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Overview

I'll talk today about two specific acoustics problems.

Problem 1
source
x, receiver
( ground
Problem 2
2, _
%y yine Au+ k*u=20

u — u'™® satisfies radiation condition




Problem 1: Sound Propagation over Inhomogeneous
Impedance Plane

Problem I've worked on since 1985, 11 papers in J Sound Vib, IMA J Numer Anal,
Math Meth Appl Sci, J Math Anal Appl, Numer Math, Proc R Soc A, SINUM,
the last two with Steve Langdon (lvan’s 1999 PhD student).

Au+ k*u = —0d,
source y

e k£ > 0 is the wavenumber

e 3 € L*°(R), the impedance, is typically piecewise constant, and &3 > 0
o u satisfies standard radiation condition at infinity



Problem 1: Simplest Case, 5 =0

Au+ FPu = -4,
source ¥

R/

image 1/
Solution by method of images is
u(w) = Golw,y) == { HEY (WR) + L H{D (kR)

where Hél) is a Hankel function.
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Solution by method of images is

u(w) = Golw,y) == { HEY (WR) + L H{D (kR)
where Hél) is a Hankel function.
N.B. Go(z,y) is just the Neumann Green's function.
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By Green's theorem — Gy(z,y) is the Neumann Green's function —

u(z) = Go(z,y) + / Go(z, 2)ikB(2)u(z)ds(z), z=e€U.

In particular, where ¢(x1) := u((z1,0)), and if y = (0,y2),

oten) = 317 (1ot +13) -5 / HO (K1 -2 )B(z)é(a)dzn, a < <b
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. k b
d(a1) = 5 Hy" (k\/x% +y§) -3 / HED (Kloy — 21)B(21)¢(21) dz1,  a < 21 <.

In C-W, Rahman, Ross (2002) we followed this advice to the letter!
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Theorem (C-VV7 Rahman, Ross 2002: plane wave incidence )

Suppose (3 takes values in compact subset Q) of the right-hand complex plane. Then,
after 7 iterations, provided kh < cq,

|6 = ¢nlloe < Cokhlog(1/kh),

and ¢y, is computed in O(N log N) operations.

This my first k-explicit estimate, and an early k-explicit estimate for BEM for wave
scattering (cf. Lohndorf, Melenk 2011, Graham, Lohndorf, Melenk, Spence 2015).
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Assume throughout that 2_ is bounded and Lipschitz.
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%, inc Au+ku=0
u

Il'u=20

u — u'™¢ satisfies radiation condition

Q

Assume throughout that 2_ is bounded and Lipschitz.

Theorem (Green’s Representation Theorem )

u(z) = u"(z) + / B(z,9)00uly) do(y), = €Dy

where _—
R YO L Lemm
2(ry) = gHy (e — ) (2D). = 7 (3D).






%" inc Au+k2u=0
u
INu=20

u — u'™® satisfies radiation condition

Taking a linear combination of Dirichlet (v4) and Neumann (9;") traces, we get
the boundary integral equation (Burton & Miller 1971)

sorue) + [ (%) (o)) ofuasts) = S(a), weT.

where
f = 8:lru1nc + in'}/+umc-
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in operator form Ay ,0,fu = f := 9, Fu™¢ + inypu™c.

+ind(e) ) O uly)ds(o) = (@), wET,
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u — u'™® satisfies radiation condition

soru)+ [ (B2 s iyate) ) o utasts) = fa). ae.

in operator form Ay ,0,fu = f := 9, Fu™¢ + inypu™c.

Theorem (Burtou & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

Ifn € R, n # 0, then this integral equation is uniquely solvable in L*(T).
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Theorem (C—VV & Monk 2008, C-W, Graham, Langdon, Lindner 2009, Han, Tacy,
Galkowski 2015, Baskin, Spence, Wunsch 2016)

Ifn =~k and Q_ is: (i) star-shaped with respect to a ball and piecewise smooth;
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1Akl S k'/2log k,

cond Ay, S kY2 log k.

