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We study the spectra and pseudospectra of semi-infinite 
and bi-infinite tridiagonal random matrices and their finite 
principal submatrices, in the case where each of the three 
diagonals varies over a separate compact set, say U, V, W ⊂ C. 
Such matrices are sometimes termed stochastic Toeplitz 
matrices A+ in the semi-infinite case and stochastic Laurent 
matrices A in the bi-infinite case. Their spectra, Σ = specA
and Σ+ = specA+, are independent of A and A+ as long 
as A and A+ are pseudoergodic (in the sense of Davies 
(2001) [20]), which holds almost surely in the random case. 
This was shown in Davies (2001) [20] for A; that the same 
holds for A+ is one main result of this paper. Although 
the computation of Σ and Σ+ in terms of U , V and W
is intrinsically difficult, we give upper and lower spectral 
bounds, and we explicitly compute a set G that fills the gap 
between Σ and Σ+ in the sense that Σ ∪ G = Σ+. We also 
show that the invertibility of one (and hence all) operators 
A+ implies the invertibility – and uniform boundedness of 
the inverses – of all finite tridiagonal square matrices with 
diagonals varying over U , V and W . This implies that the so-
called finite section method for the approximate solution of a 
system A+x = b is applicable as soon as A+ is invertible, and 
that the finite section method for estimating the spectrum 
of A+ does not suffer from spectral pollution. Both results 
illustrate that tridiagonal stochastic Toeplitz operators share 
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important properties of (classical) Toeplitz operators. Indeed, 
one of our main tools is a new stochastic version of the Coburn 
lemma for classical Toeplitz operators, saying that a stochastic 
tridiagonal Toeplitz operator, if Fredholm, is always injective 
or surjective. In the final part of the paper we bound and 
compare the norms, and the norms of inverses, of bi-infinite, 
semi-infinite and finite tridiagonal matrices over U , V and W . 
This, in particular, allows the study of the resolvent norms, 
and hence the pseudospectra, of these operators and matrices.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper we study so-called Jacobi operators over three sets U , V and W , meaning 
bi- and semi-infinite matrices of the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . .

. . . v−2 w−2
u−1 v−1 w−1

u0 v0 w0
u1 v1 w1

u2 v2
. . .

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and A+ =

⎛⎜⎜⎜⎜⎜⎜⎝
v1 w1
u2 v2 w2

u3 v3 w3
u4 v4

. . .
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠

(1)

with entries ui ∈ U , vi ∈ V and wi ∈ W for all i under consideration. The sets U , V and 
W are nonempty and compact subsets of the complex plane C, and the box marks the 
matrix entry of A at (0, 0). We will be especially interested in the case where the matrix 
entries are random (say i.i.d.) samples from U , V and W . Trefethen et al. [57] call the 
operator A a stochastic Laurent matrix in this case and A+ a stochastic Toeplitz matrix. 
We will adopt this terminology which seems appropriate given that one of our aims is to 
highlight parallels between the analysis of standard and stochastic Laurent and Toeplitz 
matrices.

It is known that the spectrum of A depends only on the sets U , V , and W , as long as 
A is pseudoergodic in the sense of Davies [20], which holds almost surely if A is stochastic 
(see the discussion below). Via a version, which applies to stochastic Toeplitz matrices, 
of the famous Coburn lemma [18] for (standard) Toeplitz matrices, a main result of 
this paper is to show that, with the same assumption of pseudoergodicity implied by 
stochasticity, also the spectrum of A+ depends only on U , V , and W . Moreover, we tease 
out very explicitly what the difference is between the spectrum of a stochastic Laurent 
matrix and the spectrum of the corresponding stochastic Toeplitz matrix. (The difference 
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will be that certain ‘holes’ in the spectrum of the stochastic Laurent case may be ‘filled 
in’ in the stochastic Toeplitz case, rather similar to the standard Laurent and Toeplitz 
cases.)

A second main result is to show that infinite linear systems, in which the matrix, taking 
one of the forms (1), is a stochastic Laurent or Toeplitz matrix, can be solved effectively 
by the standard finite section method, provided only that the respective infinite matrices 
are invertible. In particular, our results show that, if the stochastic Toeplitz matrix is 
invertible, then every finite n × n matrix formed by taking the first n rows and columns 
of A+ is invertible, and moreover the inverses are uniformly bounded. Again, this result, 
which can be interpreted as showing that the finite section method for stochastic Toeplitz 
matrices does not suffer from spectral pollution (cf. [42]), is reminiscent of the standard 
Toeplitz case.

Related work. The study of random Jacobi operators and their spectra has one of its 
main roots in the famous Anderson model [1,2] from the late 1950s. In the 1990s the 
study of a non-selfadjoint (NSA) Anderson model, the Hatano–Nelson model [31,44], led 
to a series of papers on NSA random operators and their spectra, see e.g. [25,20,19,43]. 
Other examples of NSA models are discussed in [16,17,57,37]: one example that has 
attracted significant recent attention (and which, arguably, has a particularly intriguing 
spectrum) is the randomly hopping particle model due to Feinberg and Zee [21,22,11,
13,12,27–29,14]. A comprehensive discussion of this history, its main contributors, and 
many more references can be found in Sections 36 and 37 of [58].

A theme of many of these studies [57,58,11,13,12,28,14], a theme that is central to 
this paper, is the relationships between the spectra, norms of inverses, and pseudospec-
tra of random operators, and the corresponding properties of the random matrices that 
are their finite sections. Strongly related to this (see the discussion in the ‘Main results’ 
paragraphs below) is work on the relation between norms of inverses and pseudospectra 
of finite and infinite classical Toeplitz and Laurent matrices [51,3,9]. In between the clas-
sical and stochastic Toeplitz cases, the same issues have also been studied for randomly 
perturbed Toeplitz and Laurent operators [5–7,4]. This paper, while focussed on the spe-
cific features of the random case, draws strongly on results on the finite section method 
in much more general contexts: see [35] and the ‘Finite sections’ discussion below. With 
no assumption of randomness, the finite section method for a particular class of NSA 
perturbations of (selfadjoint) Jacobi matrices is analysed recently in [42].

We will build particularly on two recent studies of random Jacobi matrices A and A+

and their finite sections. In [27] it is shown that the closure of the numerical range of 
these operators is the convex hull of the spectrum, this holding whether or not A and A+

are normal operators. Further, an explicit expression for this numerical range is given: 
see (33) below. In [39] progress is made in bounding the spectrum and understanding 
the finite section method applied to solving infinite linear systems where the matrix is 
a tridiagonal stochastic Laurent or Toeplitz matrix. This last paper is the main starting 
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point for this present work and we recall key notations and concepts that we will build 
on from [39] in the following paragraphs.

Matrix notations. We understand A and A+ as linear operators, again denoted by A and 
A+, acting boundedly, by matrix–vector multiplication, on the standard spaces �p(Z)
and �p(N) of bi- and singly-infinite complex sequences with p ∈ [1, ∞]. The sets of 
all operators A and A+ from (1) with entries ui ∈ U , vi ∈ V and wi ∈ W for all 
indices i that occur will be denoted by M(U, V, W ) and M+(U, V, W ), respectively. For 
n ∈ N the set of n ×n tridiagonal matrices with subdiagonal entries in U , main diagonal 
entries in V and superdiagonal entries in W (and all other entries zero) will be denoted 
Mn(U, V, W ), and we set Mfin(U, V, W ) := ∪n∈NMn(U, V, W ). For X = �p(I) with I = N

or Z, we call a bounded linear operator A : X → X a band-dominated operator and write 
A ∈ BDO(X) if A is the limit, in the operator norm on X, of a sequence of band operators 
(i.e. bounded operators on X that are induced by infinite matrices with finitely many 
nonzero diagonals). For A = (aij)i,j∈I ∈ BDO(X), A� = (aji)i,j∈I ∈ BDO(X) denotes 
the transpose of A. The boundedness of the sets U , V and W implies that every operator 
in M(U, V, W ) or M+(U, V, W ) is bounded and hence band-dominated (of course even 
banded). We use ‖ · ‖ as the notation for the norm of an element of X = �p(I), whether 
I = N, Z, or −N = {. . . , −2, −1}, or I is a finite set, and use the same notation for the 
induced operator norm of a bounded linear operator on X (which is the induced norm 
of a finite square matrix if I is finite). If we have a particular p ∈ [1, ∞] in mind, or want 
to emphasise the dependence on p, we will write ‖ · ‖p instead of ‖ · ‖.

Random alias pseudoergodic operators. Our particular interest is random operators in 
M(U, V, W ) and M+(U, V, W ). We model randomness by the following deterministic con-
cept: we call A ∈ M(U, V, W ) pseudoergodic and write A ∈ ΨE(U, V, W ) if every finite 
Jacobi matrix over U , V and W can be found, up to arbitrary precision, as a submatrix 
of A. Precisely, for every B ∈ Mfin(U, V, W ) and every ε > 0 there is a finite square sub-
matrix C of A such that ‖B − C‖ < ε. Here C is composed of rows i = k + 1, . . . , k + n

and columns j = k + 1, . . . , k + n of A, where k is some integer and n is the size of B. 
By literally the same definition we define semi-infinite pseudoergodic matrices A+ and 
denote the set of these matrices by ΨE+(U, V, W ). Pseudoergodicity was introduced by 
Davies [20] to study spectral properties of random operators while eliminating proba-
bilistic arguments. Indeed, if all matrix entries in (1) are chosen independently (or at 
least not fully correlated) using probability measures whose supports are U , V and W , 
then, with probability one, A and A+ in (1) are pseudoergodic.

Fredholm operators, spectra, and pseudospectra. Recall that a bounded linear operator 
B : X → Y between Banach spaces is a Fredholm operator if the dimension, α(B), of its 
null-space is finite and the codimension, β(B), of its image in Y is finite. In this case, 
the image of B is closed in Y and the integer indB := α(B) − β(B) is called the index
of B. Equivalently, B is a Fredholm operator if it has a so-called regularizer C : Y → X
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modulo compact operators, meaning that BC − IY and CB − IX are both compact. 
For a bounded linear operator B on �p(I) with I ∈ {Z, N, −N}, we write specp B and 
specpess B for the sets of all λ ∈ C for which B−λI is, respectively, not invertible or not a 
Fredholm operator on �p(I). Because A and A+ in (1) are band matrices, their spectrum 
and essential spectrum do not depend on the underlying �p-space [34,36,52], so that we 
will just write specA and specess A for operators A ∈ M(U, V, W ) – and similarly for 
A+ ∈ M+(U, V, W ). Even more, if A+ ∈ M+(U, V, W ) or A ∈ M(U, V, W ) is Fredholm 
as an operator on �p(N) or �p(Z), respectively, both its Fredholm property and index are 
independent of p [52,36].

Following notably [58], we will be interested in not just the spectrum and essential 
spectrum, but also the ε-pseudospectrum, the union of the spectrum with those λ ∈ C

where the resolvent is well-defined with norm > ε−1. Precisely, for an n × n complex 
matrix B, or a bounded linear operator B on �p(I) with I ∈ {Z, N}, we define, for 
1 ≤ p ≤ ∞ and ε > 0,

specpεB :=
{
λ ∈ C : ‖(B − λI)−1‖p > ε−1} , (2)

with the convention that ‖A−1‖p := ∞ if A is not invertible (so that specp B ⊂ specpεB). 
While specp B is independent of p (and so abbreviated as specB), the set specpεB depends 
on p in general. It is a standard result (see [58] for this and the other standard results 
we quote) that

specB + εD ⊂ specpεB, (3)

with D := {z ∈ C : |z| < 1} the open unit disk. If p = 2 and B is a normal matrix 
or operator then equality holds in (3). Clearly, for 0 < ε1 < ε2, specB ⊂ specpε1 B ⊂
specpε2 B, and specB =

⋂
ε>0 specpε B (for 1 ≤ p ≤ ∞). Where S denotes the closure of 

S ⊂ C, a deeper result, see the discussion in [56] (summarised in [12]), is that

specpεB = SpecpεB :=
{
λ ∈ C : ‖(B − λI)−1‖p ≥ ε−1} . (4)

Interest in pseudospectra has many motivations [58]. One is that specpεB is the union of 
spec(B + T ) over all perturbations T with ‖T‖p < ε. Another is that, unlike specB in 
general, the pseudospectrum depends continuously on B with respect to the standard 
Hausdorff metric (see (63) below).

