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Abstract In this paper we propose methods for computing Fresnel integrals based on
truncated trapezium rule approximations to integrals on the real line, these trapezium
rules modified to take into account poles of the integrand near the real axis. Our start-
ing point is a method for computation of the error function of complex argument due
to Matta and Reichel (J Math Phys 34:298–307, 1956) and Hunter and Regan (Math
Comp 26:539–541, 1972). We construct approximations which we prove are expo-
nentially convergent as a function of N , the number of quadrature points, obtaining
explicit error bounds which show that accuracies of 10−15 uniformly on the real line
are achieved with N = 12, this confirmed by computations. The approximations we
obtain are attractive, additionally, in that they maintain small relative errors for small
and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel
integrals), and are straightforward to implement.
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636 M. Alazah et al.

1 Introduction

Let C(x), S(x), and F(x) be the Fresnel integrals defined by

C(x) :=
x∫

0

cos
(

1
2π t2

)
dt, S(x) :=

x∫

0

sin
(

1
2π t2

)
dt, (1)

and

F(x) := e−iπ/4

√
π

∞∫

x

eit2
dt. (2)

Our definitions in (1) are those of [2] and [1, §7.2(iii)], and F , C and S are related
through

√
2 eiπ/4 F(x) = 1

2 − C
(√

2/π x
)

+ i
(

1
2 − S

(√
2/π x

))
. (3)

In this paper we derive new methods for computing these Fresnel integrals F(x),
C(x) and S(x). The derivation of our approximations makes use of the relationship
between the Fresnel integral and the error function, that

F(x) = 1
2 erfc(e−iπ/4x) = 1

2 eix2
w

(
eiπ/4x

)
(4)

where erfc is the complementary error function, defined by

erfc(z) := 2√
π

∞∫

z

e−t2
dt,

and

w(z) := e−z2
erfc(−iz).

It also depends on the integral representation [2, (7.1.4)] that

w(z) = i

π

∞∫

−∞

e−t2

z − t
dt = iz

π

∞∫

−∞

e−t2

z2 − t2 dt, for Im(z) > 0. (5)

Combining (4) and (5) gives an integral representation for F(x), that

F(x) = x

2π
ei(x2+π/4)

∞∫

−∞

e−t2

x2 + it2 dt, for x > 0. (6)
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Computing Fresnel integrals via modified trapezium rules 637

Fresnel integrals arise in applications throughout science and engineering, espe-
cially in problems of wave diffraction and scattering (e.g., [5, §8.2], [6]), so that
methods for the efficient and accurate computation of these functions are of wide
application. The purpose of this paper is to present new approximations for the Fresnel
integrals, based on N -point trapezium rule approximations to the integral representa-
tion (6) for F(x), these trapezium rules modified to take into account the poles of the
integrand. These poles lie near the path of integration when x is small.

The observation that the trapezium rule is exponentially convergent when applied
to integrals of the form

∞∫

−∞
e−t2

f (t) dt, (7)

with f (t) analytic in a strip surrounding the real axis, dates back at least to Turing [29]
and Goodwin [14]. The derivation of this result uses contour integration and Cauchy’s
residue theorem; see §2 below. Applying the trapezium rule with step-length h > 0
to (6) leads to the approximation

F(x) ≈ xh

π
ei(x2+π/4)

∞∑
k=1

e−τ 2
k

x2 + iτ 2
k

, for x > 0, (8)

where

τk := (k − 1/2)h. (9)

When x > 0 is large this approximation is very accurate. Indeed, if we choose

h = √
π/(N + 1/2) (10)

for some large integer N , then this approximation is essentially identical to the approx-
imation FN (x) for F(x) that we propose in (14) below. However, the approximation
(8) becomes increasingly poor as x > 0 approaches zero.

In the context of developing methods for evaluating the complementary error func-
tion of complex argument [by (4), evaluating F(x) for x real is just a special case of
this larger problem], Chiarella and Reichel [8], Matta and Reichel [20], and Hunter and
Regan [16] proposed modifications of the trapezium rule that follow naturally from
the contour integration argument used to prove that the trapezium rule is exponentially
convergent. The most appropriate form of this modification is that in [16] where the
modified trapezium rule approximation

F(x) ≈ xh

π
ei(x2+π/4)

∞∑
k=1

e−τ 2
k

x2 + iτ 2
k

+ R(h, x), for x > 0, (11)

is proposed. Here the correction term R(h, x) is defined by
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638 M. Alazah et al.

R(h, x) :=
⎧⎨
⎩

1/(exp(2πe−iπ/4x/h) + 1), if 0 < x <
√

2 π/h,

0.5/(exp(2πe−iπ/4x/h) + 1), if x = √
2 π/h,

0, if x >
√

2 π/h.

The approximation (11) clearly coincides with FN (x), given by (14), for 0 < x <√
2 π/h, if the range of summation in (11) is truncated to 1, . . . , N and the choice

(10) for h is made. Hunter and Regan prove that the magnitude of the error in (11) is

≤ xe−π2/h2

√
π

(
1 − e−2π2/h2) ∣∣x2/2 − π2/h2

∣∣ , (12)

for x > 0, provided x �= √
2π/h. Similar estimates, it appears arrived at indepen-

dently, are derived by Mori [21], in which paper the emphasis is on computing erfc(x)

for real x .
The approximation (11) is the starting point for the method we propose in this paper.

Our main contributions (see §1.2 for detail) are: (i) to point out that the approximation
proposed in (11) for 0 < x <

√
2 π/h in fact provides an accurate (and real-analytic)

approximation to the entire function F on the whole real line; (ii) to provide an
optimal formula for the choice of the step-size h as a function of N , the number of
terms retained in the sum in (11); (iii) to prove that, with this choice of h, the resulting
approximations are exponentially convergent as a function of N , uniformly on the real
line (this in contrast to (12) which blows up at x = √

2 π/h).

1.1 Other methods for computing Fresnel integrals

Naturally, there exist already a number of effective schemes for computation of Fresnel
integrals, and we briefly summarise now the best of these. An effective computational
method for smaller values of |x | is to make use of the power series for C(x) and S(x)

[see (69) below]. These converge for all x , and very rapidly for smaller x , and so are
widely used for computation. For example, the algorithm in the standard reference
[25] uses these power series for |x | ≤ 1.5. For this range, after the first two terms,
these series are alternating series of monotonically decreasing terms, and the error in
truncation has magnitude smaller than the first neglected term. Thus, for |x | ≤ 1.5,
the errors in computing C(x) and S(x) by these power series truncated to N terms are
≤ 2 × 10−16 and ≤ 2.3 × 10−17, respectively, for N = 14.

