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A bounded domain Ω ⊂ R2 is Lipschitz if, in a neighbourhood of each point
x ∈ ∂Ω,

∂Ω ∩Bε(x) = {(ξ1, f(ξ1)) : ξ1 ∈ R} ∩Bε(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)

|f(s)− f(t)| ≤ L|s− t|, for s, t ∈ R.

This allows corners, e.g. this f has L = 1 ...
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Where are we in this talk?

1 Lipschitz domains and an example we will meet later

2 Potential theory, 2nd kind boundary integral equations, and a
long-standing open question

3 The Hilbert space theory of Galerkin methods

4 Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L2 inner products, converge for the standard
2nd kind BIEs on Lipschitz and polyhedral domains?

5 Some open questions



Ω Γ = ∂Ω
∆u = 0 u = g
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Assume that Ω ⊂ Rd (d = 2 or 3) is bounded and Lipschitz, and g ∈ L2(Γ).

Define the fundamental solution

G(x, y) :=

{
− 1

π
log |x− y|, d = 2,

(2π|x− y|)−1, d = 3,

Look for a solution as the double-layer potential with density φ ∈ L2(Γ):

u(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y)

=
1

2d−2π

∫
Γ

(x− y) · n(y)

|x− y|d
φ(y) ds(y),

for x ∈ Ω. This idea (with φ ∈ C(Γ)) dates back to Gauss.
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Look for a solution as the double-layer potential with density φ ∈ L2(Γ):

u(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y), x ∈ Ω.

This satisfies the BVP iff φ satisfies the boundary integral equation (BIE)

φ(x)−
∫

Γ

∂G(x, y)

∂n(y)
φ(y) ds(y) = −g(x), x ∈ Γ,

in operator form
φ−Dφ = −g or Aφ = −g,

where A = I −D, I is the identity operator, and D is the double-layer potential
operator given by

Dφ(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y), x ∈ Γ, φ ∈ L2(Γ).
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The double-layer potential satisfies the BVP iff φ satisfies the BIE in operator
form

φ−Dφ = −g or Aφ = −g,
where A = I −D.

The Galerkin method for solving the BIE numerically is:
choose a finite-dimensional subspace VN ⊂ L2(Γ) and approximate

φ ≈ φN ∈ VN ,
where

(AφN , ψN ) = −(g, ψN ), ∀ψN ∈ VN , and (u, v) :=

∫
Γ

uv̄ ds.

Long-standing open problem. “For a general Lipschitz boundary Γ, however,
stability and convergence of Galerkin’s method in L2(Γ) is not yet known.”
Wendland (2009)
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H is a complex Hilbert space with inner product (u, v) and norm
‖u‖ =

√
(u, u) , e.g.

H = L2(Γ), (u, v) =

∫
Γ

uv ds, ‖u‖2 =

∫
Γ

|u|2 ds.

A is a bounded linear operator on H if

A(λu) = λAu, A(u+ v) = Au+Av, ∀λ ∈ C, u, v ∈ H,

and, for some C ≥ 0,
‖Au‖ ≤ C‖u‖, ∀u ∈ H.

The norm of A is

‖A‖ := sup
u∈H\{0}

‖Au‖
‖u‖

.

A is finite rank if the range of A, A(H) := {Au : u ∈ H}, has finite dimension.

A is compact if, for some sequence of finite rank operators A1, A2, ..., it holds
that ‖A−An‖ → 0 as n→∞.
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(u, u) , e.g.

H = L2(Γ), (u, v) =

∫
Γ

uv ds, ‖u‖2 =

∫
Γ

|u|2 ds.

Suppose that A is a bounded linear operator on H.

A is coercive if, for some γ > 0,

|(Au, u)| ≥ γ‖u‖2, ∀u ∈ H.

E.g. if A = I −B, where I is the identity operator and B is bounded,

|(Au, u)| = |(u−Bu, u)| = |(u, u)− (Bu, u)| ≥ (1− ‖B‖)‖u‖2.

So A = I −B is coercive if ‖B‖ < 1, with γ = 1− ‖B‖.