Limit operators. A main tool of our paper, and of [39], is the notion of limit operators. 
For A = (aij)i,j∈Z ∈ BDO(X) with X = �p(Z) and h1, h2, . . . in Z with |hn| → ∞ we 
say that B = (bij)i,j∈Z is a limit operator of A if, for all i, j ∈ Z,

ai+hn,j+hn
→ bij as n → ∞. (5)

The boundedness of the diagonals of A ensures (by Bolzano–Weierstrass) the existence 
of such sequences (hn) and the corresponding limit operators B. From A ∈ BDO(X) it 



S.N. Chandler-Wilde, M. Lindner / Journal of Functional Analysis 270 (2016) 802–841 807
follows that B ∈ BDO(X). The closedness of U , V and W implies that B ∈ M(U, V, W )
if A ∈ M(U, V, W ). We write σop(A) for the set of all limit operators of A. Similarly, 
B = (bij)i,j∈Z is a limit operator of A+ = (aij)i,j∈N ∈ BDO(�p(N)) if (5) holds for a 
sequence (hn) in N with hn → +∞. Note that limit operators are always given by a 
bi-infinite matrix, no matter if the matrix A or A+ to start with is bi- or semi-infinite. 
The following lemma summarises the main results on limit operators:

Lemma 1.1. Let A ∈ BDO(�p(I)) with I ∈ {Z, N} and let B be a limit operator of A. 
Then:

a) (See [47].) It holds that ‖B‖ ≤ ‖A‖.
b) (See [47,49].) If A is Fredholm then B is invertible, and B−1 is a limit operator of 

any regularizer C of A. (Note that B, B−1 ∈ BDO(�p(Z)) and C ∈ BDO(�p(I)) hold 
if A ∈ BDO(�p(I)).)

c) (See [47,35,15,40].) A is Fredholm iff all its limit operators are invertible.
d) (See [20,35].) If A ∈ M(U, V, W ) or A ∈ M+(U, V, W ) then A is pseudoergodic iff 

σop(A) = M(U, V, W ).
e) (See [46].) If A ∈ BDO(�p(N)) is Fredholm then B+ := (Bij)i,j∈N is Fredholm and 

ind(A) = ind(B+).

So we immediately get that A ∈ ΨE(U, V, W ) is Fredholm iff all B ∈ M(U, V, W ) are 
invertible, in which case of course A ∈ M(U, V, W ) is invertible.

Finite sections. A further topic of [39] and our paper is the so-called finite section method 
(FSM). This method aims to approximately solve an equation Ax = b, i.e.∑

j∈Z

aij x(j) = b(i), i ∈ Z, (6)

by truncating it to ∑
ln≤j≤rn

aij xn(j) = b(i), ln ≤ i ≤ rn, (7)

where the cut-off points l1, l2, . . . → −∞ and r1, r2, . . . → +∞ are certain, sometimes 
well-chosen, integers. The aim is that, assuming invertibility of A (i.e. unique solvability 
of (6) for all right-hand sides b), also (7) shall be uniquely solvable for all sufficiently 
large n and the solutions xn shall approximate the solution x of (6) (in the sense that, 
for every right hand side b, it holds as n → ∞ that ‖xn − x‖ → 0, if 1 ≤ p < ∞, that 
‖xn‖ = O(1) and xn(j) → x(j) for every j ∈ Z, if p = ∞). If that is the case then the 
FSM is said to be applicable to A (or we say that the FSM applies to A).

If i and j in (6) only run over the positive integers, N, then this system corresponds 
to a semi-infinite equation A+x+ = b+. The FSM is then to freeze ln at 1 and only let 
rn go to +∞. Otherwise the terminology is identical.
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Applicability of the FSM is equivalent [45,53,49] to invertibility of A plus stability of 
the sequence of finite matrices

An := (aij)rni,j=ln
, n = 1, 2, . . . . (8)

The latter means that, for all sufficiently large n, the matrices An (the so-called fi-
nite sections of A) are invertible and their inverses are uniformly bounded, in short: 
lim supn→∞ ‖A−1

n ‖ < ∞. This, moreover, is known [39,54] to be equivalent to the in-
vertibility of A and of certain semi-infinite matrices that are associated to A and to the 
cut-off sequences (ln) and (rn). Those associated semi-infinite matrices are partial limits 
(in the strong topology) of the upper left and the lower right corner of the finite matrix 
An as n → ∞. Precisely, the associated matrices are the entrywise limits

(ai+l′n,j+l′n)∞i,j=0 → B+ and (ai+r′n,j+r′n)0i,j=−∞ → C− as n → ∞ (9)

of semi-infinite submatrices of A, where (l′n)∞n=1 and (r′n)∞n=1 are subsequences of (ln)∞n=1
and (rn)∞n=1, respectively, such that the limits (9) exist. So B+ and C− are one-sided 
truncations of limit operators of A; they tell us what we find in the limit when jumping 
along the main diagonal of A via the sequences l1, l2, . . . and r1, r2, . . . – or subsequences 
thereof. Hence, by the choice of the cut-off sequences (ln) and (rn), one can control the 
selection of associated matrices B+ and C− and consequently control the applicability 
of the FSM. Let us summarise all that:

Lemma 1.2. For A = (aij)i,j∈Z ∈ BDO(�p(Z)) and two cut-off sequences (ln)∞n=1 and 
(rn)∞n=1 in Z with ln → −∞ and rn → +∞, the following are equivalent:

i) the FSM (7) is applicable to A;
ii) the sequence (An)∞n=1, with An from (8), is stable;
iii) A and all limits B+ and C− from (9) are invertible;
iv) A and all limits B+ and C− from (9) are invertible, and the inverses B−1

+ and C−1
−

are uniformly bounded.

Proof. That applicability i) is equivalent to invertibility of A plus stability ii) is a classi-
cal result (called “Polski’s theorem” in [26]) for the case of strong convergence An → A, 
and it is in [53] for the more general case considered here. (Note that the convergence 
An → A is generally not strong if p = ∞.) That ii) is equivalent to iv) was shown in 
[48] for p = 2, in [49] for p ∈ [1, ∞) and in [35] for p ∈ [1, ∞]. So in particular, ii) implies 
invertibility of A and hence also i). The equivalence of iii) and iv) is shown in [50] for 
p ∈ (1, ∞) and in [38] for p ∈ [1, ∞]. The case of arbitrary monotonic cut-off sequences 
(ln) and (rn) can be found in [54,39]. �
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If the FSM is applicable to A then, for every right hand side b, xn(j) → x(j) as n → ∞
for every j ∈ Z, where xn is the solution to (7) and x that of (6). But this implies that 
‖x‖ ≤ lim infn→∞ ‖xn‖, for every b, and hence

lim inf
n→∞

‖A−1
n ‖ ≥ ‖A−1‖; and similarly lim inf

n→∞
‖An‖ ≥ ‖A‖, (10)

this latter holding whether or not the FSM is applicable to A. Complementing this bound, 
we remark that it can be deduced from [55, Proposition 3.1] (or see [30, Section 6]) that

lim sup
n→∞

‖A−1
n ‖ = sup{‖A−1‖, ‖B−1

+ ‖, ‖C−1
− ‖}, (11)

where this supremum is taken over all limits B+ and C− in (9), and is attained as a 
maximum if the FSM is applicable to A. In our arguments below we will not need (11), 
however, only the much simpler lower bound (10).

Versions of Lemma 1.2, (10), and (11) hold for semi-infinite matrices A+ = (aij)i,j∈N ∈
BDO(�p(N)), with the modification that ln = 1, which implies that every limit B+ in 
(9) is nothing but the matrix A+ again, so that in Lemma 1.2iii), iv) and (11) it is the 
invertibility of only A+ and C− that is at issue.

Remark 1.3 (Reflections). Often we find it convenient to rearrange/reflect the matrices 
C− = (cij)0i,j=−∞ from (9) as B+ = (c−j,−i)∞i,j=0. This rearrangement C− 
→ B+ cor-
responds to a matrix reflection against the bi-infinite antidiagonal; it can be written as 
B+ = RC�

−R, where R denotes the bi-infinite flip (xi)i∈Z 
→ (x−i)i∈Z. As an operator 
on �p, one gets ‖B+‖p = ‖RC�

−R‖p = ‖C�
−‖p = ‖C−‖q with1 p−1 + q−1 = 1. When we 

speak below about the FSM for A and its “associated semi-infinite submatrices B+” we 
will mean all B+ from (9) plus the reflections B+ = RC�

−R of all C− from (9).

A simple choice of cut-off sequences is to take ln = −n and rn = n for n = 1, 2, . . . . 
This is called the full FSM for A. For a semi-infinite matrix A+ the full FSM is to 
take ln = 1 and rn = n for n = 1, 2, . . . . In either case, the full FSM leads to more 
associated matrices B+ (and hence to a smaller chance for applicability of the FSM) 
than “thinning out” those cut-off sequences in a way that suits the matrix A (or A+) 
at hand. For example, if A ∈ ΨE(U, V, W ) then all B+ ∈ M+(U, V, W ) are associated to 
A in case of the full FSM. So, in addition to A itself, all B+ ∈ M+(U, V, W ) have to be 
invertible to make sure the full FSM applies to A. That is why, in [39], the cut-offs ln and 
rn have been placed very sparsely and in a special way that leads to all associated B+

being Toeplitz. A simple consequence of Lemma 1.2 is the following lemma which also 
(trivially, by the equivalence of i) and ii) in Lemma 1.2) holds for semi-infinite matrices 
A+ = (aij)i,j∈N (with ln = 1 in that case).

1 Here and in what follows we put ∞−1 := 0, so that p = 1 ⇒ q = ∞ and p = ∞ ⇒ q = 1.
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Lemma 1.4. If the full FSM applies to A = (aij)i,j∈Z ∈ BDO(�p(Z)) then the FSM with 
any monotonic cut-off sequences (ln)∞n=1 and (rn)∞n=1 applies to A.

Proof. Suppose that the full FSM method is applicable to A. Fix two arbitrary mono-
tonic cut-off sequences (ln)∞n=1 → −∞ and (rn)∞n=1 → +∞ and look at two associated 
matrices B+ and C− from (9) with respect to subsequences (l′n) and (r′n) of (ln) and (rn). 
Since (ln) and (rn) are (at least for sufficiently large n) subsequences of the sequences 
(−1, −2, −3, . . .) and (1, 2, 3, . . .) that are used for the full FSM, the same is true for (l′n)
and (r′n). So B+ and C− are also associated to A in case of the full FSM and so, by 
the equivalence of i) and iii) in Lemma 1.2, are invertible together with A. Again by the 
equivalence of i) and iii) in Lemma 1.2, since A and all matrices B+ and C− associated 
to these cut-off sequences are invertible, the FSM with cut-off sequences (ln) and (rn)
applies to A. �

Lemma 1.4 is why we place particular focus on the full FSM: it is the most demanding 
version of the FSM – if this version applies then all cut-off sequences will be fine.

Main results. Having set the notations, let us now sketch our main results. For operators 
A ∈ ΨE(U, V, W ) and B+ ∈ ΨE+(U, V, W ), we are interested in the four sets

specess A, specA, specess B+ and specB+.

From [39] we know that the first three sets coincide,

specess A = specA = specess B+, (12)

and are independent of A and B+, as long as these are pseudoergodic. We will show that 
also the fourth set, specB+, is independent of B+, and we indicate what the difference 
between the two sets is. The key to describe the difference between specess B+ and 
specB+ is a new result that has a famous cousin in the theory of Toeplitz operators: 
Coburn’s Lemma [18] says that, for every bounded and nonzero Toeplitz operator T+, 
one has α(T+) = 0 or β(T+) = 0, so that T+ is known to be invertible as soon as 
it is Fredholm and has index zero. We prove that the same statement holds with the 
Toeplitz operator T+ replaced by any B+ ∈ M+(U, V, W ) provided that 0 is not in (12). 
So specess B+ and specB+ differ by the set of all λ ∈ C for which B+ −λI+ is Fredholm 
with a nonzero index. We give new upper and lower bounds on the sets specess B+ and 
specB+, and we find easily computable sets G that close the gap between the two, i.e., 
sets G for which it holds that specB+ = G ∪ specess B+.