For |x | > 1.5, [25] recommends computation using the representations in terms
of erfc which follow from (3) and (4), and the continued fraction representation for
ez2

erfc(z) = w(iz) given as [1, (7.9.2)]. Methods for evaluation of w(z) based on
continued fractions for larger complex z (which can be used to evaluate F(x) and
hence C(x) and S(x)) are also discussed in Gautschi [13] and are finely tuned to form
TOMS “Algorithm 680” in Poppe and Wijers [23,24]. This algorithm achieves relative
errors of 10−14 over “nearly all” the complex plane by Taylor expansions of degree
up to 20 in an ellipse around the origin, convergents of up to order 20 of continued
fractions outside a larger ellipse, and a more expensive mix of Taylor expansion and
continued fraction calculations in between.
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Computing Fresnel integrals via modified trapezium rules 639

Weideman [30] presents an alternative method of computation [the derivation starts
from the integral representation (5)] which approximates w(z), for Im(z) > 0, by the
polynomial

wM (z) = 2

L2 + z2

M∑
n=0

an Zn (13)

in the transformed variable Z = (L + iz)/(L − iz). Here L =
√

M/
√

2 and the
coefficients an can be viewed as Fourier coefficients and efficiently computed by the
FFT. We will see in §4 that a polynomial degree M = 36 in (13) suffices to compute
F(x) = eix2

w(eiπ/4x)/2 with relative error ≤ 10−15 uniformly on the positive real
axis. Weideman [30] argues carefully and persuasively that, for intermediate values
of |z| (values in approximately the range 1.5 ≤ |z| ≤ 5 for the case arg(z) = π/4
which we require), and as measured by operation counts, the work required to compute
w(z) to 10−14 relative accuracy is much smaller for the approximation (13) than for
Algorithm 680 [24].

All the approximations described above are polynomial or rational approximations
(or piecewise polynomial/rational approximations, proposing different approxima-
tions on different regions). Many other authors describe approximations of these types
for computing the Fresnel integrals specifically with real arguments. The best of these
in terms of accuracy is Cody [9], where numerical coefficient values are given for
piecewise rational approximations to C(x) and S(x) for 0 ≤ x ≤ 1.6, and for piece-
wise rational approximations to the related functions f (x) and g(x) [see (64) and (65)
below], for x ≥ 1.6. These approximations, in their respective regions of validity,
achieve relative errors ≤ 10−15.58 ≈ 2.7 × 10−16, this using rational approximations
which are ratios of polynomials of degree ≤ 6; in total five different approximations
are used on different subintervals of the real axis. Single rational approximations,
based on a “polar” version of (64) and (65), are computed in [15], but these are of
limited accuracy (absolute errors ≤ 4 × 10−8).

1.2 Summary of the main results

The main result of this paper is to derive, with rigorous error bounds, a new family of
approximations to F(x) based on modified trapezium rules, given by

FN (x) := 1

2
+ i

2
tan

(
AN xeiπ/4

)
+ x

AN
ei(x2+π/4)

N∑
k=1

e−t2
k

x2 + it2
k

(14)

= 1

exp
(
2AN xe−iπ/4

) + 1
+ x

AN
ei(x2+π/4)

N∑
k=1

e−t2
k

x2 + it2
k

, (15)

where

tk := (k − 1/2) π√
(N + 1/2) π

, AN := tN+1 = √
(N + 1/2)π. (16)
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640 M. Alazah et al.

The corresponding approximations to C(x) and S(x) that we propose [obtained by
substituting in (3) and separating real and imaginary parts] are

CN (x) := 1

2

sinh (
√

π AN x) + sin (
√

π AN x)

cos(
√

π AN x) + cosh(
√

π AN x)

+
√

π x

AN

(
aN

(π

2
x2

)
sin

(π

2
x2

)
− bN

(π

2
x2

)
cos

(π

2
x2

))
(17)

and

SN (x) := 1

2

sinh (
√

π AN x) − sin (
√

π AN x)

cos(
√

π AN x) + cosh(
√

π AN x)

−
√

π x

AN

(
aN

(π

2
x2

)
cos

(π

2
x2

)
+ bN

(π

2
x2

)
sin

(π

2
x2

))
, (18)

where

aN (s) := s
N∑

k=1

e−t2
k

s2 + t4
k

, bN (s) :=
N∑

k=1

t2
k e−t2

k

s2 + t4
k

. (19)

These approximations, designed for computation of F(x), C(x) and S(x) for all
x ∈ R, are attractive in several respects.

• The approximation FN is proven in Theorems 3 and 5 to converge to F approxi-
mately in proportion to exp(−π N ), uniformly on the real line with respect to both
absolute and relative error, and this predicted rate of exponential convergence is
observed in numerical experiments (see §4).

• The approximations FN (z), CN (z) and SN (z) to the entire functions F , C , and S,
are analytic in the strip |Im(z)| <

√
(N + 1/2)π/2 and the error bounds we prove

extend in modified form into this strip. This implies exponentially convergent error
estimates, presented in §2.1 and §3, for the difference between the coefficients in
the Maclaurin series of F , C , and S and those in the corresponding series for FN ,
CN and SN . In turn (see §3), this implies that the approximations all retain small
relative error for |x | small, and the computations in §4 demonstrate this.

• These approximations inherit symmetries of the Fresnel integrals. In particular,
our normalisation of F(x) is such that

F(−x) = 1 − F(x), (20)

so that, in particular, F(0) = 1/2. It is clear from (14) that the same holds for
FN (x), i.e.,

FN (−x) = 1 − FN (x). (21)
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Computing Fresnel integrals via modified trapezium rules 641

Table 1 Matlab code to evaluate FN (x) given by (15), making use of (21) for x < 0

Similarly, where an overline denotes a complex conjugate,

F(z) = F(iz̄) and FN (z) = FN (iz̄). (22)

Both these symmetries can be deduced from the structure of C and S and their
approximations: by inspection of (17) and (18) we see that

CN (x) = x fC (x4), SN (x) = x3 fS(x4), (23)

where fC and fS are analytic in a neighbourhood of the positive real axis and are
real-valued for real arguments. This is the same structure as C and S [see (69)]. In
particular, (23) implies that CN and SN , like C and S, are odd functions.

• These approximations are straightforward to code. Tables 1 and 2 show the short
Matlab codes used to evaluate FN , CN and SN for all the computations in this
paper.

We end this introduction by outlining the remainder of the paper. In §2 we derive
the approximation (14) to F(x) and prove rigorous bounds on |F(x) − FN (x)|. In
§3 we deduce from this the approximations (17) and (18) and bounds on the errors
C(x) − CN (x) and S(x) − SN (x), especially bounds for x small. In §4 we show
numerical results, comparing our new approximations with the error bounds derived
in the earlier sections and with certain rival methods for computing Fresnel integrals.
The appendix proves what appears to be a new, sharp lower bound on |erfc(z)|, for
Re(z) ≥ 0, of some independent interest, potentially useful for deriving rigorous
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642 M. Alazah et al.

Table 2 Matlab to evaluate CN (x) and SN (x) given by (17) and (18). See §3 for details

upper bounds on the relative error in approximate methods for computing erfc (e.g.,
the methods of [16,23,30]). The relevance of this lower bound to the rest of the paper
is that it implies, via (4), a new lower bound on |F(x)| for x > 0, of independent
interest and a key component in our theoretical bounds on relative errors in §2.

