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In acoustics the increase in air pressure at x at time ¢, U(z,t), satisfies
1 0%°U 0? 0? 0?
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If time-dependence is time harmonic, i.e.,
U(z,t) = A(z) cos(p(x) — wt),
for some w = 27 f > 0, with f = frequency, then
Uz, t) =R (u(z)e™ ")
where u(z) = A(z) exp(ip(z)) satisfies the Helmholtz equation
Au+ E*u =0,

with & = w/c the wavenumber. E.g. if u(xz) = exp(ikz - d), for some unit
vector d, then

Uz, t) = R (u(z)e ") = cos(kz - d — wt)
is a plane wave travelling in direction d with wavelength

A=2n/k=c/f.



Challenges of Au + k*u = 0 when £ is large
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Challenges of Au + k*u = 0 when £ is large

1. Solution is oscillatory and multiscale: one scale is the wavelength A = 27 /k.
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R(u(z)) = U(x,0) for 2-d scat-
te;ring of incident plane wave
u'™(z) = exp(ikd - z).

2. In the singular limit © — oo the wave equation transitions to a
particle/ray/billiards model
z) ~ Zuj(x)
J

source where sum over rays passing through x, with
x
= optical length of th = ks;
wall / ground arg u;(x) ptical length of ray pa S
u;(xz)] = amplitude determined by
The rigorous justification of such ap- energy conservation

proximations is the concern of semi-

classical analysis. but with multiplication of w;(z) by coeffi-

cients accounting for reflection and diffrac-
tion events.
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What is this talk about?

U satisfies Sommerfeld rad. cond. (SRC)

Au + Eu = f (source, compactly supported)

u=>0

This talk is about wavenumber-explicit bounds, i.e. bounds explicit in k, for
wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It's about cases where the obstacle is nontrapping, e.g. star-shaped (like above
example).

But particularly about cases where the obstacle is trapping supporting a trapped
ray/billiard trajectory.

Including cases where the obstacle has more than one component, in other words
multiple scattering.
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@ The three known estimates and their geometries
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@ The Morawetz/Rellich identity method of proof
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@ Implications for hp-BEM

@ Conclusions
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It is the wavenumber-explicit bound that, for R > 0, and some specified ¢(k),
IVullL2p) + FllullLz@ry S (B fllL2r),  for k> ko > 0.
A < B means A < CB, where C > 0 independent of £ and f, but depends on R.

We will see that resolvent estimates give us: bounds on DtN maps, on inverses of
boundary integral operators, on errors in FEM, BEM, ...
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The known estimates and their geometries

Nontrapping obstacle (C*: Morawetz, Ralston, Strauss 1977, Vainberg 1975,
Melrose & Sjostrand 1982; polygon: Baskin & Wunsch 2013)

IVullL2p) + Ellullz2p) S I llz2r), ie c(k) =1

Nontrapping: there exists 7' > 0 such that all the billiard trajectories starting in
Qp at time zero and travelling at unit speed leave Qi by time T'.
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Two or more C*° strictly convex, positive curvature obstacles
(Ikawa 1988, Burg 2004), example of hyperbolic, unstable trapping
IVullL2(0p) + EllullLz@q) S 1082+ B) I fllL2q), e c(k) =log(2+ k),
so only logarithmically worse than the nontrapping case.
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General C'*™° “worst case” bound (Burq 1998): for some « > 0,
i.e. c(k) = exp(ak).

IVullL2 ) + FllullL2@r) S exp(ak)|[fllL2p);

This achieved for some k., — oo when there is elliptic, stable trapping
(Cardoso, Popov 2002; Betcke, C-W, Graham, Langdon, Lindner 2011)
with a quasimode localised around the trapped ray.
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AU RRu = f o

Theorem (C—W', Spence, Gibbs, Smyshlyaev 2017)

IVullL2p) + FllullLz@n) S KN Fll2@n), i c(k) = k2.

Applies to a general Lipschitz obstacle class, in particular when
xgeq -n(x) >0 on the boundary

Further,

Vullr2(ap) + Ellull L2 2 klfllzz@p). for k =mn/a, m = 1,2, ....




Recap of resolvent estimates for trapping obstacles

IVullL2p) + FllullLz@ry S (B fllL2@r),  for k> ko >0,

where ¢(k) = 1 for nontrapping obstacles, and

= 00 I

c(k) = exp(ak) c(k) =log(2+ k) c(k) = k2
elliptic hyperbolic parabolic
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Cathleen Morawetz (1923-2017), Courant Institute, New York.

Listen to the interviews at
https://www.simonsfoundation.org/2012/12/20/cathleen-morawetz/

e.g. on women in mathematics, working with Courant, Courant and flexible working, the
founding of the Courant Institute, ...
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The Morawetz/Rellich identity method
Used for:
@ Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
@ “Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
@ A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier Zu by
Zu = Z - Vu —ikfu + au,

where Z, o, ( are real-valued, with Z - n > 0 on the boundary, and

2§R/ Zufdx =28 E(Au+k?2u)dx=/ +ve —|—/ +ve
QR QR Qg oQg

In rough surface scattering (C-W, Monk 2005) use Z(z) = zqeq, « =1/2, B =R, to
get

/Q |0qul® dz < —2R i Zufde < €l|Zull720,) + € 172
R R

then use Friedrichs inequality to bound [|u|| 2(q,,) in terms of [|Oaul|L2(q,)-
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Q

Assume throughout that Q_ is bounded and Lipschitz. Plot of R(u(z)) = U(x,0):

Refu]




Integral Equations and k-Explicit Bounds

% inc Au+k2u=0
u
IN'u=20

inc

u — u'™C satisfies radiation condition

Q4

Assume throughout that 2_ is bounded and Lipschitz.