On the other hand, knowledge about invertibility of semi-infinite matrices B+ ∈
M+(U, V, W ) is all we need to study applicability of the FSM, so that our new Coburn-
type result has immediate consequences for the applicability of the FSM (even the full 
FSM) to pseudoergodic operators. In [39] the question of the applicability of the full 
FSM to an operator A+ ∈ ΨE+(U, V, W ) could not be settled (nor could, in [39], the 



S.N. Chandler-Wilde, M. Lindner / Journal of Functional Analysis 270 (2016) 802–841 811
applicability of the full FSM to A ∈ ΨE(U, V, W ): for brevity we just focus on the semi-
infinite case in this paragraph). Instead, the cut-off sequences for the FSM were chosen 
(“adapted to A+”) in a way that made all associated semi-infinite matrices C− in (9)
Toeplitz. Classical Coburn then implied invertibility of all these C−, as a consequence of 
their being Fredholm of index zero, which holds as long as A+ is invertible. Thanks to 
the new Coburn result, this “adaptation” twist is no longer needed. The full FSM can 
be seen to apply by exactly the same argument, but with the associated operators C−
no longer required to be Toeplitz.

Perhaps one of the main messages of our paper is that operators in ΨE+(U, V, W )
(termed “stochastic Toeplitz operators” in [57]) behave a lot like usual Toeplitz operators 
when it comes to

• the gap between essential spectrum and spectrum (both enjoy a lemma of Coburn 
type), and

• having an applicable FSM (in both cases, the FSM applies iff the operator is invert-
ible).

Similar coincidences can be shown for operators in ΨE(U, V, W ) (the “stochastic Laurent 
operators” in the terminology of [57]) and usual Laurent operators.

In Section 3 of our paper we show that the full FSM applies to A+ ∈ ΨE+(U, V, W ), 
and automatically to all other operators in M+(U, V, W ) and in M(U, V, W ), as soon as 
A+ is invertible. Even more, we show that all matrices in Mfin(U, V, W ) are invertible if 
A+ is invertible, so that the truncated systems (7) are uniquely solvable for all n ≥ 1
(as opposed to n ≥ n0 with an n0 that nobody knows). If A+ ∈ ΨE+(U, V, W ) is not 
invertible but Fredholm with index κ = κ(U, V, W ) �= 0, then the full (or any) FSM 
cannot be applied to any A ∈ M(U, V, W ). We however show that shifting the system 
Ax = b down by κ rows leads to a system to which the full (and hence any) FSM applies.

In Section 4 we bound and compare the norms, and the norms of inverses, of bi-
infinite, semi-infinite and finite Jacobi matrices over (U, V, W ). This, in particular, allows 
the study of the resolvent norms, and hence the pseudospectra, of these operators and 
matrices. For example we show for A+ ∈ ΨE+(U, V, W ) and A ∈ ΨE(U, V, W ) that, 
analogously to the corresponding result for the spectrum, specpεA+ = specpεA ∪ G, for 
ε > 0 and p = 2. Here G is any of the sets discussed above that closes the gap between 
specA = specess A+ and specA+. And we are able to make close connections between 
the pseudospectra of finite and infinite matrices, for example showing that the union 
of all finite matrix pseudospectra, ∪F∈Mfin(U,V,W ) specpε F , coincides with specpεA+, for 
p = 2. Our results in this section are a substantial generalisation of results in a study 
[12] of spectra and pseudospectra of a particular pseudoergodic Jacobi operator, the 
Feinberg–Zee random hopping matrix (U = W = {±1}, V = {0}). Our results on 
the relation between norms of inverses (and hence pseudospectra) of finite and infinite 
stochastic Toeplitz matrices, in particular our results on the convergence of norms, con-
dition numbers, and pseudospectra of finite sections to their infinite stochastic Toeplitz 
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counterparts, reproduce, in the case that U , V , and W are singletons, results for (clas-
sical) Toeplitz operators and matrices [51,3,9].

Main techniques. Besides the limit operator techniques behind Lemmas 1.1 and 1.2 that 
were the core of [39], our second main tool is a “glueing technique” – see (37) and (38)
– that is used in the proofs of two of our main results, Theorems 2.2 and 3.3 as well 
as in their quantitative versions, Propositions 4.5 and 4.10. This latter technique often 
complements the earlier in terms of relating finite, semi- and bi-infinite matrices to each 
other.

2. Spectra of pseudoergodic operators

We recall, as discussed in Section 1, that throughout the paper we consider the opera-
tors in M(U, V, W ) ⊃ ΨE(U, V, W ) and M+(U, V, W ) ⊃ ΨE+(U, V, W ) as acting on �p(Z)
and �p(N), respectively, for some p ∈ [1, ∞], and that the invertibility, Fredholmness (and 
also the index if Fredholm) of these operators is independent of p. In Theorem 2.1 of [39]
the following was shown:

Proposition 2.1. The following statements are equivalent:

(i) one operator in ΨE(U, V, W ) is Fredholm,
(ii) one operator in ΨE(U, V, W ) is invertible,
(iii) all operators in M(U, V, W ) are Fredholm,
(iv) all operators in M(U, V, W ) are invertible,
(v) one operator in ΨE+(U, V, W ) is Fredholm,
(vi) all operators in M+(U, V, W ) are Fredholm.

All these equivalences follow quickly from Lemma 1.1. Since the occurrence of one (and 
hence all) of the properties (i)–(vi) is obviously not a matter of a concrete operator but 
rather of the interplay between U , V and W , we will call the triple (U, V, W ) compatible
if (i)–(vi) hold. We will see below in Proposition 4.1 that, if (U, V, W ) is compatible, 
then also the inverses in (iv) are uniformly bounded, in fact bounded above by ‖A−1‖
for any A ∈ ΨE(U, V, W ).

The equivalence of (i), (ii), (iv), (v) and (vi) can also be expressed as follows: for 
every A ∈ ΨE(U, V, W ) and every B+ ∈ ΨE+(U, V, W ), it holds that

specess A = specA =
⋃

C∈M(U,V,W )

specC =
⋃

C+∈M+(U,V,W )

specess C+

= specess B+. (13)

Let us denote the set (13) by Σ(U, V, W ) since it clearly depends on U , V and W only 
and not on the choice of A or B+. Then (U, V, W ) is compatible iff 0 /∈ Σ(U, V, W ).
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To get a first idea of the set Σ := Σ(U, V, W ), let us look at simple lower and upper 
bounds on Σ, our discussion here taken from [39, Theorem 2.1a)]. A lower bound on

Σ =
⋃

C∈M(U,V,W )

specC (14)

is clearly found by taking this union over a set of simple matrices C ∈ M(U, V, W ) for 
which specC is known explicitly or is easily computed. Natural candidates are matrices 
C with periodic diagonals, and the simplest among those are matrices with constant 
diagonals – so-called Laurent (or bi-infinite Toeplitz) matrices.

If C is the (only) element of M({u}, {v}, {w}) with some u ∈ U , v ∈ V and w ∈ W , 
i.e. C is the tridiagonal Laurent matrix with u, v and w on its diagonals, then [8,10]

specC = {ut + v + wt−1 : t ∈ T} =: E(u, v, w) (15)

is the ellipse depicted in Fig. 1a below. Note that

E(u, v, w) = v + E(u,w) with E(u,w) := E(u, 0, w).

Also note that (15) gives the ellipse E(u, v, w) an orientation, based on the counter-
clockwise orientation of the unit circle T: the ellipse is oriented counter-clockwise if 
|u| > |w|, clockwise if |u| < |w|, and collapses into a line segment if |u| = |w|. From (14)
and specC = E(u, v, w) if C is Laurent, we get that the union of all ellipses E(u, v, w)
with u ∈ U , v ∈ V and w ∈ W is a simple lower bound on Σ:⋃

u∈U,v∈V,w∈W

E(u, v, w) ⊂ Σ(U, V,W ). (16)

Because we will come back to Laurent and Toeplitz operators, let us from now on write

T (u, v, w) := uS + vI + wS−1 and T+(u, v, w)

for the Laurent operator T ∈ M({u}, {v}, {w}), acting on �p(Z), and for its compression 
T+ to �p(N), which is a Toeplitz operator. Here we write S for the forward shift operator, 
S : x 
→ y with y(j + 1) = x(j) for all j ∈ Z, and S−1 for the backward shift. From (13)
and (15) (or [8,10]), specess T+(u, v, w) = specT (u, v, w) = E(u, v, w). Further,

specT+(u, v, w) = convE(u, v, w) (17)

is the same ellipse but now filled [8,10]. (Here convS denotes the convex hull of a set 
S ⊂ C.) Let Ein(u, v, w) and Eout(u, v, w) denote the interior and exterior, respectively, of 
the ellipse E(u, v, w), with the understanding that Ein(u, v, w) = ∅ and Eout(u, v, w) =
C \ E(u, v, w) when |u| = |w| and the ellipse E(u, v, w) degenerates to a straight line. 
The reason why the spectrum of a Toeplitz operator T+ is obtained from the spectrum 
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of the Laurent operator T (which is at the same time the essential spectrum of both T+
and T ) by filling in the hole Ein(u, v, w) can be found in the classical Coburn lemma [18]. 
We will carry that fact over to stochastic Toeplitz and Laurent operators. A key role 
will also be played by the following index formula. Let wind(Γ, z) denote the winding 
number (counter-clockwise) of an oriented closed curve Γ with respect to a point z /∈ Γ. 
For 0 /∈ E(u, v, w), so that T+ is Fredholm, it holds that [8,10]

indT+(u, v, w) = −wind(E(u, v, w), 0) =
{

0, 0 ∈ Eout(u, v, w),
sign(|w| − |u|), 0 ∈ Ein(u, v, w).

(18)

To get a simple upper bound on Σ, write A ∈ ΨE(U, V, W ) as A = D + T with 
diagonal part D = diag(vi) and off-diagonal part T and think of A as a perturbation of 
D by T with ||T || ≤ ε, where ε := u∗ + w∗ and

u∗ := max
u∈U

|u|, w∗ := max
w∈W

|w|.

Since A is in the ε-neighbourhood of D, its spectrum specA = Σ is in the 
ε-neighbourhood of specD ⊂ V . (Note that D is normal or look at Lemma 3.3 in [39].) 
In short,

Σ(U, V,W ) ⊂ V + (u∗ + w∗)D (19)

(recall that D := {z ∈ C : |z| < 1} is the open unit disk, and D is its closure). Note 
that the same argument, and hence the same upper bound, applies to the spectra of all 
(singly or bi-)infinite and all finite Jacobi matrices over U , V and W .

Sometimes equality holds in (19) but often it does not. For U = {1}, V = {0} and 
W = T, the lower (16) and upper bound (19) on Σ coincide so that equality holds in 
(19) saying that Σ = 2D. If we change W from T to {−1, 1} then the right-hand side 
of (19) remains at 2D while Σ is now smaller (it is properly contained in the square 
with corners ±2 and ±2i, see [12,13]). Taking W even down to just {1}, the spectrum Σ
clearly shrinks to [−2, 2] with the right-hand side of (19) still at 2D. So the gap in (19)
can be considerable, or nothing, or anything in between, really.

Equality (13) contains the formula

specess B+ =
⋃

C+∈M+(U,V,W )

specess C+ = Σ

for all B+ ∈ ΨE+(U, V, W ). One of our new results, Corollary 2.5 below, is that

specB+ =
⋃

C+∈M+(U,V,W )

specC+ =: Σ+ (20)

holds independently of B+ ∈ ΨE+(U, V, W ).
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Upper and lower bounds on Σ+ = Σ+(U, V, W ) can be derived in the same way as 
above for Σ. This time, because of (17), the ellipses in the lower bound (16) have to be 
filled in, while the upper bound from (19) remains the same, so that⋃

u∈U, v∈V, w∈W

convE(u, v, w) ⊂ Σ+(U, V,W ) ⊂ V + (u∗ + w∗)D. (21)

The results in this section will also make precise the difference between Σ and Σ+.
For nonzero Toeplitz operators T+ (semi-infinite matrices with constant diagonals), 

acting boundedly on �p(N), the following classical result fills the gap between essential 
spectrum and spectrum: at least one of the two integers, α(T+) and β(T+), is always 
zero. So if their difference is zero (i.e. T+ is Fredholm with index zero) then both numbers 
are zero (i.e. T+ is injective and surjective, hence invertible). This is Coburn’s Lemma 
[18], which was also found, some years earlier, by Gohberg [23] (but for the special case 
of Toeplitz operators with continuous symbol). Here is a new cousin of that more than 
50 years old lemma:

Theorem 2.2. If (U, V, W ) is compatible (i.e. (i)–(vi) hold in Proposition 2.1) then every 
B+ ∈ M+(U, V, W ) is Fredholm and at least one of the non-negative integers α(B+) and 
β(B+) is zero.