2 The approximation for F(x) and its error bounds

In this section we derive the approximation FN (x) to F(x) and derive error bounds
for this approximation demonstrating that both absolute and relative errors converge
exponentially to zero as N increases, uniformly on the real line, and that N = 12 is
enough to achieve errors < 10−15. The first part of our derivation follows in large part
Matta and Reichel [20] and Hunter and Regan [16]. From (6) we have that, for x > 0,

I :=
∞∫

−∞
f (t) dt = F(x), where f (t) := ei(x2+π/4) x

2π

e−t2

x2 + it2 , (24)
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Computing Fresnel integrals via modified trapezium rules 643

and we have suppressed in our notation the dependence of f (t) on x .
Given h > 0 let

g(z) = i tan(π z/h),

which is an odd meromorphic function with simple poles at the points τk , defined by
(9), which has the property that, for z = X + iH with X ∈ R, H > 0,

|1 + g(z)| ≤ 2e−2π H/h

1 − e−2π H/h
. (25)

The approximation (11) is obtained by considering the integral in the complex plane

J =
∫

Γ

f (z)(1 + g(z)) dz, (26)

where the path of integration is from −∞ to ∞ along the real axis, except that the path
makes small semicircular deformations to pass above each of the simple poles at the
points τk , k ∈ Z. Explicitly, the kth deformation is the semicircle γk = {τk + εe−iθ :
π ≤ θ ≤ 2π}, with ε in the range (0, h/2) small enough so that the simple pole
singularity in f (z) at z = z0 := eiπ/4x lies above Γ . Then, since f (z)g(z) is an odd
function, we see that

J =
∫

Γ

f (z) dz +
∫

Γ

f (z)g(z) dz = I +
∑
k∈Z

∫

γk

f (z)g(z) dz.

In the limit ε → 0,
∫
γk

f (z)g(z) dz → −π i Res( f g, τk) = −h f (τk), where
Res( f g, τk) denotes the residue of f g at τk . Thus J = I − Ih , where

Ih = h
∑
k∈Z

f (τk) = 2h
∞∑

k=1

f ((k − 1/2)h) (27)

is a trapezium/midpoint rule approximation to I .
For H > 0 let

JH =
∫

ΓH

f (z)(1 + g(z)) dz,

where the path of integration ΓH is the line Im(z) = H , traversed in the direction of
increasing Re(z). It follows from Cauchy’s residue theorem that

J − JH = H
(√

2 H − x
)

PCh, (28)
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644 M. Alazah et al.

where H is the Heaviside step function (defined by H(t) = 1, for t > 0, H(0) = 1/2,
and H(t) = 0, for t < 0), and

PCh = 2π i Res( f (1 + g), z0) = 1

2
(1 + g(z0)) = 1

2

(
1 + i tan

(
eiπ/4xπ/h

))
.

Thus

I = Ih + H
(√

2 H − x
)

PCh + JH . (29)

The point of this formula is that Ih + H
(√

2 H − x
)

PCh is a computable approxi-

mation to I and the integral JH is small, as quantified in the following proposition.

Proposition 1 Let eh denote the value of the integral JH when we choose H = π/h.
Then, for x > 0,

|eh | ≤ δ1(x) := x e−π2/h2

√
π |π2/h2 − x2/2| (

1 − e−2π2/h2) . (30)

Proof For z = X + iH ,

|x2 + iz2| = |z0 − z| |z0 + z| ≥ |x/
√

2 − H | |x/
√

2 + H | = |x2/2 − H2|

so, using (25) and recalling that
∫ ∞
−∞ e−t2

dt = √
π , we see that

|JH | ≤ x eH2−2π H/h

√
π |H2 − x2/2| (

1 − e−2π H/h
) .

Choosing H = π/h, to minimise the exponent H2 −2π H/h, the result (30) follows.

�

Note that Ih + H
(√

2 π/h − x
)

PCh = Ih + R(h, x) is precisely the approxima-

tion (11), and that the above bound on eh is precisely the bound (12) from [16].

Theorem 1 Let I ∗
h := Ih + PCh and e∗

h := I − I ∗
h . Then, for x > 0,

|e∗
h | ≤ Δh(x), (31)

where

Δh(x) :=

⎧⎪⎨
⎪⎩

δ1(x), 0 ≤ x√
2

≤ 3
4

π
h ,

δ2(x), 3
4

π
h < x√

2
< 5

4
π
h ,

δ3(x), x√
2

≥ 5
4

π
h .

(32)
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Computing Fresnel integrals via modified trapezium rules 645

Here δ1 is defined by (30),

δ2(x) := 4hx e−π2/h2

√
π π(π/h + x/

√
2)

(
1 − e−2π2/h2)

(
1 + 2

√
π e−βπ2/h2

)
, (33)

with β = 1 − √
2/2 − (2

√
2 + 1)/16 ≈ 0.0536, and

δ3(x) := δ1(x) + e−√
2 πx/h

1 − e−√
2 πx/h

. (34)

Proof The bound (30) implies that |e∗
h | ≤ δ1(x), for 0 < x <

√
2 π/h. Since, applying

(25),

|PCh | ≤ e−√
2 πx/h

1 − e−√
2 πx/h

,

the bound (30) also implies that |e∗
h | ≤ δ3(x), for x >

√
2 π/h.

Setting H = π/h, select ε in the range (0, H) and consider the case that∣∣∣x/
√

2 − H
∣∣∣ < ε. In this case we observe that the derivation of (29) can be mod-

ified to show that

e∗
h =

∫

Γ ∗
H

f (z)(1 + g(z)) dz, (35)

where the contour Γ ∗
H passes above the pole in f at z0; precisely, Γ ∗

H is the union
of Γ ′ and γ , where Γ ′ = {z ∈ ΓH : |z − z0| > ε} and γ is the circular arc
γ = {z0+εeiθ : θ0 ≤ θ ≤ π−θ0}, where θ0 = sin−1((H−x/

√
2)/ε) ∈ (−π/2, π/2).