Indeed A is coercive iff A = θ(I −B) with θ ∈ C \ 0 and ‖B‖ < 1.
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Suppose that A is a bounded linear operator on H.

The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN (G).

In the case that A is invertible, we will say that the Galerkin method is
convergent for the sequence V if, for every g ∈ H, (G) has a unique solution
for all sufficiently large N and uN → u := A−1g as N →∞.

We will say that V is asymptotically dense in H if, for every u ∈ H,

inf
vN∈VN

‖u− vN‖ → 0 as N →∞.

It is easy to see that a necessary condition for the convergence of the Galerkin
method is that V is asymptotically dense in H.
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The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN .

The Key Abstract Theorem. (Markus, 1974). If A is invertible then the
following statements are equivalent:

The Galerkin method converges for every V that is asymptotically dense in H.

A = A0 +K where A0 is coercive and K is compact.

The above implies that, if A is not coercive + compact, then there exists at least
one asymptotically dense sequence V = (V1, V2, ...) for which the Galerkin
method does not converge.

Theorem. (C-W, Spence 2022) If A is not coercive + compact then, for every
asymptotically dense V = (V1, V2, ...), there exists a sequence V ∗ = (V ∗1 , V

∗
2 , ...)

for which the Galerkin method does not converge which is sandwiched by V ,
meaning that, for each N ,

VN ⊂ V ∗N ⊂ VMN
, for some MN ≥ N.

N.B. VN ⊂ V ∗N implies that V ∗ is also asymptotically dense.
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What is known about the double-layer potential operator D and A = I −D
when Ω is Lipschitz? Remember the BIE in operator form is Aφ = −g.

A is a bounded linear operator on L2(Γ) if Ω is a bounded Lipschitz domain
(Coifman, McIntosh, Meyer Ann. Math. 1982)

A is invertible on L2(Γ) (Verchota J. Funct. Anal. 1984)

D is compact (so A = I −D is coercive + compact) if Ω is C1 (Fabes,

Jodeit, Rivière Acta. Math. 1978)

D = D0 + C, with ‖D0‖ < 1 and C compact, if Ω is a (curvilinear) polygon
(Shelepov Soviet Math. Dokl. 1969, Chandler J. Austral. Math. Soc. Ser. B 1984)

so
A = I −D = I −D0︸ ︷︷ ︸

coercive

+ C︸︷︷︸
compact

The same holds if Γ is Lipschitz with small Lipschitz constant (I. Mitrea J.

Fourier Anal. Appl. 1999, C-W, Spence Numer. Math. 2022)

A is coercive on H1/2(Γ) equipped with a specific norm (Steinbach, Wendland

J. Math. Anal. Appl. 2001) – but inner product in H1/2(Γ) harder to compute

Open question: is A = coercive + compact on L2(Γ)

for every bounded Lipschitz domain Ω?
at least for every bounded Lipschitz domain in 2D?
at least for every Lipschitz polyhedron in 3D?

The answer is NO in each case (C-W & Spence, Numer. Math. 2022).
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The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN .

The Key Abstract Theorem extended.

If A is invertible then the following statements are equivalent:

The Galerkin method converges for every V that is asymptotically dense in H.

A = A0 +K where A0 is coercive and K is compact.

0 6∈Wess(A)

Here Wess(A) denotes the essential numerical range of A, defined by

Wess(A) :=
⋂

K compact

W (A+K),

where, for a bounded linear operator B, W (B) denotes the numerical range or
field of values of B, given by

W (B) := {(Bu, u) : ‖u‖ = 1}.

Key question: If A = I −D and D is the double-layer potential operator, is
0 ∈Wess(A)? Equivalently, is 1 ∈Wess(D)?
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Theorem. (C-W, Spence 2022) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) ⊃ {z ∈ C : |z| ≤ L/2}.

Thus, if L ≥ 2, then 1 ∈Wess(D), so that A = I −D is not coercive + compact.

slope L

Γ

How is this proved? By three simple lemmas and a calculation ...
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Three simple lemmas.