Proof. Let (U, V, W ) be compatible and take B+ ∈ M+(U, V, W ) arbitrarily. Then B+, 
with matrix representation (b̃ij)i,j∈N, is Fredholm since (i)–(vi) of Proposition 2.1 hold. 
Suppose that α(B+) > 0 and β(B+) > 0. Then there exist x ∈ �p(N) and y ∈ �q(N), 
with p−1 + q−1 = 1, x �= 0, and y �= 0, such that B+x = 0 and B�

+y = 0. Let a, b ∈ C, 
define z ∈ �∞(Z) by

z = (· · · , ay2, ay1, 0 , bx1, bx2, · · · )�,

where the box marks the entry z0, and define B ∈ M(U, V, W ) by its matrix representa-
tion (bij)i,j∈Z with

bij =

⎧⎪⎨⎪⎩
b̃ij , i, j ∈ N,

0, |i− j| > 1,
b̃−j,−i, i, j ∈ −N.

The remaining entries b0,−1, b1,0 ∈ U , b0,0 ∈ V and b0,1, b−1,0 ∈ W of B may be arbitrary. 
Then B+x = 0 and B�

+y = 0 together imply that (Bz)j = 0 for all j �= 0. Further,

(Bz)0 = b0,−1ay1 + b0,1bx1.

Clearly we can pick a, b ∈ C with a �= 0 or b �= 0 (so that z �= 0) to ensure that also 
(Bz)0 = 0 which implies that Bz = 0, so that B is not invertible on �∞(Z). But this 
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is a contradiction since B ∈ M(U, V, W ) is invertible by our assumption that the triple 
(U, V, W ) is compatible. �

An immediate corollary of [39, Theorem 2.1] or Proposition 2.1 and our Theorem 2.2
is the following Coburn lemma for pseudoergodic operators. This result reduces to the 
usual Coburn lemma for Toeplitz operators (at least to the special case in which the 
Toeplitz operator is tridiagonal) in the case that U , V , and W are singleton sets.

Corollary 2.3. If B+ ∈ ΨE+(U, V, W ) is Fredholm then at least one of α(B+) and β(B+)
is zero.

Proof. If an operator in ΨE+(U, V, W ) is Fredholm then (U, V, W ) is compatible by 
Proposition 2.1. Now apply Theorem 2.2 to B+. �

Similarly to the situation for Toeplitz operators, one can now derive invertibility of 
operators in M+(U, V, W ) from their Fredholmness and index. The additional result here 
that every B+ ∈ M+(U, V, W ) is Fredholm with the same index was first pointed out 
in [39], as a consequence of the main result from [46] (see our Lemma 1.1 e)), and will 
play an important role in our arguments.

Corollary 2.4. Let (U, V, W ) be compatible. Then every B+ ∈ M+(U, V, W ) is Fredholm 
with the same index

κ(U, V,W ) := indB+ ∈ {−1, 0, 1}.

Further, if indB+ = 0 then B+ is invertible; if indB+ = 1 then α(B+) = 1 and 
β(B+) = 0; and if indB+ = −1 then α(B+) = 0 and β(B+) = 1. These statements 
are independent of the choice of B+ ∈ M+(U, V, W ).

Proof. If the triple (U, V, W ) is compatible then every B+ ∈ M+(U, V, W ) is Fredholm, 
by Proposition 2.1. To see that all B+ ∈ M+(U, V, W ) have the same index, apply 
Lemma 1.1 e) to an A+ ∈ ΨE+(U, V, W ). Because M+(U, V, W ) includes the Toeplitz 
operators T+(u, v, w) with (u, v, w) ∈ (U, V, W ), it follows from (18) that κ(U, V, W ) ∈
{−1, 0, 1}. The remaining claims follow from Theorem 2.2. �
Corollary 2.5. An operator B+ ∈ ΨE+(U, V, W ) is invertible iff all operators C+ ∈
M+(U, V, W ) are invertible. In other words, for all B+ ∈ ΨE+(U, V, W ),

specB+ =
⋃

C+∈M+(U,V,W )

specC+,

this set denoted Σ+ = Σ+(U, V, W ) in (20).
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Proof. By Corollary 2.4 if one operator B+ ∈ ΨE+(U, V, W ) is invertible then (U, V, W )
is compatible, κ(U, V, W ) = 0, and all operators in M+(U, V, W ) are invertible. The 
formula for the spectrum follows by considering B+ − λI+ instead of B+. �

As an extension to this corollary we will see in Theorem 3.1 that, if B+ ∈
ΨE+(U, V, W ) is invertible, then

sup
C+∈M+(U,V,W )

‖C−1
+ ‖ < ∞. (22)

Before we explore further what the above results mean for spectra, we note some con-
sequences of Corollary 2.4 that are essentially captured in [39, Theorem 2.4]. If (U, V, W )
is compatible then Corollary 2.4 tells us that every B+ ∈ M+(U, V, W ) has the same 
index κ(U, V, W ). In particular κ = indT+(u, v, w), for every (u, v, w) ∈ (U, V, W ), this 
index given by (18). It follows that, if (U, V, W ) is compatible, then this index must 
have the same value for all (u, v, w) ∈ (U, V, W ), so that either 0 ∈ Eout(u, v, w) for all 
(u, v, w) ∈ (U, V, W ), in which case κ = 0, or 0 ∈ Ein(u, v, w) and |w| − |u| has the same 
sign for all (u, v, w) ∈ (U, V, W ), in which case κ = − wind(E(u, v, w), 0) = sign(|w| −|u|). 
Thus, if A+ ∈ ΨE+(U, V, W ) is Fredholm but not invertible, either

w∗ := min
w∈W

|w| > u∗ (when κ = 1) or u∗ := min
u∈U

|u| > w∗ (when κ = −1).
(23)

In the first case 0 is circumnavigated clockwise by all ellipses E(u, v, w), in the second 
the circumnavigation is counter-clockwise.

For λ ∈ C, put V −λ := {v−λ : v ∈ V } and note that B+−λI+ ∈ M+(U, V −λ, W ) iff 
B+ ∈ M+(U, V, W ). Similarly, B+−λI+ ∈ ΨE+(U, V −λ, W ) iff B+ ∈ ΨE+(U, V, W ). We 
split the complex plane C into four pairwise disjoint parts. To this end, fix an arbitrary 
B+ ∈ ΨE+(U, V, W ). The first part of the plane is our set Σ = Σ(U, V, W ) from (13),

Σ = {λ ∈ C : B+ − λI+ is not Fredholm}

= specess B+ =
⋃

C+∈M+(U,V,W )

specess C+

= {λ ∈ C : (U, V − λ,W ) is not compatible}.

The rest of the complex plane now splits into the following three parts: for k = −1, 0, 1, 
let

Σk := {λ ∈ C : ind(B+ − λI+) = k} = {λ ∈ C : κ(U, V − λ,W ) = k}.

So we have a partition (i.e. a splitting into pairwise disjoint sets) of C:

C = Σ ∪ Σ−1 ∪ Σ1︸ ︷︷ ︸ ∪ Σ0, (24)

Σ+
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where the equality

Σ+ = Σ ∪ Σ−1 ∪ Σ1 = C \ Σ0 (25)

holds by Corollary 2.4. So the difference between Σ+ = specB+ from (20) and Σ =
specess B+ from (13) is precisely Σ−1 ∪ Σ1.

The computation of these four parts of the plane, Σ, Σ−1, Σ1 and Σ0, is of course far 
from trivial (otherwise spectral theory of random Jacobi operators would be easy) but 
we will compare this partition of C with another partition of C that is closely related 
and, in contrast, easy to compute. To do this, let E denote the set of all ellipses E(u, v, w)
with u ∈ U , v ∈ V and w ∈ W , and put

E0 := {λ ∈ C : λ is outside of all ellipses in E},

E∩ := {λ ∈ C : λ is inside all ellipses in E},

E1 := {λ ∈ E∩ : λ is circumnavigated clockwise by all ellipses in E},

E−1 := {λ ∈ E∩ : λ is circumnavigated counter-clockwise by all ellipses in E},

E := C \ (E0 ∪E1 ∪ E−1),

E∪ := C \ E0 =
⋃

u∈U,v∈V,w∈W

convE(u, v, w).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

Obviously, at most one of the sets E1 and E−1 is nonempty. The set E consists of the 
points that lie on one of the ellipses, or they are inside some but outside other ellipses, or 
they are inside all ellipses but circumnavigated clockwise by some and counter-clockwise 
by others. We have

C = E ∪ E−1 ∪ E1 ∪ E0, (27)

in analogy to (24). But while the ingredients of (24) are in general notoriously difficult 
to compute, those of (27) are easily drawn. Before we relate (24) to (27), it is perhaps 
time for an example.

Example 2.6. Take U = {−1, 1}, V = {0} and W = {2}. Neither Σ nor Σ+ is precisely 
known in this case (but see [13,27] for bounds on both). But the ingredients of (27) are 
easy to write down: draw all ellipses E(u, v, w) with u ∈ U , v ∈ V and w ∈ W . In this 
case, there are only |U | · |V | · |W | = 2 ellipses: E(−1, 0, 2) and E(1, 0, 2). The situation 
is depicted in Fig. 1b (which is taken from [39]). The dark gray area is our set E∩, the 
light gray area is E0, and the rest (the white area plus the ellipses themselves) is E. Both 
ellipses are oriented clockwise since |u| < |w| in both cases. So in this example, E1 = E∩
and E−1 is empty.
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Fig. 1. a) The ellipse E(u, v, w) with general values u, v, w ∈ C is derived from the zero-centered ellipse 
E(u, w) := E(u, 0, w) after translation by v. The ellipse E(u, w) is centered at the origin and has orthogonal 
half-axes (the dotted lines) of length ||u| ±|w||, respectively, where the major axis bisects the angle between 
u and w at the origin. Depicted here is the ellipse E(u, w) for the particular values u = 3 and w = i. b) We 
see the splitting of C into the four parts E, E−1, E0 and E1 for U = {−1, 1}, V = {0} and W = {2}: the 
dark gray area is E1, the light gray area is E0 and the rest (the white area plus the ellipse boundaries) 
is E. In this example, E−1 is empty. Note that both ellipses, E(−1, 2) and E(1, 2), are oriented clockwise.

Now let us come to the relation between the partitions (24) and (27). From the 
discussion above (23) we see that

Σ−1 ⊂ E−1, Σ1 ⊂ E1, Σ0 ⊂ E0 and hence E ⊂ Σ. (28)

So we have at least some simple upper bounds on Σ−1, Σ1 and Σ0 and a lower bound 
on Σ. The upper bound on Σ0 is equivalent to the lower bound E∪ on its complement 
Σ+ in (21). The lower bound E on Σ is actually sharper than the lower bound (16). 
Further, from the discussion leading to (23) we see that

E1 =
{

E∩, if w∗ > u∗,

∅, otherwise,
E−1 =

{
E∩, if u∗ > w∗,

∅, otherwise.
(29)

Recall that the difference between Σ+ and Σ (i.e. the non-essential spectrum of B+) 
is Σ−1 ∪ Σ1. From (28) we get that

Σ±1 := Σ−1 ∪ Σ1 ⊂ E−1 ∪ E1 =: E±1 ⊂ E∩. (30)

So the non-essential spectrum of B+ ∈ ΨE+(U, V, W ) is inside all ellipses in E . By (21), 
we have

E∩ ⊂ E∪ ⊂ Σ+. (31)

Now let us sum up. From (25), (30) and (31) we get

Σ+ = Σ ∪ Σ±1 ⊂ Σ ∪ E±1 ⊂ Σ ∪ E∩ ⊂ Σ ∪ E∪ ⊂ Σ ∪ Σ+ = Σ+,

so that all inclusions are in fact equalities and we have proven the following:
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Theorem 2.7. It holds that

Σ+ = Σ ∪ Σ±1 = Σ ∪ E±1 = Σ ∪ E∩ = Σ ∪ E∪ (32)

with Σ±1 and E±1 from (30) and E∩ and E∪ from (26). Moreover, exactly one of the 
following cases applies:

i) w∗ ≤ u∗ and u∗ ≤ w∗, in which case Σ±1 = E±1 = ∅ and E∪ ⊂ Σ+ = Σ;
ii) w∗ > u∗, in which case Σ−1 = E−1 = ∅ and Σ1 ⊂ E1 = E∩;
iii) u∗ > w∗, in which case Σ1 = E1 = ∅ and Σ−1 ⊂ E−1 = E∩.

