is clear that a necessary condition for the convergence of the Galerkin method
is that V' converges to H.



The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), YveVn (G).

The Main Abstract Theorem on the Galerkin Method.

Part a) (Markus, 1974). If A is invertible then there exists a sequence
V = (1, Vs, ...) for which the Galerkin method converges.

This is interesting theoretically, but not helpful for computation.
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The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), YveVn (G).

The Main Abstract Theorem on the Galerkin Method.

Part a) (Markus, 1974). If A is invertible then there exists a sequence
V = (1, Vs, ...) for which the Galerkin method converges.

This is interesting theoretically, but not helpful for computation.

Part b) (Céa, 1964). If A is coercive then, for every sequence V, (G) has a
unique solution uy for every N and

A
=l < 2L g = o),
v veEVN

souy = u=A"1gas N — oo if V converges to H.
This is a fantastically explicit result — provided A is coercive.

Part c¢) (Markus, 1974). If A is invertible then the following statements are
equivalent:

@ The Galerkin method converges for every V' that converges to H.

o A= Ay + K where Ay is coercive and K is compact.

This is almost as strong a result as Part b), with weaker requirements on A.
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What is known about the double-layer potential operator D and A=1— D
when  is Lipschitz? Remember the BIE in operator form is A¢p = —g.

e A is a bounded linear operator on L?(T) if Q is a bounded Lipschitz domain
(Coifman, Mclntosh, Meyer Ann. Math. 1982)

e A is invertible on L?(T") (Verchota J. Funct. Anal. 1984)

e D is compact (so A =1 — D is coercive + compact) if Q is C'! (Fabes,
Jodeit, Riviere Acta. Math. 1978)

e D =Dy+ C, with | Dg|| <1 and C compact, if Q is a (curvilinear) polygon
(Shelepov Soviet Math. Dokl. 1969, Chandler J. Austral. Math. Soc. Ser. B 1984)
so

A=T1-D=I1-Dy+ C
—— ~~~

coercive compact

@ The same holds if I is Lipschitz with small Lipschitz constant (I. Mitrea J.
Fourier Anal. Appl. 1999)
o A is coercive on H'/?(T') for a particular norm (Steinbach, Wendland J. Math.
Anal. Appl. 2001) — not so useful; inner product in H'/?(T) hard to compute
Key open question: is A = coercive + compact on L?(T")
@ for every bounded Lipschitz domain 7
@ at least for every bounded Lipschitz domain in 2D?
@ at least for every Lipschitz polyhedron in 3D?
The answer is NO in each case (C-W & Spence, 2021).



Where are we in this talk?

© Lipschitz domains

© Potential theory and 2nd kind boundary integral equations (BIEs)

© The Hilbert space theory of Galerkin methods

@ Do all sensible Galerkin methods (i.e., based on V' convergent to L?(I"))
converge for the standard 2nd kind BIEs?

@ Solving the open problem: Constructing Q2 for which A =1 — D is not
coercive + compact



The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), YveVy (G).

The Main Abstract Theorem on the Galerkin Method.
Part c) extended. If A is invertible then the following statements are equivalent:
@ The Galerkin method converges for every V' that converges to H.

o A= Ay+ K where Ay is coercive and K is compact.
0 0¢& Wess(A)
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Here Wess(A) denotes the essential numerical range of A, defined by
Wess(A) = ﬂ W(A + K),
K compact

where, for a bounded linear operator B, W (B) denotes the numerical range or
field of values of B, given by

W(B) :={(Bu,u) : ||u|| =1} = {(ﬁZ’g) tu € H\{O}}



The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), YveVy (G).

The Main Abstract Theorem on the Galerkin Method.

