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Overview

This talk is about what, with assistance of Ivan, I’ve worked on throughout my
career, namely

(i) solving
∆u+ k2u = 0

by integral equation methods.

And what I’ve worked on for much of my career, partly collaborating with Ivan

(ii) understanding how everything depends on k.
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Overview

I’ll talk today about two specific acoustics problems.

Problem 1

source

x, receiver

source

x, receiver

ground

Problem 2

uinc

u = 0

∆u+ k2u = 0

u− uinc satisfies radiation condition



Problem 1: Sound Propagation over Inhomogeneous
Impedance Plane

Problem I’ve worked on since 1985, 11 papers in J Sound Vib, IMA J Numer Anal,
Math Meth Appl Sci, J Math Anal Appl, Numer Math, Proc R Soc A, SINUM,
the last two with Steve Langdon (Ivan’s 1999 PhD student).

∆u+ k2u = −δy
source y

xx

∂u

∂x2
+ ikβu = 0

k > 0 is the wavenumber

β ∈ L∞(R), the impedance, is typically piecewise constant, and <β ≥ 0

u satisfies standard radiation condition at infinity



Problem 1: Simplest Case, β ≡ 0

∆u+ k2u = −δy
source y

image y′

xx
R

R′

∂u

∂x2
= 0

Solution by method of images is

u(x) = G0(x, y) :=
i

4
H

(1)
0 (kR) +

i

4
H

(1)
0 (kR′)

where H
(1)
0 is a Hankel function.

N.B. G0(x, y) is just the Neumann Green’s function.
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Problem 1: Case where β is zero outside γ = [a, b]

a bγ

∆u+ k2u = −δy
source y

U
xx

∂u

∂x2
+ ikβu = 0

By Green’s theorem – G0(x, y) is the Neumann Green’s function –

u(x) = G0(x, y) +

∫
γ

G0(x, z)ikβ(z)u(z)ds(z), x ∈ U.

In particular, where φ(x1) := u((x1, 0)), and if y = (0, y2),

φ(x1) =
i

2
H

(1)
0

(
k
√
x2

1 + y2
2

)
−k

2

∫ b

a

H
(1)
0 (k|x1−z1|)β(z1)φ(z1)dz1, a ≤ x1 ≤ b.
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Ivan perfect person to consult: expert (with Kendall Atkinson, Ian Sloan,
Graeme Chandler, Claus Schneider, ...) on methods for integral equations with

kernels like H
(1)
0 (k|t− s|) = log |t− s|A(s, t) +B(s, t) where A,B are smooth.

Also an expert in the singularities in these equation. E.g. Graham (1982), if

φ(t) = f(t) +

∫ 1

0

κ(t− s)φ(s)ds, 0 ≤ t ≤ 1,

and f ∈ L1[0, 1] and κ is in a Nikol’skii space intermediate between L1[−1, 1] and
W 1

1 [−1, 1], then, for m ∈ N,

φ = finite linear combination of known singularities + ψ,

with ψ ∈Wm
1 [0, 1]. E.g., if f ∈ C∞[0, 1] and κ(s− t) = H

(1)
0 (c|s− t|) then

φ(s) = φ(0)s(x) + φ(1)s(1− x) + ψ(s),

with s(x) =
∫ x

0
κ(t)dt = O(x ln |x|) and ψ ∈W 1

1 [0, 1]. See C-W, Gover (1989).
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Problem 1: Case where β is constant (= βc) outside
γ = [a, b]: C-W, Rahman, Ross (2002)

φ(x1) =
i

2
H

(1)
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(
k
√
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1 + y2
2

)
− k
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∫ b

a

H
(1)
0 (k|x1 − z1|)β(z1)φ(z1) dz1, a ≤ x1 ≤ b.

Numerical method ingredients:

Uniform grid, stepsize h = (b− a)/N

Approximate β ∈ L∞[a, b] by its local average on each grid subinterval

Piecewise constant approximation for φ

Collocation: enforce equation at midpoint of each subinterval.

Solve the order N linear system by a two-grid method (cf. Atkinson, Graham, SISC
1992), using that matrix is Diagonal + Toeplitz ∗ Diagonal

Theorem (C-W, Rahman, Ross 2002: plane wave incidence )

Suppose β takes values in compact subset Q of the right-hand complex plane. Then,
after 7 iterations, provided kh ≤ cQ,

‖φ− φh‖∞ ≤ CQkh log(1/kh),

and φh is computed in O(N logN) operations.