Of course E∩ (and certainly E∪) is in general larger than the actual gap Σ+\Σ = Σ±1

between the spectrum and essential spectrum, but equality (32) is still an attractive new 
bit of the picture: we do not know, very explicitly, what the sets Σ from (13) and Σ+

from (20) are, but we do now know explicitly what we have to add on to Σ to get Σ+. 
It has also recently been shown [27] that conv(E∪) = conv(E) is, surprisingly, both the 
closure of the numerical range and the convex hull of the spectrum for each operator 
in ΨE(U, V, W ) ∪ ΨE+(U, V, W ), and is hence a (very explicit) upper bound on both Σ
and Σ+. Combining this result with Theorem 2.7 and (28) we have that

E ⊂ Σ ⊂ Σ+ = Σ ∪ E∪ ⊂ conv(E∪) = conv(E). (33)

Example 2.8 (Bidiagonal case). In [37] the bidiagonal case was studied, that means 
U = {0} or W = {0}. Let us say U = {0}. Then all our ellipses

E(u, v, w) = E(0, v, w) = v + wT, u ∈ U, v ∈ V, w ∈ W

are circles with clockwise orientation. So we have that

E∪ =
⋃
v∈V

(v + w∗
D) and E∩ =

⋂
v∈V

(v + w∗D)

with w∗ = maxw∈W |w| and w∗ = minw∈W |w|. In [37] it was shown that

Σ = E∪ \ E∩ and hence, by (32), we have Σ+ = E∪.

So in this case, the partitions (24) and (27) coincide:

Σ = E = E∪ \ E∩, Σ−1 = E−1 = ∅, Σ1 = E1 = E∩, Σ0 = E0 = C \ E∪.

For λ ∈ Σ+ \ Σ = Σ1 = E∩, each B+ ∈ ΨE+(U, V − λ, W ) is Fredholm with index 1; 
precisely, α(B+) = 1 and β(B+) = 0.
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Example 2.9. Take U = {1}, V = {0}, and W = {0, 2}. In this case there are two ellipses: 
E(1, 0) = T, with a counter-clockwise orientation, and

E(1, 2) = {tr + iti : tr, ti ∈ R and (tr/3)2 + t2i = 1}, (34)

with a clockwise orientation. Case i) in Theorem 2.7 applies, so that E∪ ⊂ Σ+ = Σ. 
Further, E(1, 0) ⊂ convE(1, 2), so that E∪ = convE∪ and, by (33), Σ+ = Σ = E∪ =
convE(1, 2).

3. The finite section method

From Theorems 2.8 and 2.9 of [39], or see Lemma 1.2 and the comments immediately 
below that lemma (or [54]), we know that the full FSM (with ln = 1 and rn = n) applies 
to a semi-infinite Jacobi matrix A+ iff the operator itself and the set of associated 
semi-infinite matrices C− in (9) are invertible. To each matrix C− corresponds (see 
Remark 1.3) a reflected matrix C+ = RC�

−R ∈ M+(U, V, W ). Further, the set of all 
these reflected matrices C+ is all of M+(U, V, W ) iff A+ is pseudoergodic, as a simple 
consequence of Lemma 1.1d). Similarly, the full FSM (with ln = −n and rn = n) 
applies to a bi-infinite Jacobi matrix A iff the operator itself and both sets of associated 
semi-infinite matrices B+ and C− in (9) are invertible and, again by Lemma 1.1d), the 
union of the set of all matrices B+ and C+ = RC�

−R is the whole of M+(U, V, W ) iff A
is pseudoergodic. As a simple consequence of these facts, and the results in Sections 1
and 2, we obtain:

Theorem 3.1. The following are equivalent:

(a) the full FSM applies to one operator in ΨE(U, V, W );
(b) the full FSM applies to one operator in ΨE+(U, V, W );
(c) all operators in M+(U, V, W ) are invertible;
(d) all operators in M+(U, V, W ) are invertible, and the inverses are uniformly bounded;
(e) one operator in ΨE+(U, V, W ) is invertible;
(f) 0 /∈ Σ+;
(g) one operator in ΨE+(U, V, W ) is Fredholm with index 0;
(h) all operators in M+(U, V, W ) are Fredholm with index 0;
(i) (U, V, W ) is compatible and κ(U, V, W ) = 0;
(j) the full FSM applies to all operators in M(U, V, W );
(k) the full FSM applies to all operators in M+(U, V, W ).

Proof. The equivalence of (c), (g), (h) and (i) follows from Proposition 2.1 and Corol-
lary 2.4. The equivalence of (a)–(c) is then clear from the remarks preceding this theorem 
and Lemma 1.2, as is the equivalence of (c) with (j) and (k) (or see Theorems 2.8 and 2.9 
in [39]). That (c), (e) and (f) are equivalent is Corollary 2.5. To see the equivalence of (c) 
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and (d) suppose that (c) holds, in which case also (j) holds. Then, by Lemma 1.2, all the 
operators B+ and C− in (9) arising from the full FSM applied to any A ∈ M(U, V, W )
are invertible and uniformly bounded. Thus, for all p ∈ [1, ∞],

sup ‖B−1
+ ‖p < ∞ and sup ‖C−1

− ‖p < ∞,

so that also, where C+ = RC�
−R and since �q(−N) is the dual space of �p(−N) if p−1 +

q−1 = 1, sup ‖C−1
+ ‖q < ∞. Since, see the remarks before the lemma, the collection of all 

operators B+ and C+ is the whole of M+(U, V, W ) in the case that A ∈ ΨE(U, V, W ), 
we see that we have shown (d), precisely that

N+,p := sup
B+∈M(U,V,W )

‖B−1
+ ‖p < ∞, (35)

for 1 ≤ p ≤ ∞. �
Remark 3.2. a) So for pseudoergodic semi-infinite matrices A+ (the so-called “stochastic 
Toeplitz operators” from [57]), we get that the full FSM applies as soon as the operator is 
invertible. This is of course the best possible result since invertibility of A+ is a minimal 
requirement (it is necessary) for the applicability of the FSM. For (classical) banded 
Toeplitz operators T+, the same is true as was first shown in [24]. So in a sense, we also 
rediscover that classical result for tridiagonal Toeplitz matrices (by applying our result 
to the case when U , V and W are singletons).

b) There is a similar coincidence between the FSM for pseudoergodic bi-infinite ma-
trices (called “stochastic Laurent operators” in [57]) and for usual Laurent operators: in 
both cases, the FSM applies iff the operator is invertible and the corresponding semi-
infinite principal submatrix (the Toeplitz part) has index zero. If the latter index is not 
zero, there is something that can be done. It is called “index cancellation”, and we will 
get to this in short course.

c) Recall from Lemma 1.4 (also see [39, Thms. 2.8 & 2.9]) that the FSM applies with 
arbitrary monotonic cut-off sequences ln and rn if the full FSM is applicable.

Recall that applicability of the FSM means that the truncated (finite) systems (7) are 
uniquely solvable for all sufficiently large n, say n ≥ n0, with their solutions xn approx-
imating the unique solution x of (6). The limit operator techniques behind Lemma 1.2
don’t reveal much about that – practically very relevant – number n0; but in our pseu-
doergodic setting we can prove that actually

n0 = 1 holds in (a), (b), (j) and (k) of Theorem 3.1:

Theorem 3.3. From the equivalent conditions (a)–(k) of Theorem 3.1 it follows that all 
finite Jacobi matrices over U , V and W , that means all F ∈ Mfin(U, V, W ), are invertible.
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Before we come to the proof, let us note that this theorem implies

specJ ⊂ Σ+ (36)

for every Jacobi matrix J (finite or infinite) over U , V and W , i.e., for every J ∈
Mfin(U, V, W ) ∪M+(U, V, W ) ∪M(U, V, W ). Equality holds if J ∈ ΨE+(U, V, W ).

We now prepare the proof of Theorem 3.3. It combines a technique from the proof of 
[12, Theorem 4.1] with elements of the proof of Theorem 2.2. Let n ∈ N. Given an n ×n

matrix F ∈ Mfin(U, V, W ) and arbitrary elements u ∈ U , v ∈ V and w ∈ W , we make 
the following construction. Put

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . w

u

F

w

u v w

u

F

w

u v w

u

F

w

u
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M(U, V,W ), (37)

where v marks the entry of B at position (0, 0). We denote the semi-infinite blocks 
above and below v by B− and B+, respectively, so that

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B−
w

u v w

u

B+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (38)

Precisely, with B = (bij)i,j∈Z, we put B+ := (bij)i,j∈N ∈ M+(U, V, W ) and B− :=
(bij)i,j∈−N.
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Now, for a vector x ∈ C
n and a complex sequence (rk)k∈Z, put

x̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0

r−1x

0

r0x

0

r1x

0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, leading to Bx̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

z−1

r−1Fx

z0

r0Fx

z1

r1Fx

z2

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where 0 and z0 mark the respective 0 positions and

zk = rk−1uxn + rkwx1, k ∈ Z. (40)

Lemma 3.4. For arbitrary x1, xn, u, w ∈ C, there exists a sequence (rk)k∈Z in C so that, 
for the sequence (zk)k∈Z from (40), either

(r0, r1, . . .) ∈ �∞(N) \ {0} and z1 = z2 = . . . = 0 (41)

or

(. . . , r−2, r−1) ∈ �∞(−N) \ {0} and z−1 = z−2 = . . . = 0. (42)

Proof. The choice of (rk) differs, depending on whether (and which) parameters are 
zero. If none of x1, xn, u, w is zero, put ρ := −uxn/(wx1) and rk := ρk for k ∈ Z, so that 
zk = 0 for k ∈ Z and (41) holds if |ρ| ≤ 1, (42) if |ρ| ≥ 1. If uxn = 0, put r0 := 1 and 
rk := 0 for k �= 0, in which case (41) holds. If wx1 = 0, put r−1 := 1 and rk := 0 for 
k �= −1, in which case (42) holds. �



S.N. Chandler-Wilde, M. Lindner / Journal of Functional Analysis 270 (2016) 802–841 825
Now we have all that we need:

Proof of Theorem 3.3. Let F ∈ Mn(U, V, W ) for some n ∈ N. Suppose F is singular. 
Then there is an x ∈ C

n \ {0} with Fx = 0. Choose a sequence (rk) in C so that 
(41) or (42) holds. Then, in the notations of (38) and (39), either B+x̃+ = 0 with 
x̃+ := x̃|N ∈ �∞(N) or B−x̃− = 0 with x̃− := x̃|−N ∈ �∞(−N). In either case, there is 
a non-invertible operator (either B+ or the reflection RB�

−R of B−) in M+(U, V, W ), 
which contradicts our assumption. So F is invertible. �

So, in the case κ(U, V, W ) = 0, the full FSM (and hence the FSM with any mono-
tonic cut-off sequences ln and rn) applies to every A ∈ M(U, V, W ) and to every 
A+ ∈ M+(U, V, W ), where unique solvability of the finite systems (7) already starts 
at n = 1.

In the remaining cases (assuming, of course, that (U, V, W ) is compatible, i.e. 
κ(U, V, W ) is defined), it holds that

κ := κ(U, V,W ) = ±1,

and the FSM cannot apply – no matter how the cut-offs are placed (e.g. [38, Prop. 5.2]). 
In the semi-infinite case the operator A+ is not even invertible since its index equals 
κ �= 0. In the bi-infinite case, the way out is to move the system Ax = b up or down by 
one row (i.e. to renumber the infinitely many equations in (6) by increasing or decreasing 
the row number i by 1). So instead of Ax = b, the equivalent system SκAx = Sκb is 
solved, where S is the bi-infinite forward shift introduced earlier. Passing from A to 
Ã := SκA preserves invertibility and corrects the index of the semi-infinite principal 
submatrices from κ to 0. Indeed,

ind Ã+ = ind(SκA)+ = ind(Sκ)+ + indA+ = −κ + κ = 0. (43)

This shifting process is called index cancellation; for Laurent operators A it goes back 
to [24,33], for much more general operators, see e.g. [38,39,41,54].