For z ∈ Γ ′ it holds that

|x2 + iz2| = |z0 − z| |z0 + z| ≥ ε |x/
√

2 + H |. (36)

Thus, and applying (25), similarly to (30) we deduce that

∣∣∣∣∣∣
∫

Γ ′
f (z)(1 + g(z)) dz

∣∣∣∣∣∣ ≤ x e−π2/h2

√
π ε|π/h + x/

√
2| (

1 − e−2π2/h2) . (37)

To bound the integral over γ we note that, for z = X + iY = z0 + εeiθ ∈ γ , (36) is
true and Y ≥ H . Further, |e−z2 | = eP , where

P =Y 2−X2 =2xε sin(θ − π/4)−ε2 cos(2θ) < 2xε+ε2 ≤2
√

2Hε+(2
√

2 + 1)ε2,

since
∣∣∣x/

√
2 − H

∣∣∣ < ε. From these bounds and (25), defining α = ε/H ∈ (0, 1), we

deduce that
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∣∣∣∣∣∣
∫

γ

f (z)(1 + g(z)) dz

∣∣∣∣∣∣ ≤ 2x exp((2
√

2α + (2
√

2 + 1)α2 − 2)π2/h2)

ε|π/h + x/
√

2| (
1 − e−2π2/h2) . (38)

For x in the range
∣∣∣x/

√
2 − H

∣∣∣ < ε we can bound e∗
h using (35), (37), (38), and the

triangle inequality, to get that

|e∗
h | ≤ hx e−π2/h2

α
√

π π |π/h + x/
√

2| (
1 − e−2π2/h2)

(
1 + 2

√
π e−βπ2/h2

)
, (39)

where β = 1 − 2
√

2α − (2
√

2 + 1)α2. Noting that β > 0 if and only if 0 < α < α0,
where α0 = (1 + 2

√
2)−1 ≈ 0.2612, we choose α < α0 to be α = 1/4. With this

choice it follows from (39) that |e∗
h | ≤ δ2(x) for 3

4
π
h < x√

2
< 5

4
π
h , and the proof is

complete. 
�
The approximation FN (x), given by (14), that we propose for I = F(x) is just

I ∗
h = Ih + PCh with a particular choice of h and with the range of summation in (27)

reduced to the finite range 1, . . . , N . This induces an additional error,

TN := 2h
∞∑

m=N+1

f (τm), (40)

that we bound in the next proposition.

Proposition 2 For x > 0,

|TN | ≤ (2hτN+1 + 1)x

2πτN+1

√
x4 + τ 4

N+1

e−τ 2
N+1 .

Proof

|TN | ≤ hx

π

∞∑
m=N+1

e−τ 2
m√

x4 + τ 4
m

≤ x

2π

√
x4 + τ 4

N+1

(
2he−τ 2

N+1 + 2h
∞∑

m=N+2

e−τ 2
m

)

≤ x

2π

√
x4 + τ 4

N+1

⎛
⎝2he−τ 2

N+1 + 2

∞∫

τN+1

e−t2
dt

⎞
⎠

≤ x

2π

√
x4 + τ 4

N+1

(
2he−τ 2

N+1 + e−τ 2
N+1

τN+1

)
= (2hτN+1 + 1)x

2πτN+1

√
x4 + τ 4

N+1

e−τ 2
N+1 .
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To arrive at the last line we have used that, for x > 0,

2

∞∫

x

e−t2
dt = e−x2

x
−

∞∫

x

e−t2

t2 dt <
e−x2

x
. (41)


�
At this point we make a choice of h to approximately equalise Δh(x) in The-

orem 1 (which is approximately proportional to exp(−π2/h2)) and the bound on
TN in Proposition 2, choosing h so that π/h = τN+1 = (N + 1/2)h. In other
words, we make the choice h = √

π/(N + 1/2) given by (10), in which case
τN+1 = AN = √

(N + 1/2)π , and τk = tk , where tk is defined by (16). Making
this choice of h we see that

EN (x) := F(x) − FN (x) = e∗
h + TN (42)

and that

|TN | ≤ (2π + 1)x

2π AN

√
x4 + A4

N

e−A2
N . (43)

Combining (42) and (43) with Theorem 1, we arrive at the following theorem which
is our main pointwise error bound. Theorem 1, (42), and (43) prove this theorem
only for x > 0, but the symmetries (20) and (21) imply that EN (−x) = −EN (x),
so that (44) holds also for x < 0, and, by continuity, also for x = 0 (and in fact
EN (0) = ηN (0) = 0).

Theorem 2 For x ∈ R,

|EN (x)| ≤ ηN (x) := Δh(|x |) + (2π + 1)|x |
2π AN

√
x4 + A4

N

e−A2
N , (44)

where

Δh(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x e−A2
N

√
π (A2

N − x2/2)
(

1 − e−2A2
N

) , 0 ≤ x√
2

≤ 3
4 AN ,

4x e−A2
N

(
1 + 2

√
π e−β A2

N

)
√

π AN (AN + x/
√

2)
(

1 − e−2A2
N

) , 3
4 AN <

x√
2

< 5
4 AN ,

x e−A2
N

√
π (x2/2 − A2

N )
(

1 − e−2A2
N

) + e−√
2 AN x

1 − e−√
2AN x

,
x√
2

≥ 5
4 AN .

(45)
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We will compare |EN (x)| to the upper bound ηN (x) for N = 9 in Fig. 3 below.
The following theorem estimates the maximum value of ηN (x) on the real line.

Theorem 3 For x ∈ R,

|F(x) − FN (x)| ≤ ηN (x) ≤ cN
e−π N

√
N + 1/2

, (46)

where

cN = 20
√

2e−π/2

9π
(

1 − e−2A2
N

) (
1 + 2

√
π e−β A2

N

)
+ (2π + 1)e−π/2

2
√

2 π3/2 AN
, (47)

which decreases as N increases, with

c1 ≈ 0.825 and lim
N→∞ cN = 20

√
2e−π/2

9π
≈ 0.208. (48)

Proof It is easy to see that Δh(x) is increasing on [0, 5
4

√
2 AN ) and decreasing on

[ 5
4

√
2 AN ,∞). Further, where Δh( 5

4

√
2 A−

N ) denotes the limiting value of Δh(x) as

x → 5
4

√
2 AN from below, since 2A−1

N > e−A2
N ,

Δh

(
5
4

√
2A−

N

)
= 20

√
2 e−A2

N

9
√

π AN

(
1 − e−2A2

N

) (
1 + 2

√
π e−β A2

N

)

>
20

√
2 e−A2

N

9
√

π AN

(
1 − e−2A2

N

) + e−5A2
N /2

1 − e−5A2
N /2

= Δh

(
5
4

√
2 AN

)
.

Similarly, xΔh(x) is increasing on [0, 5
4

√
2 AN ) and decreasing on [ 5

4

√
2 AN ,∞).

Thus, for x ≥ 0,

Δh(x) ≤ Δh

(
5
4

√
2 A−

N

)
and xΔh(x) ≤ 5

4

√
2 AN Δh

(
5
4

√
2 A−

N

)
. (49)

Moreover,

|x |√
x4 + A4

N

≤ 1√
2 AN

and
x2√

x4 + A4
N

< 1, for x ∈ R. (50)

Combining (44), (49) and (50) we reach the result. 
�
We can also bound the relative error in our approximation FN (x). The proof of

Theorem 4 is postponed to the appendix.
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Theorem 4

|F(x)| ≥ 1

2 + 2
√

π x
, for x ≥ 0, (51)

and

|F(x)| ≥ 1

2
, for x ≤ 0. (52)

Theorem 5

|F(x) − FN (x)|
|F(x)| ≤ ηN (x)

|F(x)| ≤
⎧⎨
⎩

c∗
N e−π N , for x ≥ 0,

2cN
e−π N

√
N + 1/2

, for x ≤ 0,
(53)

where

c∗
N =

10
√

2
(

4 + 5
√

2π AN

) (
1 + 2

√
πe−β A2

N

)

9
√

π eπ/2 AN

(
1 − e−2A2

N

) + (2π + 1)

πeπ/2 AN

(
1√

2 AN
+ √

π

)
,

which decreases as N increases, with c∗
1 ≈ 10.4 and limN→∞ c∗

N = 100e−π/2/9
≈ 2.3.