Lemma A. If Γ′ ⊂ Γ and D′ is the DLP operator on Γ′, then

W (D′) ⊂W (D).

Γ′

Γ

Lemma B. If Γ′ and Γ are similar and D′ is the DLP operator on Γ′, then

W (D′) = W (D).

Γ

Γ′
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Lemma C. If Γ1 ⊂ Γ2 ⊂ ... Γ =
⋃∞
j=1 Γj , and Dj denotes the DLP on Γj , then

W (D) =

∞⋃
j=1

W (Dj).

Γ
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What can we say about W (D) for the DLP operator D on this Γ?

slope L

Γ

By Lemma A, W (D) ⊃W (D′) where D′ is the DLP operator on each of these
Γ′ in red. So, by Lemma B, also W (D) ⊃W (D′) where D′ is the DLP operator
on each of the red curves below.

So, by Lemma C, also W (D) ⊃W (D†) where D† is the DLP operator on the
infinite sawtooth. And W (D†) (by some explicit calculations – see later)
contains {z ∈ C : |z| ≤ L/2}. So we have proved ...
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Theorem. (C-W, Spence 2022) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

W (D) ⊃ {z ∈ C : |z| ≤ L/2}.
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Localisation Lemma. (C-W, Spence 2022, cf. I. Mitrea, 1999)

Wess(D) ⊇
⋂
δ>0

W (Dx,δ) , ∀x ∈ Γ,

where Dx,δ is the DLP operator on Γ ∩Bδ(x).
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In conclusion we have proved ...

Theorem. (C-W, Spence 2022) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) ⊃ {z ∈ C : |z| ≤ L/2}.

Thus, if L ≥ 2, then 1 ∈Wess(D), so that A = I −D is not coercive + compact.
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The DLP operator D† on the sawtooth graph Γ†

Γ† slope L

Theorem. Let D† be the DLP operator on the infinite sawtooth Γ† with slope
L. Then, as an operator on L2(Γ†),

W (D†) ⊃ {z ∈ C : |z| ≤ L/2} and ‖D†‖ ≥ L.

Proof. Let

V∗ := {φ ∈ L2(Γ†) : φ constant on each side of Γ†},

and let
P : L2(Γ†)→ V∗

be orthogonal projection. Then (cf. Lemma A)

W (D†) ⊃W (PD†|V∗) and ‖D†‖ ≥ ‖PD†|V∗‖.
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Γ0 Γ1Γ−1 Γ2 Γ3

Proof continued ... Moreover, for φ ∈ V∗,(
PD†φ

) ∣∣
Γm

=

∞∑
n=−∞

am−nφ
∣∣
Γn

(−1)n, where an := sgn(n)
∣∣(D†χ0, χn)

∣∣ ,
and χn is the normalised characteristic function of Γn.

So

‖PD†|V∗‖ = ‖a‖∞ where a(t) =

∞∑
n=−∞

aneint = −2i

∞∑
n=1

|an| sin(nt)

is the symbol of the bi-infinite Laurent matrix [am−n]. Moreover,

|an| =
L

πn
+O(n−2), n→∞, so that lim

t→0
|a(t)| = lim

t→0

2L

π

∣∣∣∣∣
∞∑
n=1

sin(nt)

n

∣∣∣∣∣ = L.

Thus
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In conclusion we have proved ...

Theorem. (C-W, Spence 2022) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) ⊃ {z ∈ C : |z| ≤ L/2}.

Thus, if L ≥ 2, then 1 ∈Wess(D), so that A = I −D is not coercive + compact.

slope L
Γ

Theorem. (C-W, Spence 2022) If A is not coercive + compact then for every
asymptotically dense V = (V1, V2, ...) there exists a sequence V ∗ = (V ∗1 , V

∗
2 , ...)

for which the Galerkin method does not converge which is sandwiched by V ,
meaning that, for each N ,

VN ⊂ V ∗N ⊂ VMN
, for some MN ≥ N.