We claim that, after index cancellation, the full FSM applies to every A ∈ M(U, V, W )
also in the cases κ = ±1. This can be seen as follows:

Case 1: κ = +1. Then all ellipses E(u, v, w) with u ∈ U , v ∈ V and w ∈ W are oriented 
clockwise, so that

|w| > |u| ≥ 0, u ∈ U, w ∈ W. (44)

Now pass from Ax = b, i.e.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . .

. . . v−2 w−2
u−1 v−1 w−1

u0 v0 w0

u1 v1 w1

u2 v2
. . .

. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x(−2)
x(−1)
x(0)
x(1)
x(2)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
b(−2)
b(−1)
b(0)
b(1)
b(2)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(45)

to the equivalent system SAx = Sb, i.e.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . w−3

. . . v−2 w−2
u−1 v−1 w−1

u0 v0 w0

u1 v1 w1
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x(−2)
x(−1)
x(0)
x(1)
x(2)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
b(−3)
b(−2)
b(−1)
b(0)
b(1)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (46)

To see that the full FSM applies to the shifted system (46), it is sufficient, by Theorem 
2.8 of [39], to show that all semi-infinite matrices of the form

B+ =

⎛⎜⎜⎜⎜⎜⎜⎝
w̃1
ṽ2 w̃2
ũ3 ṽ3 w̃3

ũ4 ṽ4 w̃4
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (47)

with ũi ∈ U , ṽi ∈ V and w̃i ∈ W are invertible on �p(N). So let B+ be one of them. We 
start with injectivity: from w̃i �= 0 for all i, by (44), we get successively x(1) = 0, x(2) =
0, . . . as the only solution of B+x+ = 0. By [46], indB+ = ind(SκA)+. But the latter is 
zero by (43), so that B+ is also surjective and hence invertible.

Case 2: κ = −1. Now all ellipses E(u, v, w) with u ∈ U , v ∈ V and w ∈ W are oriented 
counter-clockwise, so that

|u| > |w| ≥ 0, u ∈ U, w ∈ W. (48)

Now pass from Ax = b, i.e. (45), to S−1Ax = S−1b, i.e.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .
u−1 v−1 w−1

u0 v0 w0

u1 v1 w1

u2 v2
. . .

u3
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
x(−2)
x(−1)
x(0)
x(1)
x(2)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
b(−1)
b(0)
b(1)
b(2)
b(3)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(49)

and check in a similar way, now using (48) and (43), that all semi-infinite matrices of 
the form

B+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ũ1 ṽ1 w̃1
ũ2 ṽ2 w̃2

ũ3 ṽ3
. . .

ũ4
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with ũi ∈ U , ṽi ∈ V and w̃i ∈ W are invertible on �p(N). So also in case κ(U, V, W ) = ±1, 
the FSM applies, with arbitrary cut-off sequences ln and rn, to every A ∈ M(U, V, W ) – 
but only after index cancellation. From (44) and (48) it is clear that every finite principal 
submatrix of the shifted (and therefore triangular) matrices in (46) and (49), respectively, 
is invertible. So, again, the finite systems (7) are uniquely solvable for all n (and not just 
for all sufficiently large n).

4. Norms, norms of inverses, and pseudospectra

In this section we bound and compare the norms and the norms of inverses of bi-
infinite, semi-infinite and finite Jacobi matrices over (U, V, W ). The results are then 
expressed in terms of pseudospectra.

4.1. Bi-infinite matrices

We start with the simplest case: bi-infinite matrices in M(U, V, W ). Not surprisingly, 
a prominent role is played by those in ΨE(U, V, W ).

Proposition 4.1. Let A ∈ ΨE(U, V, W ) and B ∈ M(U, V, W ) be arbitrary. Then ‖A‖ ≥
‖B‖. If moreover (U, V, W ) is compatible, then also ‖A−1‖ ≥ ‖B−1‖.

Proof. First note that A and B are invertible by Proposition 2.1 if (U, V, W ) is com-
patible. Now use Lemma 1.1d), b) and a) – in this order. A ∈ ΨE(U, V, W ) implies 
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B ∈ σop(A) by d), which then implies B−1 ∈ σop(A−1) by b), so that ‖B‖ ≤ ‖A‖ and 
‖B−1‖ ≤ ‖A−1‖ follow by a). �
Corollary 4.2. For all A ∈ ΨE(U, V, W ), we have

‖A‖ = max
B∈M(U,V,W )

‖B‖ =: M.

If moreover (U, V, W ) is compatible then

‖A−1‖ = max
B∈M(U,V,W )

‖B−1‖ =: N (50)

If we have a particular p ∈ [1, ∞] in mind, or want to emphasise the dependence on p, 
we will write Mp and Np for the expressions M and N defined in Corollary 4.2 (cf. (35)).

The following proposition is a simple consequence of the observations that, if A, B ∈
BDO(�p(Z)) for all 1 ≤ p ≤ ∞, and A = RB�R, where R is the reflection operator 
defined in Remark 1.3, then: (i) ‖A‖p = ‖B�‖p = ‖B‖q, for 1 ≤ p ≤ ∞, if p−1 +q−1 = 1; 
(ii) A ∈ M(U, V, W ) iff B ∈ M(U, V, W ); (iii) A is invertible iff B is invertible, and if 
they are both invertible then ‖A−1‖p = ‖(B�)−1‖p = ‖B−1‖q.

Proposition 4.3. For p, q ∈ [1, ∞], with p−1 + q−1 = 1, we have

Mp = Mq and Np = Nq.

Proof. It is clear from the above observations that Mp = supB∈M(U,V,W ) ‖B�‖p = Mq. 
Similarly Np = Nq. �
4.2. The relationship between semi- and bi-infinite matrices

The semi-infinite case M+(U, V, W ) is a bit more involved. We start with a simple 
observation:

Proposition 4.4.

a) For A+ ∈ ΨE+(U, V, W ) it holds that

‖A+‖ = max
B+∈M+(U,V,W )

‖B+‖ = M.

b) If A+ ∈ ΨE+(U, V, W ) is invertible, i.e. (U, V, W ) is compatible and κ(U, V, W ) = 0, 
then ‖A−1

+ ‖ ≥ N .

Proof. Let A ∈ M(U, V, W ) be a bi-infinite extension of A+ ∈ ΨE+(U, V, W ). Then 
A ∈ ΨE(U, V, W ), so that ‖A‖ = M and ‖A−1‖ = N , by (50). Now ‖A‖ ≥ ‖A+‖ since 
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A+ is a compression of A, and ‖A‖ ≤ ‖A+‖ since A ∈ σop(A+) = M(U, V, W ). If A+ is 
invertible, this last fact implies that A−1 ∈ σop(A−1

+ ), so that ‖A−1‖ ≤ ‖A−1
+ ‖. Finally, 

let B ∈ M(U, V, W ) be a bi-infinite extension of a given arbitrary B+ ∈ M+(U, V, W ). 
Then B ∈ σop(A+) = M(U, V, W ) and B+ is a compression of B, so that ‖B+‖ ≤ ‖B‖ ≤
‖A+‖. �

A question we have been unable to resolve in general is whether ‖A−1
+ ‖ is the same 

for all A+ ∈ ΨE+(U, V, W ), and whether it is larger than N . We will see below that 
the following proposition, which is a partial complement of the bound ‖A−1

+ ‖ ≥ N for 
A+ ∈ ΨE+(U, V, W ), answers this question at least in the case p = 2. The arguments to 
obtain this proposition are a quantitative version of the proof of Theorem 2.2.

Proposition 4.5.

a) If A+, B+ ∈ M+(U, V, W ) are invertible and (U, V, W ) is compatible, then

min
(
‖A−1

+ ‖p, ‖B−1
+ ‖q

)
≤ Np = Nq (51)

holds for all p, q ∈ [1, ∞] with p−1 + q−1 = 1.
b) Thus, if (U, V, W ) is compatible with κ(U, V, W ) = 0, so that all operators in 

M+(U, V, W ) are invertible, then (51) holds for all A+, B+ ∈ M+(U, V, W ).
c) If A+, B+ ∈ ΨE+(U, V, W ) are invertible then equality holds in (51).

Proof. a) If (U, V, W ) is compatible then all operators in M(U, V, W ) are invertible and 
Np = Nq holds by Proposition 4.3. Let A+, B+ ∈ M+(U, V, W ) be invertible, and let 
C− := RB�

+R be the reflection of B+ as discussed in Remark 1.3. Abbreviate

‖A−1
+ ‖p =: a and

‖C−1
− ‖p = ‖(RB�

+R)−1‖p = ‖R(B�
+)−1R‖p = ‖(B−1

+ )�‖p = ‖B−1
+ ‖q =: b.

Given an arbitrary ε > 0, choose x ∈ �p(N) and y ∈ �p(−N) so that ‖A+x‖p = 1, 
‖C−y‖p = 1 with ‖x‖pp > ap − ε and ‖y‖pp > bp − ε in case p < ∞, and ‖x‖∞ > a − ε

and ‖y‖∞ > b − ε in case p = ∞. Now put

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C−
w

u v w

u

A+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ M(U, V,W ) and x̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
sy

0

rx
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ �p(Z),

(52)
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where u ∈ U , v ∈ V and w ∈ W are chosen arbitrarily, v marks the entry at (0, 0) in B, 
0 is at position 0 in x̃, and r, s ∈ C are chosen such that (Bx̃)0 = usy−1 +wrx1 equals 
zero, while r, s are not both zero. Then x̃ �= 0 and Bx̃ = (sC−y, 0, rA+x)� �= 0. Now, 
for p < ∞,

‖B−1‖pp ≥
‖B−1Bx̃‖pp
‖Bx̃‖pp

=
‖x̃‖pp
‖Bx̃‖pp

=
|r|p‖x‖pp + |s|p‖y‖pp

|r|p‖A+x‖pp + |s|p‖C−y‖pp
>

|r|pap + |s|pbp
|r|p + |s|p − ε

=: tap + (1 − t)bp − ε ≥ min(a, b)p − ε

holds, where t := |r|p/(|r|p + |s|p) ∈ [0, 1]. Since this is the case for every ε > 0, we 
conclude ‖B−1‖p ≥ min(a, b). The case p = ∞ is similar:

‖B−1‖∞ ≥ ‖B−1Bx̃‖∞
‖Bx̃‖∞

= ‖x̃‖∞
‖Bx̃‖∞

= max(|r|‖x‖∞, |s|‖y‖∞)
max(|r|‖A+x‖∞, |s|‖C−y‖∞)

>
max(|r|(a− ε), |s|(b− ε))

max(|r|, |s|) = max(|r|a, |s|b)
max(|r|, |s|) − ε ≥ min(a, b) − ε

Since ε > 0 is arbitrary, again ‖B−1‖∞ ≥ min(a, b) follows.
b) If, in addition, κ(U, V, W ) = 0 then all operators in M+(U, V, W ) are invertible, so 

that a) can be applied to arbitrary A+, B+ ∈ M+(U, V, W ).
c) If A+, B+ ∈ ΨE+(U, V, W ) are invertible then the conditions of b) are satisfied, by 

Theorem 3.1. In addition to b), note that, by Proposition 4.4b), the minimum in (51) is 
greater than or equal to min(Np, Nq) if A+, B+ ∈ ΨE+(U, V, W ), which equals Np = Nq, 
by Proposition 4.3. �

We have seen already in Theorem 3.1 that N+,p, our notation (35) for the supremum of 
‖C−1

+ ‖p over all C+ ∈ M(U, V, W ), is finite for 1 ≤ p ≤ ∞ if (U, V, W ) is compatible with 
κ(U, V, W ) = 0. Propositions 4.4b) and 4.5 imply that, in many cases, this supremum 
is in fact a maximum and coincides with the maximum (50) and with the norm of A−1

+
when A+ ∈ ΨE+(U, V, W ).

Proposition 4.6. Suppose that (U, V, W ) is compatible with κ(U, V, W ) = 0, equivalently 
that all operators in M+(U, V, W ) are invertible. Then, for every p, q ∈ [1, ∞] with 
p−1 + q−1 = 1:

a) ‖A−1
+ ‖p = max

C+∈M+(U,V,W )
‖C−1

+ ‖p = N+,p = Np

for all A+ ∈ ΨE+(U, V,W ), (53)

or (53) holds with p replaced by q. If (53) holds we say that p is favourable (for the 
triple (U, V, W )).
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b) p and q are both favourable iff N+,p = N+,q. If p and q are both favourable, then

‖A−1
+ ‖p = N+,p = Np = Nq = N+,q = ‖A−1

+ ‖q,
for all A+ ∈ ΨE+(U, V,W ). (54)

In particular this holds for p = q = 2.