Part c) extended. If A is invertible then the following statements are equivalent:
@ The Galerkin method converges for every V' that converges to H.
o A= Ay+ K where Ay is coercive and K is compact.
0 0¢& Wess(A)

Here Wess(A) denotes the essential numerical range of A, defined by

Wess(A) = ﬂ W(A + K),
K compact

where, for a bounded linear operator B, W (B) denotes the numerical range or
field of values of B, given by

W(B) :={(Bu,u) : ||u|| =1} = {(ﬁg’g) tu € H\{O}}

If A=1— D and D is the double-layer potential operator, is 0 € Wegs(A)?
Equivalently, is 1 € Wes(D)?
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K compact
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K compact

A couple of simple lemmas.

Lemma A. If IV C T and D’ is the DLP operator on I, then, since
L2(I') c L3(I),

W(D) > W (D).
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A couple of simple lemmas.

Lemma A. If IV C T and D’ is the DLP operator on I, then, since
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Lemma B. If f is Lipschitz continuous and T' = {(s, f(s)) : 0 < s < 1} and, for
some 0 < a <1,
ol :'={ay:yel}CT

then Wess(D) = W (D).
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What is W (D) for the double-layer potential operator?

W(D) ={(D¢,¢): ¢ € L*(T), 6] =1}, Wes(D)= (] W(D+K).
K compact

Lemma B. If f is Lipschitz continuous and T' = {(s, f(s)) : 0 < s < 1} and, for
some 0 < a <1,

ol :'={ay:yel}CT

then Wess(D) = W(D,).
E.g.

The above holds because o' C ' = TD = DT, where Té(z) = a~/2¢(a"'z)
is an isometry on L*(T), and T"¢ — 0 as n — oo, V¢ € L*(T).



What is Wess(D) = W (D) for the double-layer potential operator on this
particular I'?

(D¢, )

W(D) = {(D6,6) : 6 € LA(T), 6] = 1} = { L6 L)\ {0}}
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What is Wess(D) = W (D) for the double-layer potential operator on this
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Choose N € N and define ¢ € L*(T) by
¢(x) == ¢y on T, form=1,...,N,

¢(z) := 0, otherwise.
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What is Wess(D) = W (D) for the double-layer potential operator on this
particular I'?

W(D) = {(D6,6) : 6 € LA(T), 6] = 1} = {

]2

Choose N € N and define ¢ € L*(T) by
¢(x) == ¢y on T, form=1,...,N,
¢(x) := 0, otherwise. Then, where ¢ = (¢1, o), and

D Ano,
Ay = [signin—m)(-1)"]Y it holds that  (D20) , (An©:9)
A ol 12l
as & — 17. So every neighbourhood of W (D) contains W(Ay) if « is close
enough to 1.




(n —m)(=1)"*]
= [sign n
AN :

N

)
m,n=1

e.g.



0o -1 1 -1

. n N -1 0 1 -1

Ay = [Slgn(” —m)(-1) +1]m7n:17 eg Ag= -1 1 0 -1
-1 1 -1 0

Lemma. spec(Ay) C {—1,0,1} for all N, but, for every R > 0, if N is large
enough,
{z€C:|z| < R} C W(AnN).
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-1 1 -1 0

Lemma. spec(Ay) C {—1,0,1} for all N, but, for every R > 0, if N is large
enough,

{z€C:|z| < R} C W(AnN).
Corollary. For this particular T and for every R > 0,

Wess(D) =W(D) D {2z € C:|z| < R}

if a is close enough to 1. e
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Corollary. For this domain Q, A =1 — D is not coercive + compact if « is close
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o -1 1 -1

. n N -1 0 1 -1

AN = [Slgn(n_m)(_l) +1]m,n=1’ €& A4 = —1 1 0 -1
-1 1 -1 0

Lemma. spec(Ayn) C {—1,0,1} for all N, but, for every R > 0, if N is large
enough,
{z€C:|z| < R} C W(An).

Corollary. For this particular ' and for every R > 0,
Wess(D) D {2z € C:|z| < R}

if « is close enough to 1. .-

Corollary. For this domain Q, A =1 — D is not coercive + compact if « is close
enough to 1. This counterexample solves the long-standing open problem.