Proof Combining (44), (49), (50), and (51), we see that, for x ≥ 0,

ηN (x)

|F(x)| ≤
(

2 + 5
2

√
2π AN

)
Δh

(
5
4

√
2 A−

N

)
+ (2π + 1)

π

e−A2
N

AN

(
1√

2 AN
+ √

π

)
.

This implies the bound (53) for x ≥ 0. The bound (53) for x ≤ 0 follows immediately
from (52) and (46). 
�

In the above theorems we use (44) and (45) to bound the maximum absolute and
relative errors in the approximation FN (x). These inequalities, additionally, imply that
FN (x) is particularly accurate for |x | small. For |x | ≤ AN /

√
2 = √

(N + 1/2)π/2,
it follows from (44) and (45) that

|F(x) − FN (x)| ≤ ηN (x) ≤ c̃N |x | e−π N

2N + 1
(54)

where

c̃N = 8

3π3/2eπ/2
(

1 − e−2A2
N

) + (2π + 1)

π2eπ/2 AN
, (55)

which decreases as N increases, with c̃1 ≈ 0.17 and limN→∞ c̃N = 8/(3π3/2eπ/2) ≈
0.10.
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2.1 Extensions of the error bounds into the complex plane

In §1 we have made claims regarding the analyticity of the approximation FN (x),
considered as a function of x in the complex plane. We justify these claims now. One
attractive feature of the modified trapezium rule approximation I ∗

h is that, in contrast
to Ih , it is entire as a function of x . This is not immediately obvious: I ∗

h = Ih + PCh ,
and PCh has simple pole singularities at x = e−iπ/4τk , k ∈ Z. But Ih also has simple
poles at the same points and it is an easy calculation to see that the residues add to zero,
so that the singularities cancel out. Since FN (x) = I ∗

h − TN , with h given by (10), it
follows that the singularities of FN (x) are those of TN , i.e., simple poles at ±e−iπ/4tk ,
for k = N + 1, N + 2, . . .. Thus FN (x) is a meromorphic function and, in particular,
is analytic in the strip |Im(x)| < AN /

√
2 and in the first and third quadrants of the

complex plane.
We will note two consequences of this analyticity and the bounds that we have

already proved. In these arguments we will use an extension of the maximum princi-
ple for analytic functions to unbounded domains, that if w(z) is analytic in an open
quadrant in the complex plane, let us say Q = {z ∈ C : 0 < arg(z) < π/2}, and is
continuous and bounded in its closure, then

sup
z∈Q

|w(z)| ≤ sup
z∈∂ Q

|w(z)|, (56)

where ∂ Q denotes the boundary of the quadrant. (This sort of extension of the max-
imum principle to unbounded domains is due to Phragmen and Lindelöf; see, e.g.,
[26].)

The first consequence is that, from (22), (42), and (46), it follows that the bound
(46) holds on both the real and imaginary axes. Further, from (4) and the asymptotics
of erfc(z) in the complex plane [2, (7.1.23)], it follows that F(z) → 0, uniformly in
arg(z), for 0 ≤ arg(z) ≤ π/2; moreover, it is clear from (15) that the same holds for
FN (z) and hence for EN (z). Thus (56) implies that (46) holds for 0 ≤ arg(z) ≤ π/2,
and (20) and (21) then imply that (46) holds also for π ≤ arg(z) ≤ 3π/2.

It is clear from the derivations above that, if h is given by (10), then I ∗
h also satisfies

the bound (46), i.e.,

|F(z) − I ∗
h | ≤ cN

e−π N

√
N + 1/2

, (57)

this holding in the first instance for real z, then for imaginary z, and finally for all z
in the first and third quadrants. The bound (46) cannot hold in the second or fourth
quadrant because EN (z) = F(z)− FN (z) has poles there. This issue does not hold for
F(z)− I ∗

h , which is an entire function, but (57) cannot hold in the whole complex plane
because this, by Liouville’s theorem [26], would imply that F(z) − I ∗

h is a constant.

What does hold is that e−iz2
(F(z)− I ∗

h ) is bounded in the second and fourth quadrants,

this a consequence of the definition of I ∗
h and the asymptotics of ez2

erfc(z) at infinity.
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Thus it follows from (56), and since |e−iz2 | = 1 if z is real or pure imaginary, that

|F(z) − I ∗
h | ≤ cN e−xy e−π N

√
N + 1/2

, (58)

for z = x + iy in the second and fourth quadrants.
We can use the bound (58) to obtain a bound on EN (x) in the second and fourth

quadrants. Clearly, where TN is defined by (40), with h given by (10), for z = x + iy
in the second and fourth quadrants,

|F(z) − FN (z)| ≤ cN e−xy e−π N

√
N + 1/2

+ |TN |.

Further, arguing as below (40), if |y| ≤ AN /(2
√

2) so that

|z2+it2
k |≥

(
AN√

2
−|y|

) ((
AN√

2
−|y|

)2

+
(

AN√
2

+|x |
)2

)
≥ AN

2
√

2

(
A2

N /8+|x |2
)

,

which implies that |z2 + it2
k | ≥ |z|AN /(2

√
2), then

|TN | ≤ e−xy (2π + 1)
√

2

π A2
N

e−A2
N = e−xy

√
2(2π + 1)

π3/2 exp(π/2)(N + 1/2)
e−π N .

Thus, for z = x + iy in the second and fourth quadrants with |y| ≤ AN /(2
√

2),

|F(z) − FN (z)| ≤ ĉN e−xy e−π N

√
N + 1/2

(59)

where

ĉN := cN +
√

2(2π + 1)

π3/2 exp(π/2)
√

N + 1/2
, (60)

which is decreasing with ĉ1 ≈ 1.14 and limN→∞ ĉN = limN→∞ cN ≈ 0.208.
We observe above that the bound (46) on EN (z) = F(z) − FN (z) holds for all

complex z in the first and third quadrants of the complex plane, and on the boundaries
of those quadrants, the real and imaginary axes, while the bound (59) holds in the
second and fourth quadrants for |Im(z)| ≤ AN /(2

√
2). These bounds imply that the

coefficients in the Maclaurin series of FN (z) are close to those of F(z). Precisely, at
least for |z| < AN /

√
2,

F(z) =
∞∑

n=0

anzn and FN (z) =
∞∑

n=0

bnzn,
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with an = F (n)(0)/n!, bn = F (n)
N (0)/n!. Thus, where MN = sup|z|<√

π/2 |EN (z)|, it
follows from Cauchy’s estimate [26, Theorem 10.26] and the bounds (46) and (59)
that, for N ≥ 4 so that AN /(2

√
2) ≥ √

π/2,

|an − bn| = |E (n)
N (0)|
n! ≤ MN

(
2

π

)n/2

≤ ĉN

(
2

π

)n/2 e−π(N−1/4)

√
N + 1/2

. (61)

3 Approximating C(x) and S(x)

From (3) we see that, for x real,

C(x)=Re
(√

2 eiπ/4( 1
2 −F(

√
π/2 x))

)
, S(x)= Im

(√
2 eiπ/4( 1

2 −F(
√

π/2 x))
)

.