Proof. a) Either ‖A−1
+ ‖p ≤ Np for all A+ ∈ M+(U, V, W ), or ‖A−1

+ ‖p > Np for some 
A+ ∈ M+(U, V, W ). In the first case (53) follows immediately from Proposition 4.4b). 
In the second case, by Proposition 4.5b), ‖B−1

+ ‖q ≤ Nq for all B+ ∈ M+(U, V, W ), and 
then (53), with p replaced by q, follows from Proposition 4.4b).

b) is an immediate corollary of a) and Proposition 4.4b). �
It is unclear to us whether every p ∈ [1, ∞] is favourable for every triple (U, V, W ). 

Indeed, while, for every triple (U, V, W ), p ∈ [1, ∞], and A+ ∈ ΨE+(U, V, W ), it follows 
from Propositions 4.4b) and 4.5c) that

Np ≤ ‖A−1
+ ‖p ≤ N+,p, (55)

it is unclear to us whether or not there are examples for which (55) holds with one or 
both “≤” replaced by “<”. Likewise, it is unclear to us whether or not there are cases 
where ‖A−1

+ ‖p �= ‖B−1
+ ‖p with A+, B+ ∈ ΨE+(U, V, W ). A simple case to study is that 

where U , V , and W are singletons, in which case M+(U, V, W ) = ΨE+(U, V, W ) has 
only one element A+, which is a tridiagonal Toeplitz operator. If A+ is invertible, then 
N+,p = ‖A−1

+ ‖p. Example 6.6 of [8] shows a banded Toeplitz operator A+, for which 
‖A−1

+ ‖p and ‖A−1
+ ‖q differ: if this were a tridiagonal banded Toeplitz operator then this 

would provide an example of a triple (U, V, W ) where p and q are not both favourable. 
On the other hand, the following result shows that all p ∈ [1, ∞] are favourable for some 
classes of triples (U, V, W ).

Proposition 4.7.

a) Suppose that p, q ∈ [1, ∞] and p−1 + q−1 = 1. Then p is favourable for (U, V, W ) iff 
q is favourable for (W, V, U).

b) If U = W or 0 ∈ U ∪W , then, for all p ∈ [1, ∞], p is favourable (for (U, V, W )) and 
(54) holds.

Proof. a) This is clear from Proposition 4.6, since A+ is in M+(U, V, W ) or ΨE+(U, V, W )
iff A�

+ is in M+(W, V, U) or ΨE+(W, V, U), respectively, and A+ is invertible iff A�
+ is 

invertible, in which case ‖A−1
+ ‖p = ‖(A�

+)−1‖q.
b) In the case that U = W it follows from a) that p and q are both favourable. 

To show that they are both favourable if 0 ∈ W , suppose that one of the two 
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(say p) is not favourable. Then there exists A+ ∈ M+(U, V, W ) and x ∈ �p(N) with 
‖A+x‖p < N−1

p ‖x‖p. Take any B+ ∈ M+(U, V, W ), set C− = RB�
+R (as in the proof of 

Proposition 4.5), and define B ∈ M(U, V, W ) and x̃ ∈ �p(Z) by (52), but choosing in par-
ticular w = 0 ∈ W , r = 1, and s = 0. Then ‖Bx̃‖p = ‖A+x‖p < N−1

p ‖x‖p = N−1
p ‖x̃‖p. 

But this implies that ‖B−1‖p > Np, a contradiction. Thus p and q are both favourable 
if 0 ∈ W , and it follows from part a) that they are both favourable also when 0 ∈ U . �

As one example, part b) of this proposition applies to the Feinberg–Zee random hop-
ping matrix, A+ ∈ ΨE+(U, V, W ) or A ∈ ΨE(U, V, W ) with U = W = {±1} and V = {0}
(e.g. [11,13,12,27–29]), so that (54) holds in that case (cf. [12, Theorem 3.6]).

4.3. The relationship between finite and infinite matrices

In this subsection we obtain more quantitative versions of the results of Section 3. We 
first note the following finite version of Proposition 4.3, proved in the same way, using 
the observation that, for every B ∈ Mn(U, V, W ), A = RnB

�Rn ∈ M(U, V, W ), where 
Rn = (rij)i,j=1,...,n is the n × n matrix with rij = δi,n+1−j , where δij is the Kronecker 
delta.

Lemma 4.8. For p, q ∈ [1, ∞] with p−1 + q−1 = 1 and n ∈ N, we have Mn,p = Mn,q and 
Nn,p = Nn,q, so that Mfin,p = Mfin,q and Nfin,p = Nfin,q, where

Mn,p := sup
F∈Mn(U,V,W )

‖F‖p, Nn,p := sup
F∈Mn(U,V,W )

‖F−1‖p,

Mfin,p := sup
F∈Mfin(U,V,W )

‖F‖p and Nfin,p := sup
F∈Mfin(U,V,W )

‖F−1‖p.

The following simple lemma relates Mfin,p to Mp, defined in Corollary 4.2.

Lemma 4.9. For p ∈ [1, ∞], Mfin,p = limn→∞ Mn,p = Mp.

Proof. Let A ∈ ΨE(U, V, W ) so that ‖A‖p = Mp by Corollary 4.2. For F ∈
Mfin(U, V, W ), ‖F‖p ≤ ‖A‖p, since every F is an arbitrarily small perturbation of a 
finite section of A. On the other hand, if An is the finite section of A given by (8), then 
we have noted in (10) that lim infn→∞ ‖An‖p ≥ ‖A‖p. �

The following is a more quantitative version of Theorem 3.3:

Proposition 4.10.

a) Properties (a)–(k) of Theorem 3.1 are equivalent to:
(l) all F ∈ Mfin(U, V, W ) are invertible and their inverses are uniformly bounded.
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If (a)–(l) are satisfied then

Nfin,p = max (N+,p , N+,q) , (56)

for every p, q ∈ [1, ∞] with p−1 + q−1 = 1.
b) In the case that p and q in a) are both favourable, (56) simplifies to

Nfin,p = Nfin,q = N+,p = N+,q = Np = Nq . (57)

Proof. a) If (l) holds then, by the equivalence of ii) and iii) in Lemma 1.2 and the 
definition of stability, (e) holds. But this implies invertibility of all F ∈ Mfin(U, V, W ) by 
Theorem 3.3. The uniform boundedness of the inverses F−1 (and hence (l)) will follow 
if we can prove “≤” in (56).

To see that (56) holds, fix p ∈ [1, ∞], n ∈ N, and an F ∈ Mn(U, V, W ). To estimate 
‖F−1‖p =: f , fix x ∈ C

n with ‖Fx‖p = 1 and ‖x‖p = f . As in the proof of Theorem 3.3, 
define B by (37) and B+ and B− as in (38), and define x̃ by (39). Again choose (rk) as 
in Lemma 3.4 so that (41) or (42) holds. First assume it is (41).

Case 1: p = ∞. From (41) we get

‖B−1
+ ‖∞ ≥ ‖B−1

+ B+x̃+‖∞
‖B+x̃+‖∞

= ‖x̃+‖∞
‖B+x̃+‖∞

=
supk∈N∪{0} |rk|‖x‖∞

supk∈N∪{0} |rk|‖Fx‖∞
= f

1 = ‖F−1‖∞ .

Case 2: p < ∞ and x̃+ ∈ �p(N), i.e. (rk)+∞
k=0 ∈ �p(N). Then, by (41),

‖B−1
+ ‖pp ≥

‖B−1
+ B+x̃+‖pp
‖B+x̃+‖pp

=
‖x̃+‖pp

‖B+x̃+‖pp
=

∑+∞
k=0 |rk|p‖x‖pp∑+∞

k=0 |rk|p‖Fx‖pp
= fp

1p = ‖F−1‖pp .

Case 3: p < ∞ and x̃+ /∈ �p(N), i.e. (rk)+∞
k=0 /∈ �p(N). Then sm :=

∑m
k=0 |rk|p → ∞ as 

m → ∞. Let m ∈ N and put x̃m := (x̃(1), ̃x(2), · · · , ̃x((m + 1)(n + 1)), 0, 0, · · · ) ∈ �p(N). 
Then

‖B−1
+ ‖pp ≥

‖x̃m‖pp
‖B+x̃m‖pp

=
∑m

k=0 |rk|p‖x‖pp∑m
k=0 |rk|p‖Fx‖pp + |urmxn|p

= smfp

sm + |urmxn|p
m→∞−−−−−→ fp = ‖F−1‖pp ,

since sm → ∞ as m → ∞ and rm is bounded.
So in either case we get ‖F−1‖p ≤ ‖B−1

+ ‖p if (41) holds. The other case, (42), is 
analogous and leads to ‖F−1‖p ≤ ‖B−1

− ‖p = ‖C−1
+ ‖q, where C+ := RB�

−R is the 
reflection of B− as discussed in Remark 1.3. Since we only know that (41) or (42)
applies, but not which one of them, we conclude ‖F−1‖p ≤ max(‖B−1

+ ‖p, ‖C−1
+ ‖q). Since 

F ∈ Mfin(U, V, W ) is arbitrary and B+, C+ ∈ M+(U, V, W ), this finishes the proof of 
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“≤” in (56) and hence of the implication (a) ⇒ (l). The “≥” in (56) follows from (10)
or (11).

b) follows from a), (53) and (54). �
Combining Proposition 4.10 with Lemma 4.9 we can relate the p-condition numbers, 

condp(F ) := ‖F‖p ‖F−1‖p of matrices F ∈ Mfin(U, V, W ), to the corresponding condition 
numbers of A ∈ ΨE(U, V, W ) and A+ ∈ ΨE+(U, V, W ). For example, in the case that p
and q are both favourable we have:

Proposition 4.11. Suppose that (U, V, W ) is compatible and κ(U, V, W ) = 0, so that every 
FSM given by (7) with ln → −∞ and rn → ∞ is applicable to A ∈ ΨE(U, V, W ), and 
every FSM given by (7) with ln = 1 and rn → ∞ is applicable to A+ ∈ ΨE+(U, V, W ). 
Suppose also that p and q are both favourable. Then, for all these finite section methods,

‖An‖p → ‖A‖p = ‖A+‖p = Mp, ‖A−1
n ‖p → ‖A−1‖p = ‖A−1

+ ‖p = Np,

so that condp(An) → condp(A) = condp(A+), (58)

as n → ∞. Further,

max
B∈M(U,V,W )

condp(B) = max
B+∈M+(U,V,W )

condp(B+)

= sup
F∈Mfin(U,V,W )

condp(F ) = MpNp,

where the two maxima are attained, respectively, by all A ∈ ΨE(U, V, W ), and by all 
A+ ∈ ΨE(U, V, W ).

Proof. The first sentence is part of Theorem 3.1. And if p and q are both favourable, 
then the equalities in (58) follow from Corollary 4.2, Proposition 4.4a), and (54). The 
stated limits are a consequence of

Mp = ‖A‖p ≤ lim inf
n→∞

‖An‖p ≤ lim sup
n→∞

‖An‖p ≤ Mfin,p = Mp

and

Np = N+,p = ‖A−1
+ ‖p ≤ lim inf

n→∞
‖A−1

n ‖p ≤ lim sup
n→∞

‖A−1
n ‖p ≤ Nfin,p = Np,

by (10) and that, by Lemma 4.9 and Proposition 4.10b), Mfin,p = Mp and Nfin,p = Np. 
In the last displayed equation the first equality, and that these maxima are attained 
as stated and have the value MpNp, follows from Corollary 4.2 and Propositions 4.4a) 
and 4.6b). That supF∈Mfin(U,V,W ) condp(F ) ≤ MpNp is clear from Mfin,pNfin,p = MpNp; 
that in fact equality holds is clear from (58). �
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4.4. Pseudospectra

We can rephrase our results on the norms of inverses, ‖J−1‖, of Jacobi matrices J
over (U, V, W ) in terms of resolvent norms ‖(J −λI)−1‖ and pseudospectra, noting that 
J − λI is a Jacobi matrix over (U, V − λ, W ). In particular, J and J − λI are both 
pseudoergodic at the same time. In the language of pseudospectra, Corollary 4.2 and 
Proposition 4.3 can be rewritten as follows:

Corollary 4.12 (Bi-infinite matrices). For all A ∈ ΨE(U, V, W ), ε > 0 and p ∈ [1, ∞], it 
holds that

specpεA = Σp
ε :=

⋃
B∈M(U,V,W )

specpεB and Σp
ε = Σq

ε,

where p−1 + q−1 = 1.