3D Counterexamples that are Polyhedra

The ingredients we needed for the 2D counterexample were:
@ A subset I of the boundary I" that has the dilation invariance ol C IV, for
some 0 < a < 1, so that Wess(D) D Wess(D|2(rvy) = W(D|2(rr))

o Flat sides of I that we can push arbitrarily close together by adjusting a
parameter, reducing calculation of W (D|2(rv)) to calculation of W(Ay)




3D Counterexamples that are Polyhedra

The ingredients we needed for the 2D counterexample were:
@ A subset I of the boundary T" that has the dilation invariance oI” C TV, for
some 0 < a < 1, so that Wess(D) D Wess(D|r2(r)) = W(D|r2(rv))
o Flat sides of T that we can push arbitrarily close together by adjusting a
parameter, reducing calculation of W (D|L2(r+)) to calculation of W (Ay)

The “open book” polyhedron with four pages and opening angle 6§ = /4.



http://www.personal.reading.ac.uk/~sms03snc/polyhed.avi

On arXiv from tomorrow ...

Coercivity, essential norms, and the Galerkin method for
second-kind integral equations on polyvhedral and Lipschitz
domains

S. N. Chandler-Wilde*, E. A. Spencel

Dedicated to Wolfgang Wendland on the occasion of his 85th birthday

Abstract

It is well known that, with a particular choice of norm, the classical double-layer potential
operator D has essential norm < 1/2 as an operator on the natural trace space H'/2(T)
whenever I is the boundary of a bounded Lipschitz domain. This implies, for the standard
second-kind boundary integral equations for the interior and exterior Dirichlet and Neumann
problems in potential theory, convergence of the Galerkin method in H'/2(T') for any sequence
of finite-dimensional subspaces (Hy)¥_; that is asymptotically dense in H'/*(T'). Long-
standing open questions are whether the essential norm is also < 1/2 for D as an operator
on LQ(F) for all Lipschitz I' in 2-d; or whether, for all Lipschitz I" in 2-d and 3-d, or at
least for the smaller class of Lipschitz polyhedra in 3-d, the weaker condition holds that the
operators +41 + D are compact perturbations of coercive operators — this a necessary and
sufficient condition for the convergence of the Galerkin method for every sequence of subspaces
(HN)3F—; that is asymptotically dense in Z?(T'). We settle these open questions negatively. We
give examples of 2-d and 3-d Lipschitz domains with Lipschitz constant equal to one for which
the essential norm of D is > 1/2, and examples with Lipschitz constant two for which the
operators &2 + D are not coercive plus compact. We also give, for every C' > 0, examples of
Lipschitz polyhedra for which the essential norm is > C and for which AJ+ D is not a compact
perturbation of a coercive operator for any real or complex A with [A| < C. We then, via a
new result on the Galerkin method in Hilbert spaces, explore the implications of these results
for the convergence of Galerkin boundary element methods in the L*?(T) setting. Finally, we
resolve negatively a related open question in the convergence theory for collocation methods,
showing that, for our polyhedral examples, there is no weighted norm on C(I'), equivalent to
the standard supremum norm, for which the essential norm of D on C(T') is < 1/2.



Summary of the talk

© Lipschitz domains
@ What are they? An example we will meet later.

© Potential theory and 2nd kind boundary integral equations (BIEs)
@ A Dirichlet problem and 2nd kind BIE formulation
@ The Galerkin approximation to the BIE
@ A long-standing open problem: do Galerkin methods converge?

© The Hilbert space theory of Galerkin methods
@ Definitions of bounded, compact, coercive
@ Galerkin methods and their convergence

@ Do all sensible Galerkin methods (i.e., based on V' convergent to L?(I"))
converge for the standard 2nd kind BIEs?
@ Previous results
@ Solving the open problem: Constructing §2 for which A = I — D is not
coercive + compact
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