(62)

Clearly, given the approximation FN (x) to F(x), these relationships can be used
to generate approximations for the Fresnels integrals C(x) and S(x). These approxi-
mations are defined, for x ∈ R, by

CN (x) = Re
(√

2 eiπ/4( 1
2 − FN (

√
π/2 x))

)
,

SN (x) = Im
(√

2 eiπ/4( 1
2 − FN (

√
π/2 x))

)
,

(63)

and are given explicitly in (17) and (18). We note the similarity between (17) and (18)
and the formulae [1, (7.5.3–7.5.4)]

C(x) = 1
2 + f (x) sin

( 1
2πx2

) − g(x) cos
( 1

2πx2
)
, (64)

S(x) = 1
2 − f (x) cos

( 1
2πx2

) − g(x) sin
( 1

2πx2
)
, (65)

which express C(x) and S(x) in terms of the auxiliary functions, f (x) and g(x), for
the Fresnel integrals [1, §7.2(iv)]. Indeed, it follows from [1, (7.7.10–7.7.11)] that, for
x > 0, f (x) and g(x) have the integral representations

f (x) =
√

π x3

2

∞∫

0

e−t2

(
π
2 x2

)2 + t4
dt and g(x) = x√

π

∞∫

0

t2e−t2

(
π
2 x2

)2 + t4
dt,

and, recalling that AN is linked to the quadrature step-size through (10), it is clear that,
for x > 0,

√
π xaN

(
π
2 x2

)
/AN and

√
π xbN

(
π
2 x2

)
/AN can be viewed as quadrature

approximations to these integrals.
The approximations (17) and (18) inherit the accuracy of FN (x) on the real line:

from (62) and (63) we see, for x ∈ R, that

|C(x) − CN (x)| ≤ √
2 |EN (

√
π/2 x)| and |S(x) − SN (x)| ≤ √

2 |EN (
√

π/2 x)|.
(66)
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where EN (x) = F(x) − FN (x). Thus the error bounds of the previous section can
be applied. In particular, from (46) and (54) it follows that both |C(x) − CN (x)| and
|S(x) − SN (x)| are

≤ 2cN
e−π N

√
2N + 1

, for x ∈ R, (67)

and

≤ √
π c̃N |x | e−π N

2N + 1
, for |x | ≤ √

N + 1/2 . (68)

Here cN < 0.83 and c̃N < 0.18 are the decreasing sequences of positive numbers
defined by (47) and (55), respectively.

These bounds show that CN (x) and SN (x) are exponentially convergent as N → ∞,
uniformly on the real line, so that very accurate approximations can be obtained with
very small values of N ((67) shows that both |CN (x) − C(x)| and |SN (x) − S(x)| are
≤ 1.4 × 10−16 on the real line for N ≥ 11). In §4 we will confirm the effectiveness of
these approximations by numerical experiments, checking the accuracy of (17) and
(18) by comparison with the power series [1, §7.6(i)]

C(x) =
∞∑

n=0

(−1)n
( 1

2π
)2n

x4n+1

(2n)!(4n + 1)
, S(x) =

∞∑
n=0

(−1)n
( 1

2π
)2n+1

x4n+3

(2n + 1)!(4n + 3)
. (69)

It follows from the analyticity of FN (x) in the complex plane, discussed in §2.1,
that FN (x) has a power series convergent in |x | < AN /

√
2, and from (63) that CN (x)

and SN (x) have convergent power series representations in |x | < AN /
√

π . From the
observations below (23) it is clear that, echoing (69), these take the form

CN (x) =
∞∑

n=0

cn x4n+1, SN (x) =
∞∑

n=0

sn x4n+3. (70)

Further, it follows from (63) and (61) that the coefficients cn and sn are close to the
corresponding coefficients of C(x) and S(x), with the difference having absolute value

≤ √
2 ĉN

e−π(N−1/4)

√
N + 1/2

, (71)

for N ≥ 4, where ĉN ≤ ĉ4 < 0.77 is the decreasing sequence of positive numbers
given by (60). This implies that, near zero, where C(x) has a simple zero and S(x) a
zero of order three, the approximations CN (x) and SN (x) retain small relative error.
For CN (x) this follows already from (68) but to see this for SN (x) we need the stronger
bound implied by (71) that, for |x | < 1,

123



654 M. Alazah et al.

4 6 8 10 12
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

N

M
ax

im
um

 A
bs

ol
ut

e 
E

rr
or

|F
N

(x)−Fw(x)|

|F
N

(x)−F
20

(x)|

c
N

 exp(−π N)/(N+0.5)1/2

4 6 8 10 12
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

N

M
ax

im
um

 R
el

at
iv

e 
E

rr
or

|F
N

(x)−Fw(x)|/|Fw(x)|

|F
N

(x)−F
20

(x)|/|F
20

(x)|

c*
N

 exp(−π N)

Fig. 1 Left hand side: maximum error, maxx≥0 |F(x) − FN (x)|, and its upper bound (46) (−), plotted

against N , in one case where F(x) is approximated by Fw(x) := eix2
w36(eiπ/4x)/2 − · −·) with w36(z)

defined by (13) and computed by the function in Table 1 of [30], and in the other case where F(x) is
approximated by F20(x) (−−). Right hand side: maximum relative error, maxx≥0 |(F(x)− FN (x))/F(x)|,
and its upper bound (53) (−), plotted against N , where F(x) is approximated in the two curves as on the
left hand side. (All maximums are taken over 40,000 equally spaced points between 0 and 1,000, and all
values of FN (x) are computed using the code in Table 1)

|S(x) − SN (x)| ≤ √
2 ĉN

e−π(N−1/4)

√
N + 1/2

∞∑
n=0

|x |4n+3 = |x |3
1 − |x |4

√
2 ĉN e−π(N−1/4)

√
N + 1/2

.