Summarising Corollary 2.5, Theorem 2.7 and the results in Section 4.2, and recalling 
the notations E∩ and E∪ from (26), we obtain:

Proposition 4.13 (Semi- vs. bi-infinite matrices).

a) For every A+ ∈ ΨE+(U, V, W ), ε > 0 and all p ∈ [1, ∞], it holds that

Σp
ε ∪ Σ+ ⊂ specpεA+ ⊂ Σp

+,ε :=
⋃

C+∈M+(U,V,W )

specpεC+. (59)

b) For all A+, B+ ∈ M+(U, V, W ), ε > 0 and p, q ∈ [1, ∞] with p−1 + q−1 = 1, it holds 
that

specpεA+ ∩ specqεB+ ⊂ Σp
+,ε ∩ Σq

+,ε = Σp
ε ∪ G, (60)

for each G ∈ {E±1, E∩, E∪, Σ+}. Equality holds in (60) if A+, B+ ∈ ΨE+(U, V, W ). 
If w∗ ≤ u∗ and u∗ ≤ w∗, then E±1 = ∅, so that (60) holds with G = ∅.

c) If ε > 0 and p ∈ [1, ∞] is favourable, in particular if p = 2, then, for every A+ ∈
ΨE+(U, V, W ),

specpεA+ = Σp
+,ε = Σp

ε ∪ G, (61)

for each G ∈ {E±1, E∩, E∪, Σ+}. In particular (61) holds with G = ∅ if w∗ ≤ u∗

and u∗ ≤ w∗.
d) If p, q ∈ [1, ∞] with p−1 + q−1 = 1 are both favourable, in particular if 0 ∈ U ∪W or 

U = W , then (61) holds for both p and q, and specpεA+ = specqεA+.
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Regarding the different possibilities for G in the above proposition, recall from The-
orem 2.7 that each indicated choice closes the gap between Σ and Σ+ in the sense that 
Σ ∪G = Σ+, including the choice G = ∅ if w∗ ≤ u∗ and u∗ ≤ w∗.

Proof. First, note that Σ ⊂ Σp
ε since Σ = specA ⊂ specpεA = Σp

ε for every A ∈
ΨE(U, V, W ).

a) Let A+ ∈ ΨE+(U, V, W ). If λ ∈ Σ+ = specA+ then λ ∈ specpεA+. If λ ∈ Σp
ε \ Σ ⊃

Σp
ε \Σ+ then, for every A ∈ ΨE(U, V, W ), ‖(A+ − λI+)−1‖p ≥ ‖(A − λI)−1‖p > ε−1, by 

Proposition 4.4b), so that λ ∈ specpεA+.
b) We start with the equality in (60). By Σ ⊂ Σp

ε and Theorem 2.7, Σp
ε ∪ G =

Σp
ε ∪ Σ ∪G = Σp

ε ∪ Σ+, for each G ∈ {E±1, E∩, E∪, Σ+}.
To show that specpεA+ ∩ specqεB+ ⊂ Σp

ε ∪ Σ+, let A+, B+ ∈ M+(U, V, W ) and λ ∈
specpεA+ ∩ specqεB+, so that ‖(A+ − λI+)−1‖p > ε−1 and ‖(B+ − λI+)−1‖q > ε−1. If 
one of these two numbers is infinite, i.e. λ ∈ specA+ or λ ∈ specB+, then λ ∈ Σ+. If 
both ‖(A+ − λI+)−1‖p and ‖(B+ − λI+)−1‖q are finite and greater than ε−1, consider 
A ∈ ΨE(U, V, W ). If A − λI is not invertible then λ is in Σ ⊂ Σ+. If A − λI is invertible 
then, by (51), ‖(A − λI)−1‖ ≥ min(‖(A+ − λI+)−1‖p, ‖(B+ − λI+)−1‖q) > ε−1, so that 
λ is in Σp

ε .
Now suppose that A+, B+ ∈ ΨE+(U, V, W ) and that λ ∈ Σp

ε ∪ Σ+. If λ ∈ Σ+, then 
λ ∈ specA+ = specB+ by Corollary 2.5, so that λ ∈ specpεA+∩specqεB+. If λ ∈ Σp

ε then, 
by Proposition 4.5c) and (50), min(‖(A+−λI+)−1‖p, ‖(B+−λI+)−1‖q) = ‖(A −λI)−1‖ >
ε−1 for every A ∈ ΨE(U, V, W ), so, again, λ ∈ specpεA+∩specqεB+. In both cases it follows 
that λ ∈ Σp

+,ε ∩ Σq
+,ε.

c) This follows immediately from b) and (53).
d) This follows from c), (54), and Proposition 4.7b). �
Here is the pseudospectral formulation of Proposition 4.10:

Corollary 4.14 (Finite, semi- and bi-infinite matrices).

a) For all ε > 0 and p, q ∈ [1, ∞] with p−1 + q−1 = 1, it holds that

Σp
fin,ε :=

⋃
F∈Mfin(U,V,W )

specpεF = Σp
+,ε ∪ Σq

+,ε.

b) If p and q are both favourable, in particular if p = q = 2, this simplifies to

Σp
fin,ε = specpεA+ = Σp

+,ε = Σp
ε ∪ G = Σq

ε ∪ G = Σq
+,ε = specqεB+,

(62)

which holds for all A+, B+ ∈ ΨE+(U, V, W ), and for each G ∈ {E±1, E∩, E∪, Σ+}, 
with E±1 = ∅ if w∗ ≤ u∗ and u∗ ≤ w∗.
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Proof. a) This follows immediately from Proposition 4.10. In particular,

sup
F∈Mfin(U,V,W )

‖(F − λI)−1‖p

= max
(

sup
A+∈M+(U,V,W )

‖(A+ − λI+)−1‖p , sup
A+∈M+(U,V,W )

‖(A+ − λI+)−1‖q

)

holds for all λ ∈ C, where both sides are infinite at the same time.
b) follows from a) and Proposition 4.13d). �
Finally we study asymptotics of the pseudospectra of the finite sections of A+ ∈

ΨE+(U, V, W ), generalising results from [12] for the Feinberg–Zee random hopping ma-
trix, and results of [9] which apply when U , V , and W are singletons. For this purpose 
we briefly recall notions of set convergence. Let CB, CC denote the sets of bounded and 
compact, respectively, non-empty subsets of C. For a ∈ C and non-empty B ⊂ C, let 
dist(a, B) := infb∈B |a − b|. For A, B ∈ C

B let

dH(A,B) := max
(

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
)
. (63)

It is well known (e.g., [32,26]) that dH(·,·) is a metric on CC , the so-called Hausdorff 
metric. For A, B ∈ C

B it is clear that dH(A, B) = dH(A, B), so that dH(A, B) = 0 iff 
A = B, and dH(·,·) is a pseudometric on CB. For a sequence (Sn) ⊂ C

B and S ∈ C
B we 

write Sn
H−−→ S if dH(Sn, S) → 0. This limit is in general not unique: if Sn

H−−→ S, then 
Sn

H−−→ T iff S = T .
A second related standard notion of set convergence is the following [32, Section 28], 

[26, Definition 3.1]: for sets Sn, S ⊂ C, we write Sn → S if lim inf Sn = lim supSn = S, 
where lim inf Sn is the set of limits of sequences (zn) ⊂ C such that zn ∈ Sn for each 
n, while lim supSn is the set of partial limits of such sequences. Both lim inf Sn and 
lim supSn are closed sets [26, Proposition 3.2], and it is clear (see [26, Proposition 3.5]) 
that, for every set sequence (Sn), lim inf Sn = lim inf Sn and lim supSn = lim supSn. 
These two notions of convergence are very close. Precisely, for (Sn) ⊂ C

B , lim inf Sn =
lim supSn iff lim inf Sn = lim inf Sn = lim supSn = lim supSn and (see [32, p. 171] or 
[26, Proposition 3.6]), this holds iff Sn

H−−→ S for some S ∈ C
C , in which case Sn → S. 

Further, Sn
H−−→ S iff Sn

H−−→ S, and Sn → S iff Sn → S. Thus, for (Sn) ⊂ C
B and 

S ∈ C
B , Sn

H−−→ S iff Sn → S.
We introduce the following stronger notion of set convergence (cf., [32, p. 21]). Given 

S ⊂ C and a sequence of sets Sn ⊂ C, we will write Sn ↗ S if Sn ⊂ S for each n, and 
if every z ∈ S is also in Sn for all sufficiently large n. In symbols Sn ↗ S means that 
Sn ⊂ S for each n and that S = ∪m∈N∩n≥mSn. The following lemma is immediate from 
this definition and the observations above:
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Lemma 4.15. If Sn ⊂ C is a set sequence, S ⊂ C, and Sn ↗ S, then Sn → S. If, 
additionally, each Sn is non-empty and S is bounded, then also Sn

H−−→ S.

In this last proposition we use again the notation (4). We remark that a weaker 
version of this proposition, namely that, under the same assumptions on p and q, 
lim sup specpεAn = SpecpεA+, can be deduced from general results on the finite section 
method for band-dominated operators [55], results which, as already noted, also lead 
to (11).

Proposition 4.16. Let A+ ∈ ΨE+(U, V, W ) and let (An) denote its finite sections (8)
with ln = 1 and rn → +∞. If p, q ∈ [1, ∞] with p−1 + q−1 = 1 are both favourable, in 
particular if p = q = 2 or 0 ∈ U ∪W or U = W , then, for all ε > 0,

specpεAn ↗ specpεA+ = Σp
+,ε, as n → ∞,

so that also specpεAn → specpεA+ = SpecpεA+ and specpεAn
H−−→ specpεA+.

Proof. By (62), specpεAn ⊂ specpεA+ = Σp
+,ε for all n ∈ N. Further, for every 0 < η < ε, 

it follows from [12, Theorem 4.4] that specpη A+ ⊂ specpεAn for all sufficiently large n, 
i.e. that, for some m ∈ N, specpη A+ ⊂ ∩n≥mspecpεAn. Since ∪0<η<ε specpη A+ = specpε A+, 
it follows that specpε A+ = ∪m∈N ∩n≥m specpεAn, and hence that specpεAn ↗ specpε A+ as 
n → ∞. The remaining results follow from Lemma 4.15. �
Remark 4.17 (The Hilbert space case p = 2 and the numerical range). We emphasise 
that our results are somewhat simpler in the important Hilbert space case p = 2. In 
particular, for A+ ∈ ΨE+(U, V, W ) and ε > 0, where (An) denotes the finite sections (8)
of A+ with ln = 1 and rn → +∞, we have from (62) and Proposition 4.16 that

spec2
εAn ↗ spec2

εA+ = Σ2
fin,ε = Σ2

+,ε = Σ2
ε ∪ G,

for each G ∈ {E±1, E∩, E∪, Σ+}, with E±1 = ∅ if w∗ ≤ u∗ and u∗ ≤ w∗. Further, 
in this Hilbert space case, as discussed above (33), Hagger [27] has shown that the 
closure of the numerical range of every operator in ΨE(U, V, W ) ∪ΨE+(U, V, W ) is given 
explicitly by conv(E) = conv(E∪). Since, for a bounded operator on a Hilbert space, 
the ε-neighbourhood of the numerical range contains the ε-pseudospectrum (e.g. [57, 
Theorem 17.5]), and recalling (3), we can extend the lower and upper bounds (33) for 
the spectrum to give bounds on the 2-norm pseudospectra, that, for ε > 0,

E∪ + εD ⊂ Σ2
+,ε ⊂ conv(E∪) + εD and E + εD ⊂ Σ2

ε ⊂ conv(E) + εD.

Example 2.9, with U = {1}, V = {0}, W = {0, 2} and E∪ = convE∪, is a case where 
these bounds on Σ2

+,ε are sharp: in that case Σ2
ε = Σ2

+,ε = conv(E∪) +εD = convE(1, 2) +
εD, with E(1, 2) the ellipse (34).
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