Choose V to be any asymptotically dense sequence of BEM spaces. Then V ∗ is a
BEM space sequence (V ∗N ⊂ VMN

) that is asymptotically dense (VN ⊂ V ∗N ) for
which the Galerkin method does not converge.
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3D Polyhedra for which A = I −D is not coercive +
compact.

The “open book” polyhedron with four pages and opening angle θ = π/4.

http://www.personal.reading.ac.uk/~sms03snc/polyhed.avi


Some Open Questions

Are there Galerkin BEMs that provably converge for all Lipschitz domains, or
at least for all polyhedra (cf. Elschner 1992a, b, 1995) ?

Conversely, concrete examples of Galerkin BEMs that are not convergent?

For our 2D example

wess(D) := sup{|z| : z ∈Wess(D)} ≥ L/2,

but Kenig (1994) has conjectured that

ress(D) := sup{|z| : z ∈ specess(D)} < 1

for every Lipschitz Ω. Are our domains counterexamples to the Kenig
conjecture?
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https://arxiv.org/abs/2210.02432


Some Open Questions

Are there Galerkin BEMs that provably converge for all Lipschitz domains, or
at least for all polyhedra (cf. Elschner 1992a, b, 1995) ?

Conversely, concrete examples of Galerkin BEMs that are not convergent?

For our 2D example

wess(D) := sup{|z| : z ∈Wess(D)} ≥ L/2,

but Kenig (1994) has conjectured that

ress(D) := sup{|z| : z ∈ specess(D)} < 1

for every Lipschitz Ω. Are our domains counterexamples to the Kenig
conjecture? It seems not (C-W, Hagger, Perfekt, Virtanen, in preparation),
indeed Kenig’s conjecture is true if Ω is a Lipschitz polyhedron (Elschner,

Appl. Anal., 1992)

We have seen that I −D is not always coercive + compact. But are there
alternative 2nd kind formulations that are coercive + compact for every
Lipschitz Ω? Yes, in fact even coercive (C-W, Spence, arXiv:2210.02432, 2022).

https://arxiv.org/abs/2210.02432


Some Open Questions

Are there Galerkin BEMs that provably converge for all Lipschitz domains, or
at least for all polyhedra (cf. Elschner 1992a, b, 1995) ?

Conversely, concrete examples of Galerkin BEMs that are not convergent?

For our 2D example

wess(D) := sup{|z| : z ∈Wess(D)} ≥ L/2,

but Kenig (1994) has conjectured that

ress(D) := sup{|z| : z ∈ specess(D)} < 1

for every Lipschitz Ω. Are our domains counterexamples to the Kenig
conjecture? It seems not (C-W, Hagger, Perfekt, Virtanen, in preparation),
indeed Kenig’s conjecture is true if Ω is a Lipschitz polyhedron (Elschner,

Appl. Anal., 1992)

We have seen that I −D is not always coercive + compact. But are there
alternative 2nd kind formulations that are coercive + compact for every
Lipschitz Ω?

Yes, in fact even coercive (C-W, Spence, arXiv:2210.02432, 2022).

https://arxiv.org/abs/2210.02432


Some Open Questions

Are there Galerkin BEMs that provably converge for all Lipschitz domains, or
at least for all polyhedra (cf. Elschner 1992a, b, 1995) ?

Conversely, concrete examples of Galerkin BEMs that are not convergent?

For our 2D example

wess(D) := sup{|z| : z ∈Wess(D)} ≥ L/2,

but Kenig (1994) has conjectured that

ress(D) := sup{|z| : z ∈ specess(D)} < 1

for every Lipschitz Ω. Are our domains counterexamples to the Kenig
conjecture? It seems not (C-W, Hagger, Perfekt, Virtanen, in preparation),
indeed Kenig’s conjecture is true if Ω is a Lipschitz polyhedron (Elschner,

Appl. Anal., 1992)

We have seen that I −D is not always coercive + compact. But are there
alternative 2nd kind formulations that are coercive + compact for every
Lipschitz Ω? Yes, in fact even coercive (C-W, Spence, arXiv:2210.02432, 2022).

https://arxiv.org/abs/2210.02432


For more details see the open access paper ...
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