(72)

Table 2 shows the Matlab implementing (17) and (18) that we use in the next
section. To evaluate (sinh t ± sin t)/(cosh t + cos t), with t = √

π AN x , in (17) and
(18), we note that, for |t | ≥ 39, cosh(t) + cos(t) and exp(t)/2 have the same value
in double precision arithmetic, as do sinh t ± sin t and sign(t) exp(t)/2. Thus this
expression evaluates as sign(t) in double precision arithmetic for 39 ≤ |t | � 710. To
avoid underflow and reduce computation time, we evaluate it as sign(t) for |t | ≥ 39.
For small t there is an additional issue of loss of precision in evaluating sinh t − sin t
for |t | small. This is avoided in Table 2 by using sinh t − sin t = 2t3/3!+2t7/7!+ . . .

for |t | < 1, truncating after four terms as the 5th term is negligible in double precision.

4 Numerical results and comparison of methods

In this section we show numerical computations that confirm and illustrate the the-
oretical error bounds in §2 and §3, and that explore the accuracy and efficiency of
our new methods, through qualitative and quantitative comparisons with certain of the
other computational methods described in §1.1.

In Fig. 1 it can be seen that the exponential convergence predicted by the bounds
(46) and (53) is achieved, indeed these bounds overestimate their respective maximum
errors by at most a factor of 10. Further, with N as small as 12 it appears that we
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Fig. 2 Left hand side: maximum error, maxx≥0 |F(x)−Fw(x)|, where Fw(x) := eix2
wM (eiπ/4x)/2 with

wM (z)defined in (13). Right hand side: same, but maximum relative error, maxx≥0 |(F(x)−Fw(x))/F(x)|,
is plotted against M . In each plot the two curves correspond to different methods for approximating the
exact value of F(x), either F(x) ≈ F20(x) given by (14) (−), or F(x) ≈ Fw(x) with M = 50 (−−). (The
maximums, as in Figure 1, are taken over 40,000 equally spaced points between 0 and 1,000)

achieve maximum absolute and relative errors in FN (x) which are < 2.9 × 10−16

and < 9.3 × 10−16, respectively; these values are upper bounds whichever of the two
methods for approximating F(x) accurately is used. (We should add a note of caution
here: the different approximations agree to high accuracy, but the accuracy of each
approximation is limited, for large x , by the accuracy with which eix2

is computed).
These plots also verify the high accuracy of the approximation (13) for w(z) from
[30], at least for arg(z) = π/4 and if M is large enough in (13). Figure 2 explores
this in more detail: in each plot the trend is one of exponential convergence, but the
convergence is not monotonic and is slower than that in Fig. 1.

In Fig. 3 we see that our pointwise theoretical error bounds are upper bounds as
claimed, and that these bounds appear to capture the x-dependence of the errors fairly
well, for example that EN (x) = O(x) as x → 0, = O(x−1) as x → ∞, and that
EN (x) reaches a maximum at about x = √

2 AN = √
π(2N + 1) (≈ 7.7 when

N = 9).
The above figures explore the accuracy of the approximation FN (x). Let us

comment on efficiency. Most straightforward is a comparison of the Matlab
function F(x,N) in Table 1 with computation of F(x) via the Matlab code
Fw(x,M)=exp(i ∗ x.2). *cef(exp(i*pi/4)*x,M)/2 that uses cef.m from
[30] implementing (13). Both F(x,N) and cef(x,M) are optimised for efficiency
when x is a large vector. The main cost in computation of F(x) via cef when x is
a large vector is a complex vector exponential (for eix2

), and the M complex vec-
tor multiplications and M additions required to evaluate the polynomial (13) using
Horner’s algorithm. In comparison, evaluation of F(x) using F(x,N) in Table 1
requires 2 complex vector exponentials, and slightly more than N real vector multipli-
cations/divisions, real vector additions, complex vector multiplications, and complex
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Fig. 3 Left hand side: absolute error, |F(x) − FN (x)| (−), and its upper bound ηN (x) given by (44)
(−−), plotted against x . Right hand side: relative error, |F(x) − FN (x)|/|F(x)| (−), and its upper bound
2(1 + √

π x)ηN (x) (−−), plotted against x . In both plots N = 9 and F(x) is approximated by F20(x)

vector additions. From Figs. 1 and 2 we read off that to achieve absolute and relative
errors below 10−8 requires N = 6 and M = 18; to achieve errors below 10−15 requires
N = 12 and M = 36. Thus computing F(x) via F(x,N) requires a substantially
lower operation count than computing via cef. (We note, moreover, as discussed in
§1.1 and in §7 of [30], that, at least for intermediate values of x (1.5 ≤ x ≤ 5), the
operation counts for cef are lower than those of the method for w(z) of [23,24].)

To test whether F(x,N) is faster we have compared computation times in Matlab
(version 7.8.0.347 (R2009a) on a laptop with dual 2.4GHz P8600 Intel processors)
between Fw(x,36) and F(x,12) when x is a length 107 vector of equally spaced
numbers between 0 and 1,000. The average elapsed times were 11.1 and 15.6 s,
respectively, so that F(x,12) is almost 50 % faster.

Turning to C(x) and S(x), in Fig. 4 we have plotted the maximum values of the
absolute and relative errors in SN (x) and CN (x), computed using fresnelCS in
Table 2. As accurate values for C(x) and S(x) we use C20(x) and S20(x) for x > 1.5
while, for 0 < x < 1.5 (following [25]) we approximate by the series (69) truncated
after 15 terms, evaluated by the Horner algorithm. Exponential convergence is seen in
Fig. 4: the absolute errors are ≤ 4.5 × 10−16 for N ≥ 11, the maximum relative error
in CN (x) is ≈ 3.6×10−15 for N = 11 but that in SN (x) as large as 2.7×10−13. These
errors may be entirely acceptable, but the truncated power series (69) must achieve
smaller errors for small x and is cheaper to evaluate. (Evaluating at 107 equally spaced
points between 0 and 1.5 takes 2.9 times longer in Matlab with fresnelCS than
evaluating 15 terms of both the series (69) via Horner’s algorithm).

5 Concluding remarks

To conclude, we have presented in this paper new approximations for the Fresnel inte-
grals, derived from and inspired by modified trapezium rule approximations previously
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Fig. 4 Left hand side: maximum values of |CN (x) − C(x)| and |SN (x) − S(x)| on 0 ≤ x ≤ 20. Right
hand side: maximum values of |CN (x) − C(x)|/C(x) and |SN (x) − S(x)|/S(x) on 0 ≤ x ≤ 20

suggested for the complementary error function of complex argument in [16,20]. These
approximations are simple to implement (Matlab codes are included in Tables 1 and
2): the computation of FN (x) requires a couple of complex exponentiations and a short
summation to compute a quadrature sum, and that of CN (x) and SN (x) evaluation of
trigonometric and hyperbolic functions and a similar short summation.

Operation counts and timings suggest that FN (x) with N = 12 may be faster than
previous methods, at least for intermediate values of |x |. In particular, the Matlab
function in Table 1 outperforms that in Table 1 of [30] for this application. The code
for SN (x) and CN (x) is faster still, but the power series (69), truncated after 15 terms,
are more accurate and efficient on the interval [0, 1.5], this conclusion endorsing
recommendations in [25].