~

14 S 1,
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Theorem ( C-W & Monk 2008, C-W, Graham, Langdon, Lindner 2009, Han, Tacy,

Galkowski 2015, Baskin, Spence, Wunsch 2016)

Ifn = k and Q_ is: (i) star-shaped with respect to a ball and piecewise smooth;
or (ii) C*> and non-trapping; then, as an operator on L?(T), for k > ko,

IAG I S 1, Akl S % logk, cond A, S k2 logk.

This k-dependence translates to BEM discretisations.

B Al v | 14
5| 3.089 1.024
10| 3611 023 | 1.024
20 | 4608 035 | 1.023
40 | 6.032 039 [ 1.023
80| 8117 043 | 1.023
160 | 11.068 045 | 1.023
320 | 15253 046 | 1.023
640 | 21.177 047 | 1.023

Galerkin BEM discretisations for a square of sidelength 2, using piecewise constants, 10 elements
per wavelength, from Betcke, C-W, Graham, Langdon, Lindner (2011)
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How do you bound ||A;}| for k > ko? (Recipe from Baskin,
Spence, Wunsch 2016)
Au+ k*u = f € L?(Q,), compactly supported

l'u=geHYT)

u satisfies radiation condition
Q.

Step 1 (Resolvent Estimate). Show that, for every R > 0, if g =0,

IVullLzap) + EllullLzg) < C(k)HfHL2(Q+)7
where Qg := {z € Q4 : |z| < R}.
Step 2 (DtN Map Bound). It follows that, if f =0,
||87TU||L2(F) S (k) (HVF9HL2(I‘) + kHQHLZ(F))
Step 3 As (C-W, Graham et al 2012) A; ) = I — (P}, —ik)Py,p, and Py, is bounded
in Spence (2015), it follows that || A} || < c(k)k'/2.
Sharper by a factor k'/2 if Q_ is starlike (Melenk 1995), or is C>° (Baskin et al 2016)
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First bound on A} for Q_ trapping (using this recipe).

This bound is for neutrally trapping obstacles, e.g.

Theorem (C—W, Graham, Langdon, Lindner 2009, C-W, Spence 2017)

For trapping domains like this (neutrally trapping) it holds, for k > kg, that
1AL LN S B2, and that k971 < || ALl

if ka is a multiple of .

@ The lower bound is from C-W, Graham, Langdon, Lindner (2009)

@ The upper bound uses the Baskin et al recipe plus a new resolvent bound for
trapping domains: main ingredient the Rellich/Morawetz-identity arguments of
C-W & Monk (2005, 2008)

@ The upper bound reduces to k% if Q_ is C°.
@ The recipe can also be used (with Burq 1998) to get worst case bound

@ Numerical results suggest the lower bound is sharper



Theorem (C—W", Graham, Langdon, Lindner 2009, C-W, Spence 2017)

For trapping domains like this (neutrally trapping) it holds, for k > kg, that
1A I S k572, and that k710 < || AL,

if ka is a multiple of .

k] IAeell o [ 4Gl p
5| 4835 1.969
10| 5201 0.11| 3.121 0.66
20| 5629 0.11| 5539 0.83
40 | 6.182 0.14 | 10322 0.90
80| 8112 0.39 | 19.774 0.94
160 | 11.066 0.45 | 38.351 0.96
320 | 15.254 0.46 | 75.156  0.97

Galerkin BEM discretisations for the trapping domain with ka a multiple of 7, using piecewise
constants, 10 elements per wavelength, from Betcke, C-W, Graham, Langdon, Lindner (2011)



Conclusions

I've said something about integral equation formulations and k-explicit estimates

for two (representative) problems in acoustics that have connected me to lvan
over the last 31 years.

Problem 1
source

T, receiver

s ground

Problem 2

u — u'™® satisfies radiation condition




Conclusions

Ivan thank you for your friendship over 31 years ... and Happy 65th Birthday!