Theorem (Green’s Representation Theorem )

ule) = (@) + [ @ p)0Fuly) dsy), @ €

where kil
i 1 eMi*=Y
(a.y) = JHy (Klz —y]) (2D), := 3D).

dr | —y|






%" inc Au+k2u=0
u
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u — u'™® satisfies radiation condition

Taking a linear combination of Dirichlet (v4) and Neumann (9;") traces, we get
the boundary integral equation (Burton & Miller 1971)

sorue) + [ (%) (o)) ofuasts) = S(a), weT.

where
f = 8:{,“1110 + i77’Y+UmC~
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in operator form
ApnOfu= f:=0Fu™ +inyru™.

Theorem (Burton & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

Ifn € R, n# 0, then this integral equation is uniquely solvable in L*(T).
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The standard choice is 7 = k, and with this choice we have
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if Q_ is star-shaped (C-W, Monk 2008) or C'*° and nontrapping (Baskin, Spence,

Wunsch 2016).



u — u'™® satisfies radiation condition

soru)+ [ (B2 s iyate) ) o utasts) = fa). ae.

on(x

in operator form
A= fri= 05 u™ +iny u™

Theorem (Burton & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

Ifn € R, n # 0, then this integral equation is uniquely solvable in L*(T).

The standard choice is 7 = k, and with this choice we have
1A, L2 y— 2y S 1

if Q_ is star-shaped (C-W, Monk 2008) or C'*° and nontrapping (Baskin, Spence,

Waunsch 2016). But what if 2_ is trapping?
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Step 1 (Resolvent Estimate). Show that, for every R > 0, if g =0,
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Step 3 As (C-W, Graham, Langdon, Spence 2012)
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and Py, is bounded in Spence (2015), Baskin, Spence, Wunsch (2016), it follows that
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A recipe for bounding ||A7L|| (¢, Spence, Gibbs, Smyshlyaev 2017
k.k
Au+ k?u = f € L*(2), compactly supported
[u=geHY)

u satisfies radiation condition
0,

Step 1 (Resolvent Estimate). Show that, for every R > 0, if g =0,

IVull2g) + Ellull2 gy S c(B)fllz@, ),
where Qr == {z € Q4 : |z| < R}.
Step 2 (DtN Map Bound). It follows that, if f =0,

||aiu||L2(r) S (k) (HVFQHLZ(F) + k’HQHL?(r))
Step 3 As (C-W, Graham, Langdon, Spence 2012)

A;}x =1- (PgtN - ik’)P;tD
and Pj,p, is bounded in Spence (2015), Baskin, Spence, Wunsch (2016), it follows that
HAA_',};:HLz(F)AL?(F) S (k)

if each component of 2_ is star-shaped or C°°.



Recap of resolvent estimates for trapping obstacles

IVull 2y + Ellullz@q) S c(k)fllL2@r), for k= ko >0,
where ¢(k) = 1 for nontrapping obstacles, and

= 00 I+

c(k) = exp(ak) c(k) = log(2 + k) c(k) = k?
elliptic hyperbolic parabolic




Recap of resolvent estimates for trapping obstacles

IVullz2@p) + Ellullzz ) S (Bl fllz2@py,  for k> ko >0,
where ¢(k) = 1 for nontrapping obstacles, and

= 00 I+

c(k) = exp(ak) c(k) =log(2 + k) c(k) = k?
elliptic hyperbolic parabolic

Applying our general recipe

1AL 2@y = 2y S (k)



Recap of resolvent estimates for trapping obstacles

IVull 2y + Ellullz@q) S c(k)fllL2@r), for k= ko >0,
where ¢(k) = 1 for nontrapping obstacles, and

= 00 I+

c(k) = exp(ak) c(k) = log(2 + k) c(k) = k?
elliptic hyperbolic parabolic

Applying our general recipe, for some N > 0,

HAI:,};”Lz(F)*)LZ(F) <clk) < EN

in the nontrapping and hyperbolic and parabolic trapping cases.



Application to hp-BEM analysis

o0 I

hyperbolic parabolic

For these configurations N > 0 s.t. ||A,:}{HL2(F)HL2(F) <EN, k>ko>0.

Corollary (Lshndorf, Melenk 2011)

Suppose T is analytic and Ty, is a quasi-uniform triangulation with mesh size h.
Then, given ko > 0, 3C1, Cs, C5 such that, if k > ko,

kh

<Ci, and p>Cylog(2+k),

then the Galerkin hp-BEM solution vy, € SP(T},) satisfies the quasi-optimal error
estimate

Vhpy — O u <C inf v—0Tu .
vy — Op ull L2y < svespm)” o ullL2 ()
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Conclusions

In this talk you have seen:
@ All the resolvent estimates that exist for (Dirichlet) obstacles
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@ In particular our new bound for parabolic trapping obstacles
@ The Morawetz/Rellich identity method for proving these estimates
@ How resolvent estimates lead in a “black box” way to:

e bounds on the DtN map
e bounds on ||A,:}{HLzﬁLz
o hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A;:}{ as
an operator on H*(T'), for —1 < s < 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415
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