Part of the motivation for this paper was a remark in Weideman [30] regarding the
modified trapezium rule methods of [16,20] for computing erfc(z), that they are “very
accurate, provided for given z and N [the finite number of quadrature points retained]
the optimal stepsize h is selected. It is not easy, however, to determine this optimal
h a priori.” At least as far as computing erfc(z) for arg(z) = −π/4 is concerned
[which, by (4), is the same as computing F(x)] this problem is solved in this paper, so
that the effectiveness of the modified trapezium rule methods of [16,20,30] is clearly
demonstrated. We hope that the methodology and positive results of this paper will
inspire further applications of this truncated, modified trapezium rule method.

We finish by flagging that the modified trapezium rule method that we have used
in this paper is applicable widely to the evaluation of integrals on the real line of
functions that are analytic but with poles near the real axis. Indeed, general theories
of the method are presented in Bialecki [4], Hunter [17] (and see [10], [18, §5.1.4]),
and in the thesis of one of the authors [19], where the emphasis is on the particular
case (7), where the analytic function f (t) = O(1) as t → ±∞. Integrals of the form
(7) arise in probabilistic applications [10] and as representations in integral form of
solutions to linear PDEs with constant coefficients, after solution by Fourier transform
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methods and deformation of the path of integration to a steepest descent path. One
example which continues to be the subject of computational studies [7,11,22] is the
Green’s function for the Helmholtz equation Δu + k2u = 0 in a half-space with
an impedance boundary condition, ∂u/∂n = ikβu. Representations for this Green’s
function in terms of a steepest descent path integral of the form (7), in both the 2D
and 3D cases, are given in [7], and the application of the truncated modified trapezium
rule method is discussed in [19].
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Appendix: bounds on erfc

In this appendix we prove Theorem 4 as a corollary of bounds on erfc in the right hand
complex plane contained in Theorem 6 below. In particular (51) follows immediately
from (4) and the first bound in (73), while (52) follows from (4), (20), and the second
of the bounds (73). The bounds in Theorem 6 are well-known in the case z ≥ 0 [1,
(7.8.2–7.8.3)], and the second bound (equivalent by (4) to the bound |w(z)| ≤ 1 for
Im(z) ≥ 0) is recently proved by an alternative argument on p. 413 of [3].

Theorem 6 For z = x + iy with x ≥ 0, y ∈ R, we have that

|erfc(z)| ≥ ey2−x2

√
(1 + √

π x)2 + πy2
≥ ey2−x2

1 + √
π |z| and |erfc(z)| ≤ ey2−x2

. (73)

Proof The first of the bounds (73) is equivalent to the bound

|G(z)| ≥ 1, for Re(z) ≥ 0, (74)

where G(z) = (1+√
π z)ez2

erfc(z) is an entire function which has the properties that
G(0) = 1 and G(z) → 1 as |z| → ∞ in the right hand plane, uniformly in arg(z) [2,
(7.1.23)]. (These properties imply that the first of the bounds (73) is sharp for z = 0
and in the limit |z| → ∞.) We will show (74) by showing that (74) holds for all z in
the right hand plane if it holds on the imaginary axis, and then showing that (74) holds
on the imaginary axis.

To see that it is enough to prove that (74) holds for imaginary z, observe that, since
erfc(z) has no zeros in the right hand complex plane [12,28] [or on the imaginary axis
where Re(erfc(z)) = 1, see (76)], the function H(z) := 1/G(z) is also analytic in the
right hand complex plane and is continuous up to the imaginary axis. Moreover, H(z)
is bounded in the right hand plane since, as observed above, G(z) → 1 as |z| → ∞
in the right hand plane (uniformly in arg(z)). Since H(z) is bounded in the right hand
plane, it follows from the maximum principle that
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sup
Re(z)≥0

|H(z)| = sup
Re(z)=0

|H(z)|. (75)

To see this, note that this equality holds for Hα(z) := 1/Gα(z), with α > 1, where
Gα(z) := (1+√

π z)αez2
erfc(z) with the branch cut taken as the negative real axis. This

is clear since Hα(z) is analytic in the right half-plane, continuous up to the imaginary
axis, and vanishes at infinity, so that the standard maximum principle implies that
Hα(z) takes its maximum value on the imaginary axis. But then (75) follows by
taking the limit α → 1+.

In view of (75), to establish (74) we need only show that it holds for z = iy with y ∈
R; indeed, establishing this bound for y ≥ 0 is sufficient since erfc(−iy) = erfc(iy).
Now, for z = iy with y ≥ 0, using [1, (7.5.1)], which implies

ez2
erfc(z) = e−y2

⎛
⎝1 − 2i√

π

y∫

0

et2
dt

⎞
⎠ (76)

we see that

|G(iy)|2 = (1 + πy2)e−2y2

⎛
⎜⎝1 + 4

π

⎛
⎝

y∫

0

et2
dt

⎞
⎠

2
⎞
⎟⎠ (77)

≥ (1 + πy2)e−2y2
(

1 + 4

π
y2

)

=
(

1 +
(

π + 4

π

)
y2 + 4y4

)
e−2y2

.

It is an easy calculus exercise to show the right hand side takes its minimum value
on [0, 1] at either 0 or 1, and hence that |G(iy)| ≥ 1, for 0 ≤ y ≤ 1, since |G(i)|2 >

(5 + π)/e2 > 8/2.82 > 1. Further, (77) implies that

|G(iy)| ≥ 2ye−y2

y∫

0

et2
dt

and, for y ≥ 1, it follows on integrating by parts that

y∫

0

et2
dt =

1∫

0

et2
dt +

y∫

1

et2
dt =

1∫

0

et2
dt + ey2

2y
− e

2
+

y∫

1

et2

2t2 dt

>

1∫

0

(1 + t2 + 1
2 t4)dt + ey2

2y
− e

2
>

ey2

2y
,
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since e < 2.8 < 2(1 + 1/3 + 1/10). Thus |G(iy)| ≥ 1 on [1,∞) and the bound (74)
is proved.

Similarly,

sup
Re(z)≥0

|e−z2
erfc(z)| = sup

Re(z)=0
|e−z2

erfc(z)| = sup
y≥0

|e−y2
erfc(iy)|. (78)

Further, (76) implies that, for y ≥ 0,

|erfc(iy)|2 − 1 = 4

π

⎛
⎝

y∫

0

et2
dt

⎞
⎠

2

= 4y2

π

( ∞∑
n=0

y2n

n!(2n + 1)

)2

= 2y2

π

∞∑
n=0

an y2n ≤ 2

π

(
e2y2 − 1

)

where

an =
n∑

m=0

2

m!(n − m)!(2m + 1)(2(n − m) + 1)
≤ 2

n + 1

n∑
m=0

1

m!(n − m)! = 2n+1

(n + 1)! .

Thus, for y ≥ 0,

|e−y2
erfc(iy)|2 ≤ 2

π
+

(
1 − 2

π

)
e−2y2 ≤ 1.

Combining this with (78) we see that the second of the bounds (73) holds. 
�
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