This my first k-explicit estimate, and an early k-explicit estimate for BEM for wave
scattering (cf. Löhndorf, Melenk 2011, Graham, Löhndorf, Melenk, Spence 2015).
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Problem 2: Scattering by Sound Soft Obstacles: Integral
Equations and k-Explicit Bounds on the Operators

uinc

Γ u = 0

∆u+ k2u = 0

Ω+

Ω− u− uinc satisfies radiation condition

Assume throughout that Ω− is bounded and Lipschitz.

Theorem (Green’s Representation Theorem)

u(x) = uinc(x) +

∫
Γ

Φ(x, y)∂+
n u(y) ds(y), x ∈ Ω+.

where

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|) (2D), :=

1

4π

eik|x−y|

|x− y|
(3D).
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1
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∂+
n u(x) +

∫
Γ
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∂Φ(x, y)

∂n(x)
+ iηΦ(x, y)
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n u(y)ds(y) = f(x), x ∈ Γ,
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n u
inc + iηγ+u
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If η ∈ R, η 6= 0, then this integral equation is uniquely solvable in L2(Γ).

Theorem (C-W & Monk 2008, C-W, Graham, Langdon, Lindner 2009, Han, Tacy,
Galkowski 2015, Baskin, Spence, Wunsch 2016)

If η ≈ k and Ω− is: (i) star-shaped with respect to a ball and piecewise smooth;
or (ii) C∞ and non-trapping; then, as an operator on L2(Γ), for k ≥ k0,

‖A−1
k,η‖ . 1, ‖Ak,η‖ . k1/2 log k, condAk,η . k1/2 log k.
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How do you bound ‖A−1
k,k‖ for k ≥ k0? (Recipe from Baskin,

Spence, Wunsch 2016)

Γ u = g ∈ H1(Γ)

∆u+ k2u = f ∈ L2(Ω+), compactly supported

Ω+

Ω− u satisfies radiation condition

Step 1 (Resolvent Estimate). Show that, for every R > 0, if g = 0,

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(Ω+),

where ΩR := {x ∈ Ω+ : |x| < R}.
Step 2 (DtN Map Bound). It follows that, if f = 0,

‖∂+
n u‖L2(Γ) . c(k)

(
‖∇Γg‖L2(Γ) + k‖g‖L2(Γ)

)
Step 3 As (C-W, Graham et al 2012) A−1

k,k = I − (P+
DtN − ik)P−ItD and P−ItD is bounded

in Spence (2015), it follows that ‖A−1
k,k‖ . c(k)k1/2.

Sharper by a factor k1/2 if Ω− is starlike (Melenk 1995), or is C∞ (Baskin et al 2016)
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First bound on A−1
k,k for Ω− trapping (using this recipe).

This bound is for neutrally trapping obstacles, e.g.

Ω−
a

Ω−

Theorem (C-W, Graham, Langdon, Lindner 2009, C-W, Spence 2017)

For trapping domains like this (neutrally trapping) it holds, for k ≥ k0, that

‖A−1
k,k‖ . k5/2, and that k9/10 . ‖A−1

k,k‖

if ka is a multiple of π.

The lower bound is from C-W, Graham, Langdon, Lindner (2009)

The upper bound uses the Baskin et al recipe plus a new resolvent bound for
trapping domains: main ingredient the Rellich/Morawetz-identity arguments of
C-W & Monk (2005, 2008)

The upper bound reduces to k2 if Ω− is C∞.

The recipe can also be used (with Burq 1998) to get worst case bound

Numerical results suggest the lower bound is sharper
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Ω−

a

Theorem (C-W, Graham, Langdon, Lindner 2009, C-W, Spence 2017)

For trapping domains like this (neutrally trapping) it holds, for k ≥ k0, that

‖A−1
k,k‖ . k5/2, and that k9/10 . ‖A−1

k,k‖,

if ka is a multiple of π.

Galerkin BEM discretisations for the trapping domain with ka a multiple of π, using piecewise

constants, 10 elements per wavelength, from Betcke, C-W, Graham, Langdon, Lindner (2011)



Conclusions

I’ve said something about integral equation formulations and k-explicit estimates
for two (representative) problems in acoustics that have connected me to Ivan
over the last 31 years.

Problem 1

source

x, receiver

source

x, receiver

ground

Problem 2

uinc

u = 0

∆u+ k2u = 0

u− uinc satisfies radiation condition



Conclusions

Ivan thank you for your friendship over 31 years ... and Happy 65th Birthday!

2017 1986


